Definition 1. Given \(w \in \ell^\infty \), define a bounded linear operator \(B_w : \ell^2 \to \ell^2 \) by
\[
B_w(x)(i) = w(i) \cdot x(i + 1).
\]
Such a \(B_w \) is called a unilateral weighted shift. A vector \(x \in \ell^2 \) is hypercyclic for \(B_w \) iff the set
\[
\{ B^k_w(x) : k \in \omega \}
\]
of forward iterates is dense in \(\ell^2 \). Let \(\text{HC}(w) \) denote the set of all hypercyclic vectors for \(B_w \).

It is routine to check that \(\text{HC}(w) \) is a \(G_\delta \) set for any \(w \in \ell^\infty \). The question addressed in the present paper is how much the complexity of \(\text{HC}(w) \) can be increased by looking at those sequences which are hypercyclic for many \(w \) simultaneously. Concretely, for \(W \subseteq \ell^\infty \), let
\[
X_W = \bigcap_{w \in W} \text{HC}(w).
\]
It turns out that \(X_W \) can be made arbitrarily complicated by making \(W \) sufficiently complex (Theorem 4). Even for a \(G_\delta \) set \(W \), however, the set \(X_W \) can still be non-Borel (Theorem 5).

It is necessary to introduce a few preliminaries and some terminology before proceeding. Let \(\| \cdot \|_2 \) denote the usual \(\ell^2 \) norm. In what follows, this notation will be used for finite sequences as well, i.e., for \(s \in \mathbb{R}^{<\omega} \),
\[
\| s \|_2 = \sqrt{s(0)^2 + \ldots + s(n)^2}
\]
assuming \(s \) is of length \(n + 1 \).

The notation \(|s| \) will be used to denote both the length of a string (if \(s \in 2^{<\omega} \)) and the length of an interval (if \(s \subseteq \omega \) is an interval). The notation \(\| x \|_\infty \) will denote the \(\ell^\infty \) or sup-norm of \(x \). Again, this definition makes sense for any string \(x \) – either finite or infinite. There is a relationship between the 2-norm and the sup-norm of a finite string which will be useful in what follows. Indeed, if \(s \) is a finite string of real numbers, having length \(n \), a computation shows that
\[
\| s \|_2 \leq n^{1/2} \| s \|_\infty.
\]
One of the key descriptive set theoretic concepts in this paper is that of a “pointclass”. There are many variations on the definition of “pointclass”. For the purposes of the present work, use the following definition of a pointclass Γ:

Definition 2. A *pointclass* Γ is a collection of subsets of Polish (separable completely metrizable) spaces such that

- Γ is closed under continuous preimages,
- Γ is closed under finite unions and
- Γ is closed under finite intersections.

Given a pointclass Γ, the *dual pointclass* $\bar{\Gamma}$ consists of those Y contained in some Polish space X such that $X \setminus Y \in \Gamma$. A pointclass is *non-self-dual* iff there is a Polish space X and a set $Y \subseteq X$ such that $Y \in \Gamma$ but $Y \notin \bar{\Gamma}$ (equivalently, $X \setminus Y \notin \Gamma$).

To take a few examples, “closed” and “open” are dual pointclasses as are “F_σ” and “G_δ”. All four of these classes are non-self-dual.

Proposition 3. For a Borel set $W \subseteq \ell^\infty$, the intersection $\bigcap_{w \in W} HC(w)$ is co-analytic.

Proof. To see this, observe that, for $y \in \ell^2$,

$$y \in \bigcap_{w \in W} HC(w) \iff (\forall w \in \ell^\infty)(w \in W \implies y \in HC(w)).$$

The key observation is that, although ℓ^∞ is not Polish, its Borel structure is the same as that inherited from \mathbb{R}^ω (which is Polish). Therefore, the claim that $\bigcap_{w \in W} HC(w)$ is co-analytic follows by regarding W and ℓ^∞ as subsets of \mathbb{R}^ω and using the fact that the relation

$$P(y, w) \iff y \in HC(w)$$

is itself G_δ.

The next two theorems show that the upper bound from the last proposition cannot be improved.

Theorem 4. Given a non-self-dual pointclass Γ which contains the closed sets, there is a set $W \subseteq \ell^\infty$ such that $\bigcap_{w \in W} HC(w)$ is not in Γ.

Theorem 5. There is a Borel set W such that $\bigcap_{w \in W} HC(w)$ is properly co-analytic, i.e., not analytic.

The key to proving Theorems 4 and 5 lies with the next three lemmas.
Lemma 6. If \(s \in \mathbb{R}^n \) and \(\|s\|_\infty < n^{-1/2}\varepsilon \), then \(\|s\|_2 < \varepsilon \).

