Geochemistry and tectonic evolution of the Neoproterozoic incipient arc–forearc crust in the Fawakhir area, Central Eastern Desert of Egypt

Yasser Abd El-Rahman, Ali Polat, Yildirim Dilek, Brian J. Fryer, Mohamed El-Sharkawy, Shawki Sakran

Article info
Article history:
Received 9 March 2009
Received in revised form
15 September 2009
Accepted 20 September 2009

Keywords:
Subduction initiation
Ophiolite
Active continental margin
Neoproterozoic
Arabian-Nubian Shield
Egypt

Abstract
The geodynamic origin of the Neoproterozoic ophiolites of the Arabian-Nubian Shield exposed in the Eastern Desert of Egypt remains controversial. In this study, we present new geochemical and field data from the Fawakhir ophiolite and from some mélange blocks along the Qift-Qusier Road in order to constraint the tectonic evolution of this part of the Central Eastern Desert. The Fawakhir ophiolite contains most lithological units of a Penrose-type ophiolite sequence, and includes ultramafic rocks in the west overlain by isotropic gabbro, sheeted dikes and pillow basalt in the east. These ophiolitic units are enriched in LREE (light rare earth elements) and LILE (large ion lithophile elements) but depleted in high field strength elements (La/Smcn = 0.40–1.22, Th/Nbpm = 1.7–10.9, La/Nbpm = 1.4–6.6). Their magmas appear to have been derived from a depleted (N-MORB-like) mantle source, and their geochemical characteristics are comparable to those of the Izu-Bonin-Mariana forearc oceanic crust formed during the initiation of an intra-oceanic subduction zone. Pillow lava blocks in the eastern mélange have geochemical signatures similar to those of oceanic crust generated in back-arc basins. The decrease in the magnitude of mantle depletion and the change of the geochemical signature along the Qift-Qusier Road from a forearc in the west to a back-arc in the east suggest the formation of the Fawakhir intra-oceanic arc system over an east-dipping subduction zone. With continued subduction and arc migration, this intra-oceanic arc system finally collided with the passive margin of the West Gondwana (the Saharan craton), resulting in the accretion of the Fawakhir arc–forearc units. Following its tectonic accretion onto the West Gondwana continental margin, the Fawakhir ophiolite was intruded by calc-alkaline dikes, whose magmas were derived partly from partial melting of the sub-continental lithospheric mantle. These dikes have geochemical characteristics similar to those of modern active continental margin (Andean-type) rocks (La/Smcn = 2.13–2.48, Gd/Ybcn = 2.04–4.25, Th/Nbpm = 3.2–5.8, La/Nbpm = 2.5–4.9), suggesting that the West Gondwana passive margin (Atlantic-type) was converted to an Andean-type margin subsequent to the arc-continent collision. The inferred conversion of the Atlantic-type margin to an Andean-type margin resulted from the collision-induced reversal of the subduction direction.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Neoproterozoic Era is characterized by the widespread formation of ophiolites (Stern, 2005, 2008), which are particularly common in the Arabian-Nubian Shield with ages ranging from 870 to 690 Ma (Dilek and Ahmed, 2003; Stern et al., 2004). Neoproterozoic crustal growth of the Arabian-Nubian Shield was accomplished mostly through the accretion of island arcs to continental margins, as the Mozambique Ocean between the West and East Gondwana supercontinents was closed (Furnes et al., 1996; El-Shafei and Kusky, 2003; Jöns and Schenk, 2007, and references therein). The final collision between West and East Gondwana resulted in the Pan-African orogeny (Kröner, 1985; Kröner et al., 1987). Subduction, accretion, and crustal thickening processes took place between about 870 and 570 Ma (Stern and Hedge, 1985; Kröner et al., 1992; Stern, 1994). The crustal evolution of the Eastern Desert culminated in the eruption of the Dokhan Volcanics, deposition of molasse-type Hammamat sediments, and emplacement of younger granites (Eliwa et al., 2006).