Proof. Suppose that \(s \in \mathbb{R}^n \) and \(\|s\|_\infty < n^{-1/2}\varepsilon \), i.e., \(|s(i)| < n^{-1/2}\varepsilon \) for all \(i < n \). It follows that
\[
\|s\|_2 = \sqrt{s(0)^2 + \ldots + s(n-1)^2} < \sqrt{n \cdot (n^{-1/2}\varepsilon)^2} = \varepsilon
\]
This proves the lemma. \(\square \)

Lemma 7. If \(A \) is a countable set and \(f : 2^A \rightarrow \ell^2 \) is such that

1. \(f \) is continuous with respect to the product topologies on \(2^A \) and \(\ell^2 \) (inherited from \(\mathbb{R}^\omega \)) and

2. there exists \(y \in \ell^2 \) such that \(|f(x)(i)| \leq y(i) \) for all \(x \in 2^A \) and \(i \in \omega \),

then \(f \) is continuous with respect to the norm-topology on \(\ell^2 \).

Proof. Let \(y \in \ell^2 \) be as in the statement of the lemma. Towards the goal of showing that \(f \) is \(\ell^2 \)-continuous, fix \(\varepsilon > 0 \) and let \(n \) be such that
\[
\|y \upharpoonright [n, \infty)\|_2 < \varepsilon/4.
\]
Since \(f \) is continuous into the product topology on \(\ell^2 \), let \(F \subseteq A \) be finite and such that, for \(x_1, x_2 \in 2^A \), if \(x_1 \upharpoonright F = x_2 \upharpoonright F \), then
\[
|f(x_1)(i) - f(x_2)(i)| < n^{-1/2}\varepsilon/2
\]
for all \(i < n \). In particular, \(x_1 \upharpoonright F = x_2 \upharpoonright F \) guarantees
\[
\|f(x_1) - f(x_2) \upharpoonright n\|_2 < \varepsilon/2
\]
by Lemma 6. It now follows that, whenever \(x_1, x_2 \in 2^A \) and \(x_1 \upharpoonright F = x_2 \upharpoonright F \),
\[
\|f(x_1) - f(x_2)\|_2 \leq \|f(x_1) - f(x_2) \upharpoonright n\|_2 + \|f(x_1) \upharpoonright [n, \infty)\|_2
+ \|f(x_2) \upharpoonright [n, \infty)\|_2
< \varepsilon/2 + 2\|y \upharpoonright [n, \infty)\|_2
< \varepsilon/2 + 2\varepsilon/4 = \varepsilon.
\]
Since \(\varepsilon \) was arbitrary this completes the proof. Note that a stronger result was in fact proved: \(f \) is uniformly continuous with respect to the standard ultrametric on \(2^A \). \(\square \)
Lemma 8. Given a countable set A. It is possible to assign to each $a \subseteq A$, sequences $y_a \in \ell^2$ and $w_a \in \{1, 2\}^\omega$ such that

$$y_a \in \text{HC}(w_b) \iff a \not\supseteq b$$

Moreover the maps $a \mapsto y_a$ and $a \mapsto w_a$ are homeomorphism between 2^A and their ranges.

Before proving this lemma, it will be helpful to introduce an alternative topological basis for ℓ^2. Given a finite string $q \in \mathbb{Q}^{<\omega}$ of rationals and a (rational) number $\varepsilon > 0$, let

$$U_{q,\varepsilon} = \{ x \in \ell^2 : \| (x \upharpoonright |q|) - q \|_\infty < \varepsilon |q|^{-1/2} \text{ and } \| x \upharpoonright [|q|, \infty) \|_2 < \varepsilon \}$$

First note that each $U_{q,\varepsilon}$ is open. In order to check that the $U_{q,\varepsilon}$ form a basis for ℓ^2, fix a basic open ball

$$V = \{ x \in \ell^2 : \| x - x_0 \|_2 < \varepsilon \}$$

where $x_0 \in \ell^2$ and $\varepsilon > 0$ are fixed. Let $n \in \omega$ be such that

$$\| x_0 \upharpoonright [n, \infty) \|_2 < \varepsilon/4$$

and choose $q \in \mathbb{Q}^n$ such that

$$\| x_0 \upharpoonright n - q \|_2 < \varepsilon/4.$$

First of all, it follows from the definition of $U_{q,\varepsilon}$ that $x_0 \in U_{q,\varepsilon/4}$. To see that $U_{q,\varepsilon/4} \subseteq V$, observe that if $x \in U_{q,\varepsilon/4},$