© 2009 Elsevier B.V. All rights reserved.
The Eastern Desert of Egypt constitutes the northwestern end of the Nubian segment of the Arabian-Nubian Shield (Fig. 1a). Despite recent progress in understanding the evolution of the Arabian-Nubian Shield, the tectonic setting of the ophiolites in the Eastern Desert remains unresolved. As for many other ophiolites, the ophiolitic rocks of the Arabian-Nubian Shield have supra-subduction geochemical signatures (Stern et al., 2004), but Zimmer et al. (1995) reported the occurrence of mid-ocean ridge (MOR) ophiolite in the Gerf area in the southern Eastern Desert (Fig. 1b). The supra-subduction signature of the ophiolites in the Eastern Desert led to further debate on whether they were formed in a back-arc setting (El-Bayoumi, 1983; Furnes et al., 1996; El-Sayed et al., 1999; Farahat et al., 2004) or in a forearc setting during subduction initiation (Azer and Stern, 2007; Khalil and Azer, 2007).

Azer and Stern (2007) and Khalil and Azer (2007) proposed that the Neoproterozoic ophiolites of the Eastern Desert were formed in a forearc setting based on the depleted nature of the serpentinitized mantle rocks. Although their conclusion is consistent with other Arabian-Nubian Shield ophiolite mantle units (Stern et al., 2004), alternative geodynamic settings have been proposed for the upper-mantle peridotites of the Central Eastern Desert. For example, Ahmed et al. (2001) and Farahat (2008) suggested that harzburgites are likely to be fragments of back-arc basin lithosphere. Khalil (2007) inferred a mid-ocean ridge tectonic setting for the mantle rocks of Wadi Ghadir ophiolite in the Eastern Desert. Ophiolitic gabbros and pillow lavas in the Central Eastern Desert were interpreted as remnants of oceanic crust formed in a back-arc basin (Kröner, 1985; El-Sayed et al., 1999; Farahat et al., 2004; Abd El-Naby and Frisch, 2006). In this study, new major element (40 samples) and trace element (58 samples) data obtained from different crustal units of the Fawakhir ophiolite along with some samples from the mélanges along Qift-Qusier Road and the younger dikes crosscutting the ophiolitic units are reported. These geochemical data and field observations are used in order to: (1) evaluate the tectonic setting of the formation of the Fawakhir ophiolite; (2) decipher the mantle melt source of its crustal units; and (3) re-evaluate the existing geodynamic models to better constrain the changes in subduction direction associated with the documented incipient arc generation and post-accretion magmatism.

2. Previous work on the Fawakhir ophiolite

Shackleton et al. (1980) identified the mafic–ultramafic rocks along the Qift-Qusier Road in the Central Eastern Desert, including the Fawakhir area, as an ophiolitic assemblage (Fig. 2). Nasseef et al. (1980) defined the whole ophiolite sequence, starting from the ultramafic rocks at the base through gabbroic rocks and sheeted dikes to the basic pillow lavas at the top (Fig. 3). Using geochemistry, Stern (1981) divided the Neoproterozoic volcanic rocks in the Central Eastern Desert into an older (Older Metavolcanics) and a younger (Younger Metavolcanics) volcanic assemblage. The older assemblage is interpreted as a remnant of oceanic crust, whereas the younger assemblage is interpreted as an island arc sequence. Stern (1981) considered the Fawakhir mafic rocks as part of the older assemblage formed in either small oceanic rift or back-arc basin. In their geodynamic model for the evolution of the Central Eastern Desert, Ries et al. (1983) considered the Fawakhir ophiolite as a mid-ocean-generated oceanic crust that has been preserved in an olistostromal mélange. El-Gaby et al. (1988) considered the Fawakhir ophiolite as a segment of oceanic crust formed in a marginal (back-arc?) basin, similar to the Wadi Ghadir ophiolite farther south.