$$\| x - x_0 \| \leq \| (x - x_0) \upharpoonright n \|_2 + \| (x - x_0) \upharpoonright [n, \infty) \|_2$$

$$\leq n^{1/2} \| (x - x_0) \upharpoonright n \|_\infty + \| x \upharpoonright [n, \infty) \|_2 + \| x_0 \upharpoonright [n, \infty) \|_2$$

$$< n^{1/2} (\| (x \upharpoonright n) - q \|_\infty + \| (x_0 \upharpoonright n) - q \|_\infty) + \varepsilon/4 + \varepsilon/4$$

$$< n^{1/2} ((\varepsilon/4)n^{-1/2} + (\varepsilon/4)n^{-1/2}) + \varepsilon/2$$

$$= \varepsilon$$

As $x \in U_{q,\varepsilon/4}$ was arbitrary, it follows that $U_{q,\varepsilon/4} \subseteq V$. Since V was an arbitrary open ball, this shows that the $U_{q,\varepsilon}$ form a topological basis for ℓ^2.

Proof of Lemma 8. Let $\pi : \omega \to \mathbb{Q}^{<\omega}$ be a surjection. Let A be the fixed countable set from the statement of the lemma. for “coding” purposes, fix a bijection

$$\langle :, :, : \rangle : \omega \times (\mathbb{Q} \cap (0, 1)) \times A \to \omega.$$

Given $n \in \omega$, let $p_n \in \omega$, $\varepsilon_n > 0$ and $i_n \in A$ be such that

$$n = \langle p_n, \varepsilon_n, i_n \rangle.$$
Finally, let
\[\rho_n = \min\{\varepsilon_r : r < n\}. \]

The first step of the proof is to choose a suitable partition
\[I_0, J_0, I_1, J_1, \ldots \]
of \(\omega\) into consecutive intervals, i.e., such that \(\min(J_n) = \max(I_n) + 1\) and \(\min(I_{n+1}) = \max(J_n) + 1\). Each \(J_n\) will be chosen with \(|J_n| = |\pi(p_n)|\). The lengths of the \(I_n\) will be chosen recursively and, for concreteness, of minimal length satisfying

1. \(|I_n| \geq |I_{n-1}|\),
2. \(|I_n| > \max(J_{n-1})\) and
3. \(2^{-|I_n|} \cdot \|\pi(p_n)\|_2 \leq 2^{-n-1} \cdot \rho_n \cdot 2^{-\max(J_{n-1})} \cdot 2^{-|I_{n-1}|}\).

for \(n > 1\). The length of \(I_0\) is arbitrary – \(I_0\) can even be the empty interval.

The next step is to define the desired \(y_a\) and \(w_a\) for each \(a \subseteq A\). For \(n = \langle p, \varepsilon, i \rangle\), define \(y_a\) on each \(I_n\) and \(J_n\) by

1. \((\forall n)(y_a \upharpoonright I_n = \bar{0})\),
2. \((\forall n)(i \in a \implies y_a \upharpoonright J_n = \bar{0})\) and
3. \((\forall n)(i \notin a \implies y_a \upharpoonright J_n = 2^{-|I_n|} \cdot \pi(p)).\)

The first important observation about the map \(a \mapsto y_a\) is that it is continuous. To see this, first observe that every initial segment of \(y_a\) is determined by an initial segment of \(a\). This implies that \(a \mapsto y_a\) is continuous into the product topology on \(\ell^2\) (which it inherits from \(\mathbb{R}^\omega\)). Now invoke Lemma 7 and use the fact that \(y_a\) is always termwise bounded by \(y_0 \in \ell^2\). It now follows that \(a \mapsto y_a\) is in fact continuous with respect to the norm-topology on \(\ell^2\).

It also follows from the definition of \(y_a\) that the function \(a \mapsto y_a\) is injective. As the domain of this map \((2^A)\) is compact, \(a \mapsto y_a\) must therefore be a homeomorphism with its range.

Now define \(w_a \in \{1, 2\}^\omega\) (for \(a \subseteq A\)) by making sure that the restrictions \(w_a \upharpoonright I_n \cup J_n\) satisfy

1. \((\forall n)(i_n \notin a \implies w_a \upharpoonright I_n \cup J_n = \bar{1})\),
2. \((\forall n)(i_n \in a \implies (\forall j \in J_n) (|\{i < j : w_a(i) = 2\}| = |I_n|)\) and
3. if \(i, j \in I_n\) with \(i < j\) and \(w_a(j) = 2\), then \(w_a(i) = 2\).
The continuity of \(a \mapsto w_a \) follows from the fact that initial segments of \(w_a \) are completely determined by initial segments of \(a \).