El-Sayed et al. (1999) reported the most comprehensive geochemical data on the Fawakhir ophiolite. They stated that the Fawakhir ophiolite is composed of tholeiitic to calc-alkaline gabros and volcanic rocks, and also includes minor boninitic gabbros. From the association of arc-type lava, plume-type MORB and boninitic rocks, El-Sayed et al. (1999) proposed that the Fawakhir ophiolite was formed in back-arc basin. Andresen et al. (2009) implied that the Fawakhir ophiolite possibly formed in a forearc setting.

3. Regional geology and field characteristics

Qift-Qusier Road traverses the Neoproterozoic basement rocks of the Central Eastern Desert (CED). The NW-SE-trending Precambrian rocks along this road are unconformably overlain by the Cretaceous Nubian sandstone to the west and by Miocene siliciclastic sedimentary rocks to the east and can be grouped into three units: (1) the Meatiq quartzofeldspathic gneisses, (2) the ophiolitic mélange, and (3) the Hamammat molasse-type siliciclastic sedimentary rocks (El-Gaby et al., 1984) (Fig. 2). All these units are tectonically juxtaposed. The mélange is composed of dismembered ophiolitic fragments (serpentinitized peridotite, pyroxenite, gabbros, and volcanic rocks), island arc-related andesitic volcanic and volcaniclastic rocks, and amphibolite dispersed in a sheared sedimentary matrix (Ries et al., 1983; El-Gaby et al., 1984; Fowler and Osman, 2001).

Ophiolitic units of the CED occur as dismembered blocks in a tectonic mélange (Shackleton et al., 1980; Ries et al., 1983; El-Gaby et al., 1988) (Fig. 1b). The best exposures of the ophiolitic units along the Qift-Qusier Road occur in the Fawakhir area, which is located between the Meatiq gneissic dome to the east and the Hamammat sedimentary rocks to the west (Nasseef et al., 1980). The Fawakhir ophiolitic sequence includes, from the bottom to the top, ultramafic rocks, gabbros and volcanic rocks, mainly basalt and basaltic andesite towards the east (El-Sayed et al., 1999) (Fig. 3).
The basal ultramafic rocks are intruded by the Fawakhir Monzodiorite which has an emplacement age of 597.8 ± 2.9 Ma (Andresen et al., 2009). Andresen et al. (2009) reported a crystallization age of 736.5 ± 1.2 Ma for zircons from an ophiolitic gabbro of the Fawakhir area.

Ultramafic rocks have been severely serpentinized. The serpentinite is characterized by a mesh texture and is crosscut by many shear zones along which it is altered to talc and carbonates (Fig. 4a). Some pyroxenite bodies occur as irregular coarse-grained lenses within the serpentinite close to the ophiolitic gabbros.

Fig. 2. Simplified geological map of the Qift-Quseir road outlined by rectangle in Fig. 1b. Modified from El-Gaby et al. (1984).

Fig. 3. (a) Geological map of the Fawakhir area outlined by the rectangle in Fig. 2. Modified from El-Sayed et al. (1999). (b) Symbolic stratigraphic section showing the main rocks units of the Fawakhir ophiolite.
Gabbro is the most abundant rock type in the Fawakhir ophiolite and is best observed at Bir El-Sid. It is mostly isotropic (Fig. 4b) with its grain size varying from coarse-grained to fine-grained from west to east. Pegmatitic gabbros and doleritic varieties occur as pockets within the isotropic gabbro. These gabbroic rocks are dissected by widespread quartz, epidote and carbonate veinlets and are intruded by rare trondhjemite veins. Isotropic gabbro grades upwards into doleritic rocks with local preservation of sheeted dike features. NW-SE-oriented sheeted dikes are ~ 2-m-thick on average and dip mostly to the NE. Sheeted dikes and to a lesser extent the gabbros are dissected by dike-parallel brittle fault zones that show hydrothermal alteration features. Dike-perpendicular, NE-SW-oriented brittle faults are also common within the sheeted dike complex. The entire ophiolite is intruded by less deformed, individual basaltic and andesitic dikes that represent late-stage magmatism during its evolution.