The next three claims will complete the proof. The proofs of these three claims all follow similar arguments using the definitions of the \(y_a \) and \(w_a \).

Claim. Each \(y_a \) is in \(\ell^2 \).

It suffices to show that the \(\ell^2 \) norm of \(y_a \) is finite. Indeed, by the triangle inequality and the third part of the definition of \(y_a \),

\[
\|y_a\|_2 \leq \sum_{n \in \omega} \|y_a \upharpoonright J_n\|_2 \\
\leq \sum_{n \in \omega} 2^{-|I_n|} \cdot \|\pi(p_n)\|_2 \\
\leq \sum_{n \in \omega} 2^{-n-1} \cdot \rho_n \cdot 2^{-\max(J_n-1)} \cdot 2^{-|I_{n-1}|} \\
\leq \sum_{n \in \omega} 2^{-n-1} \\
\leq 1
\]

This proves the claim.

Claim. If \(a, b \subseteq A \) with \(a \supseteq b \), then \(y_a \notin HC(w_b) \).

For this claim, it suffices to show that \(\|B_{w_b}^k(y_a)\|_2 \leq 1 \) or \(B_{w_b}^k(y_a)(0) = 0 \) for each \(k \in \omega \). This will establish that there is no \(k \in \omega \) such that \(B_{w_b}^k(y_a) \) is in the open set

\[U = \{ y \in \ell^2 : \|y\|_2 > 1 \text{ and } y(0) \neq 0 \}. \]

To this end, fix \(k \in \omega \) and let \(n \in \omega \) be such that \(k \in I_n \cup J_n \). First of all, if \(i_n \in a \), then \(y_a \upharpoonright I_n \cup J_n = 0 \) and hence

\[B_{w_b}^k(y_a)(0) = w_b(0) \cdot \ldots \cdot w_b(k-1) \cdot y_a(k) = 0. \]

On the other hand, if \(i_n \notin a \supseteq b \), then \(w_b \upharpoonright I_n \cup J_n = \bar{1} \) and hence

\[|\{ j < k : w_b(j) = 2 \}| \leq \max(J_{n-1}). \]

To obtain an estimate on \(\|B_{w_b}^k(y_a)\|_2 \), a couple preliminary observations will be useful. Suppose \(t \in \omega \) is such that \(k + t \in I_r \) for some \(r \in \omega \). In this case,

\[B_{w_b}^k(y_a)(t) = 0 \]

since \(y_a(k + t) = 0 \). If \(k + t \in J_n \) (where \(k \in I_n \cup J_n \)), then

\[|B_{w_b}^k(y_a)(t)| \leq 2^{\max(J_{n-1})} \cdot |y_a(k + t)| \]
since $w_b \upharpoonright I_n \cup J_n = 1$. Finally, if $k + t \in J_r$ for some $r > n$, then

$$|B^k_{w_b}(y_a)(t)| \leq 2^k \cdot |y_a(k + t)|$$

$$\leq 2^{\max(J_{r-1})}$$

since $k \leq \max(J_n) \leq \max(J_{r-1})$. It now follows by the triangle inequality that

$$\|B^k_{w_b}(y_a)\|_2 \leq \sum_{r \geq n} 2^{\max(J_{r-1})} \cdot \|y_a \upharpoonright J_r\|_2$$

$$\leq \sum_{r \geq n} 2^{\max(J_{r-1})} \cdot 2^{-r-1} \cdot \rho_r \cdot 2^{-\max(J_{r-1})} \cdot 2^{I_{r-1}}$$

$$\leq \sum_{r \geq n} 2^{-r-1}$$

$$\leq 1$$

This completes the proof of the claim.

Claim. If $a, b \subseteq A$ with $a \not\supseteq b$, then $y_a \in \mathbf{HC}(w_b)$.

For this final claim, it suffices to show that, for each $q \in \mathbb{Q}^{<\omega}$ and $\varepsilon > 0$, there is a $k \in \omega$ such that $B^k_{w_b}(y_a)$ is in the open set

$$U_{q,\varepsilon} = \{x \in \ell^2 : \|(x \upharpoonright |q|) - q\|_\infty < \varepsilon |q|^{-1/2} \text{ and } \|x \upharpoonright [|q|, \infty)\|_2 < \varepsilon\}$$

as these open sets form a topological basis for ℓ^2 by remarks preceding the proof. Indeed, fix $q \in \mathbb{Q}^{<\omega}$ and let $p \in \omega$ be such that $\pi(p) = q$. Fix $i \in b \setminus a$ and let $n = \langle p, \varepsilon, i \rangle$. Since $i \in b$ and $i \not\in a$, the second case in the definition of $w_b \upharpoonright I_n \cup J_n$ and the second case in the definition of $y_a \upharpoonright J_n$ are active. In particular, for each $j \in J_n$,