Volcanic rocks display pillow structures and slightly porphyritic and amygdaloidal textures (Fig. 4c), and are highly brecciated. They are locally associated with hyaloclastites and very fine-grained red pelites. Pillow lavas also occur in the mélangé along the Qift-Qusier Road close to Qusier City (Fig. 4d). There, pillow lavas display a way-up direction towards the southeast and are unconformably overlain by Miocene sedimentary rocks to the west.

4. Petrography

The mineralogical characteristics of the Fawakhir ophiolite and Qift-Qusier mélange are summarized in Table 1. Pyroxenite is strongly altered to talc, serpentine and tremolite with some clinopyroxene relics. The outlines of completely altered pyroxene crystals can be seen through the alignment of iron oxides along the cleavage planes mimicking a bastite texture (Fig. 5a). Large talc flakes retain the original outlines of the pyroxene crystals, exhibiting a mosaic seriate texture. Small talc crystals aggregate with serpentine and tremolite. Some of the pyroxene bodies contain less altered plagioclase crystals. Gabbros in the Fawakhir area are medium to coarse-grained comprising plagioclase, amphibole (mostly actinolite), and subordinate augite relics, mainly in the core of hornblende, with accessory apatite and opaque minerals (Fig. 5b). In addition to actinolite, chlorite, epidote, sericite, calcite and titanite are uncommonly recorded as secondary minerals in the order of decreasing abundance.

Dolerites and pillow lavas are characterized by medium and fine-grained crystals respectively. Medium-grained dolerites are intergranular (Fig. 5c) and locally porphyritic. Plagioclase and chloritized pyroxene phenocrysts are set in a groundmass of fine-grained plagioclase, actinolite, chlorite, epidote, and titanite. Chlorite, actinolite, and epidote are alteration products of pyroxene interstitial to plagioclase laths forming an intersertal texture. Pillow basalts have the same mineralogical composition as dolerites; however, they are mostly aphanitic. In addition to the intersertal texture, plagioclase laths of the pillow lavas locally display a variolitic texture and epidote forms aggregates of pseudo-phenocrysts (Fig. 5d). Pillow basalts in the eastern mélangé are weakly porphyritic. The phenocrysts are long thin turbid plagioclase that might have resulted from quenching (Fig. 5e). In the vicinity of
Table 1
Mineralogical composition of Qift-Qusier ophiolitic rocks.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Mineral assemblage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyroxenites</td>
<td>Clinopyroxene (relics) + talc + tremolite ± serpentine ± plagioclase ± opaques</td>
</tr>
<tr>
<td>Gabbros</td>
<td>Plagioclase + augite + hornblende + actinolite + chlorite ± epidote ± sercite ± calcite ± titanite ± opaques</td>
</tr>
<tr>
<td>Sheeted dikes and pillow lavas</td>
<td>Plagioclase + chlorite + actinolite + epidote ± titanite</td>
</tr>
<tr>
<td>Actinolite schists</td>
<td>Actinolite + plagioclase ± quartz + epidote ± opaques</td>
</tr>
<tr>
<td>Late dikes</td>
<td>Plagioclase + hornblende + chlorite ± quartz ± epidote ± apatite ± opaques</td>
</tr>
</tbody>
</table>

the Meatiq gneissic dome the igneous textures are partly obscured, and the mélange volcanic rocks grade into actinolite schist with the increasing intensity of deformation.

The younger, post-ophiolitic dikes intruding the Fawakhir ophiolite are composed of basaltic andesite to andesite, which are locally porphyritic including amphibole and plagioclase phenocrysts (Fig. 6f). The groundmass is composed largely of plagioclase and hornblende with subordinate amount of biotite and quartz. Hornblende is euhedral and brown. The main alteration mineral assemblage includes chlorite, sericite, epidote, and calcite in the order of decreasing abundance. Iron oxides and apatite are the main accessory minerals.

Fig. 5. Photomicrograph of the Fawakhir ophiolite and the mélange fragments. (a) Pyroxene (px) altered to talc (tc) and the iron oxide arranged along the cleavage in the pyroxenite of the Fawakhir area (XPL). (b) Plagioclase (plag) and hornblende (Hb) association in the gabbro of the Fawakhir ophiolite with pyroxene (px) relict in the core (XPL). (c) Doleritic texture of the sheeted dikes complex of the Fawakhir ophiolite (XPL). (d) Intergranular plagioclase laths of the pillow lava, of the Fawakhir ophiolite, enclosing epidote pseudo-phenocryst (XPL). (e) Long thin turbid plagioclase microphtenocryst with the finer plagioclase laths of the pillow lava of the eastern mélange blocks (PPL). (f) Porphyritic andesite with chloritized brown hornblende of the calc-alkaline dike cutting ophiolitic rocks (PPL). XPL, crossed polarized light. PPL, plane polarized light.
5. Analytical methods

Whole-rock samples were crushed in a hydraulic press and then pulverized using an agate mill in the Department of Earth and Environmental Sciences, University of Windsor, Canada. Samples were analyzed for both major and trace elements. Major elements were analyzed by Thermo Jarrell-Ash Enviro II ICP at ACTLABS, Ancaster, Canada. Samples were fused with a flux of lithium metaborate and lithium tetraborate in an induction furnace. The melt was immediately mixed with 5% nitric acid containing an internal standard until completely dissolved. Totals of major element oxides are 100 ± 1 wt% and the analytical precisions for major elements are 1–2%. Standards, DNC-1 and BIR-1, were used as international references to estimate accuracy of the major elements (Supplementary materials).

Samples were analyzed for rare earth elements (REE), high field strength elements (HFSE), large ion lithophile elements (LILE) and transition metals (Ni, Co, Cr and V) by a high-sensitivity Thermo Elemental X7 ICP-MS at the Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Canada, using the protocol of Jenner et al. (1990). For sample dissolution, 100–130 mg of powder was dissolved in concentrated HF–HNO₃ mixture in screw-top Teflon (Savillex®) bombs at a temperature of ~120 °C for three days until no residue was visible. The sample was further attacked with concentrated HNO₃–H₂BO₃–H₂C₂O₄ and then twice with 50% HNO₃. Standards, BHVO-1 and BHVO-2, were used as international reference materials to estimate accuracy of the measured trace elements (Supplementary materials). Analytical precisions are estimated as follows: 1–10% for REE, Rb, Sr, Ba, Y, Nb, Co, Cu, Zr, and U; 10–20%
Pyroxenites are characterized by 51–56 wt% SiO₂, MgO = 18–22 wt% and Al₂O₃ = 3–9 wt% (Fig. 6a and Table 2). Gabbros have lower silica (SiO₂ = 42–52 wt%) and MgO (MgO = 7–14 wt%) values but higher Al₂O₃ (Al₂O₃ = 15–19 wt%) than pyroxenites. Pyroxenites also have lower TiO₂ (0.07–0.1 wt%) than gabbros (0.15–0.73 wt%). In terms of Al₂O₃/TiO₂, both pyroxenites (35–91) and gabbros (21–113) show wide ranges and overlapping ratios. Pyroxenites have higher concentrations of compatible elements (Cr = 411–558 ppm, Co = 54–69 ppm, Sc = 61–72 ppm) than gabbros (Cr = 83–314 ppm, Co = 33–49 ppm, Sc = 37–47 ppm), but Ni concentrations overlap between the two groups (Fig. 6b). On the other hand, gabbros have higher concentrations of the incompatible elements (LILE, HFSE, REE) than pyroxenites (Table 2).

Pyroxenites display LREE-depleted patterns (La/Sm = 0.30–0.61; La/Yb = 0.15–0.38) accompanied by low REE abundances. Their HREE patterns (Gd/Yb = 0.67–0.79) are negatively fractionated (Fig. 7). Gabbros have similar REE patterns to pyroxenites but are less depleted in LREE (La/Sm = 0.40–1.06; La/Yb = 0.33–0.86), their HREE patterns (Gd/Yb = 0.85–1.14) are near-flat and their REE abundances are higher (Fig. 7a and Table 2). Europium anomalies vary from slightly positive to slightly negative in both rock types. Primitive mantle-normalized patterns for both rock types are characterized by enrichment of Ba and Th (LILE) over HFSE (Zr, Ti, Y) and HREE. Both rock types have large negative Nb anomalies (Fig. 8).