$$|\{t < j : w_b(t) = 2\}| = |I_n|.$$

It follows that

$$B^\min(J_n)_{w_b}(y_a) = \pi(p) \cdot y$$

for some $y \in \ell^2$. To show that $B^\min(J_n)_{w_b}(y_a) \in U_{q,\varepsilon}$ (for any given $\varepsilon > 0$), it now suffices to show that $\|y\|_2 < \varepsilon$, since $q \prec B^\min(J_n)_{w_b}(y_a)$ by choice of n. Indeed,
observe that, again by the triangle inequality,
\[
\|y\|_2 \leq 2^{\lceil I_n \rceil} \cdot \sum_{r > n} \|y_{a \upharpoonright J_r}\|_2 \\
\leq 2^{\lceil I_n \rceil} \cdot \sum_{r > n} 2^{-|I_r|} \cdot \|\pi(p_r)\|_2 \\
\leq 2^{\lceil I_n \rceil} \cdot \sum_{r > n} 2^{-r-1} \cdot \rho_r \cdot 2^{-\max(J_{r-1})} \cdot 2^{-|I_{r-1}|} \\
\leq 2^{\lceil I_n \rceil} \cdot \sum_{r > n} 2^{-r-1} \cdot \rho_n \cdot 2^{-|I_n|} \\
\leq \varepsilon \cdot \sum_{r > n} 2^{-r-1} \\
< \varepsilon
\]
since \(\rho_n \leq \varepsilon = \varepsilon_n\). This complete the proof of the claim and proves Lemma 8. \(\square\)

Proof of Theorem 4. Let \(P \subseteq 2^\omega\) be a perfect set such that \(a \nsubseteq b\) for any two distinct \(a, b \in P\). The construction of such a set is a standard inductive argument (similar to the construction of a perfect independent set). Let \(y_a\) and \(w_a\) be as in the lemma for all \(a \subseteq \omega\). It follows from the independence of \(P\) that \(y_a \in HC(w_b)\) iff \(a \neq b\) for all \(a, b \in P\).

Given a non-self-dual pointclass \(\Gamma\) which contains the closed sets, fix \(Y \subseteq P\) with \(Y \in \Gamma \setminus \bar{\Gamma}\). Since \(P\) is closed, it follows that \(P \setminus Y \in \bar{\Gamma} \setminus \Gamma\). Let
\[
W = \{w_a : a \in Y\}.
\]
Now consider the set
\[
X_W = \bigcap_{w \in W} HC(w).
\]
For \(a \in P\), notice that \(y_a \in X_W\) iff \(a \notin Y\). Hence,
\[
X_W \cap \{y_a : a \in P\} = \{y_a : a \in P \text{ and } a \notin Y\} = \{y_a : a \in P \setminus Y\}
\]
It follows that \(X_W \notin \Gamma\) since \(\{y_a : a \in P\}\) is closed and \(\{y_a : a \in P \setminus Y\} \in \bar{\Gamma} \setminus \Gamma\) (because \(a \mapsto y_a\) is a homeomorphism). This completes the proof of the theorem. \(\square\)

Proof of Theorem 5. The key to this proof is an application of Lemma 8 with the countable set \(A\) taken to be \(\omega^{<\omega}\). With this in mind, let
\[
Wf = \{T \subseteq \omega^{<\omega} : T \text{ is a well-founded subtree}\}
\]
and
\[
C = \{p \subseteq \omega^{<\omega} : p \text{ is a maximal } \prec\text{-chain}\}.
\]
In other words, C may be identified with the set of infinite branches through $\omega^{<\omega}$. The set Wf proper co-analytic while C is G_δ. Let $W = \{w_p : p \in C\}$ and notice that W is also G_δ since $p \mapsto w_p$ is a homeomorphism by Lemma 8. To see that

$$X_W = \bigcap_{w \in W} \text{HC}(w)$$

is not analytic, observe that, for any subtree $T \subseteq \omega^{<\omega}$,

$$[T] = \emptyset \iff (\forall p \in C)(T \not\supset p)$$
$$\iff (\forall p \in C)(y_T \in \text{HC}(w_p)) \quad \text{(by Lemma 8)}$$
$$\iff (y_T \in X_W).$$

It follows that Wf is a continuous preimage of X_W under the map $T \mapsto y_T$. In turn, this implies that X_W cannot be analytic.

\[\square \]

References