6.2. Volcanic rocks

Volcanic rocks of the Fawakhir ophiolite are characterized by MgO = 3–9 wt%, Ni = 32–140 ppm and Cr = 7–205 ppm (Table 2). Mg-numbers (38–66) are generally lower than those of the gabbros (Table 2). Similarly, concentrations of TiO₂ (0.40–1.18 wt%), Zr (24–102 ppm), and Y (9.11–26.5 ppm) are lower than those of the gabbros (Table 2).

Volcanic rocks display moderately depleted to slightly enriched LREE patterns (La/Sm = 0.65–1.22, La/Yb = 0.56–1.19) (Fig. 7b and Table 2). The HREE are moderately fractionated (Gd/Yb = 0.89–1.23) (Fig. 7b). The primitive mantle-normalized trace element patterns of the volcanic rocks are characterized by negative Nb anomalies and variable enrichment of Ba and Th (LILE) over HFSE (Fig. 8b).

6.3. Mélange blocks

Major and trace element contents of the blocks of volcanic rocks from the mélangé unit to the west of Qift-Qusier Road overlap with those of the volcanic rocks of the Fawakhir ophiolite (Table 2). These mélangé volcanic rocks are characterized by MgO = 5–10 wt%, Ni = 99–138 ppm, Cr = 99–473 ppm and Mg-number = 50–66 that are slightly higher than those of the ophiolitic volcanic rocks (Table 2). In contrast, Al₂O₃/TiO₂ ratios of the ophiolitic volcanic rocks (13–34) are higher than those of volcanic rocks in the mélangé (8–14). Despite an overlap in composition between the ophiolitic volcanic rocks and the volcanic blocks in the mélangé, the TiO₂ (0.83–1.86 wt%), Zr (58–124 ppm) and Y (20.7–31.6 ppm) concentrations of the latter group are higher (Table 2 and Fig. 6).
REE patterns ($\text{La/Sm}_{\text{cn}} = 0.52–0.66$, $\text{La/Yb}_{\text{cn}} = 0.67–0.81$) of the volcanic blocks in the mélange are similar to those of their ophiolitic counterparts (Fig. 7). All volcanic blocks in the mélange have positively fractionated HREE patterns ($\text{Gd/Yb}_{\text{cn}} = 1.23–1.41$) (Fig. 7c). Volcanic rocks both in the ophiolite and the mélange are characterized by negative Nb anomalies and minor enrichment of Ba and Th (LILE) over HFSE (Fig. 8c).

Fig. 7. Chondrite-normalized REE patterns for (a) ophiolitic pyroxenite and gabbros, (b) ophiolitic pillow lavas, (c) eastern mélange volcanic blocks, and (d) calc-alkaline dikes. Chondrite normalization values are from Sun and McDonough (1989).

Fig. 8. Primitive mantle-normalized trace elements patterns for (a) ophiolitic pyroxenite and gabbros, (b) ophiolitic pillow lavas, (c) eastern mélange volcanic blocks, and (d) calc-alkaline dikes. Primitive mantle normalization values are from Hofmann (1988). Dashed line represents N-MORB. N-MORB values are from Sun and McDonough (1989).
6.4. Late dikes

The late, post-ophiolitic dikes are characterized by MgO (4–8 wt%), Cr (34–94 ppm), and Ni (58–159 ppm) concentrations similar to those of the ophiolitic volcanic rocks (Table 2). These calc-alkaline dikes are enriched in TiO₂ (0.87–1.82 wt%), Zr (131–262 ppm) and most of the LILE over the ophiolitic volcanic rocks. Their REE patterns show pronounced positive fractionation of REE where La/Yb_{cn} = 7.17–18.6, La/Sm_{cn} = 2.13–2.48, and Gd/Yb_{cn} = 2.04–4.25 (Fig. 7d). The primitive mantle-normalized trace element patterns are characterized by negative Nb anomalies, small negative Ti anomalies, and enrichment of LILE and Th over the rest of the HFSE (Fig. 8d).

7. Discussion

7.1. Alteration

Ophiolites are variably altered and metamorphosed through seafloor hydrothermal circulation systems and during obduction/accretion-related processes (see Gillis and Banerjee, 2000; Furnes et al., 2000). Ophiolitic rocks of the Fawakhir area and in the eastern mélangé underwent various degrees of post-magmatic alteration. Although the original igneous textures are well preserved in the Fawakhir ophiolite, the mineralogical compositions of these rocks have been largely changed. The primary pyroxene and plagioclase were altered to actinolite, chlorite, epidote, albite, and titanite. Volcanic rocks are more extensively altered than the gabbros.

Given that the Fawakhir ophiolite was metamorphosed at greenschist facies, the primary geochemical characteristics of its rock units might have been changed. Alteration criteria proposed by Polat and Hofmann (2003) are used to assess the element mobility during post-magmatic alteration. Different major and trace elements are plotted against Zr (Fig. 6), which is one of the least mobile elements under various alteration processes (Winchester and Floyd, 1977). Among the major elements, MgO, Al₂O₃, and CaO show a moderate correlation with Zr abundances and TiO₂, P₂O₅, Ni, Cr, Sc, Co, Th, REE (La, Sm, Yb) and HFSE (Y, Nb) correlate well with Zr abundances (Fig. 9). The strong correlation with Zr indicates that these elements were not significantly mobile during post-magmatic alteration. In contrast to these immobile elements, K₂O and LILE (Rb, Ba, Sr) are not correlated with Zr, pointing to their mobility during alteration (Fig. 8c).

The relative immobility of REE and HFSE is confirmed by the coherent chondrite-normalized REE patterns and primitive mantle-normalized extended trace element patterns for different groups of samples (Figs. 7 and 8). Although the LILE (Ba) of the volcanic rocks shows a large variation in their primitive mantle-normalized patterns, the LILE (Ba) patterns of the gabbroic rocks are more coherent (Fig. 8a). This may have resulted from the mobility of LILE in the extrusive rocks during ocean floor hydrothermal alteration; however, the circulating hydrothermal fluids may not have penetrated deep into the gabbros to affect their LILE concentrations. Even the most-deformed gabbro sample (EGY-06-19) has penetrated deep into the gabbros to affect their LILE concentrations. Even the most-deformed gabbro sample (EGY-06-19) has penetrated deep into the gabbros to affect their LILE concentrations. Even the most-deformed gabbro sample (EGY-06-19) has penetrated deep into the gabbros to affect their LILE concentrations.

7.2. Chemical classification and magma series

Using the Zr/TiO₂-Nb/Y classification diagram of Winchester and Floyd (1977), all rock types can be classified as sub-alkaline (Nb/Y < 0.67) where the gabbros and volcanic rocks plot mostly in the basalt and andesite-basalt field (Fig. 9a). On the Zr versus Y diagram, all the ophiolitic rocks and volcanic blocks in the mélange plot in the tholeiitic field but the post-ophiolitic dikes plot in the calc-alkaline field (Fig. 9b). However, using the SiO₂ versus FeO*/MgO diagram, the Fawakhir ophiolite plot mostly with the younger, post-ophiolitic dikes in the calc-alkaline field whereas the volcanic blocks in the mélange extend to the tholeiitic field (Fig. 9c). Recently, Arculus (2003) raised the question over use of the term “calc-alkaline” in multiple ways. These diagrams are used to identify different magma series rather than identifying calc-alkaline rocks that would indicate convergent margin tectonic setting. Four magma series have been identified by this study (Fig. 9c). The younger post-ophiolitic dikes crossing the Fawakhir ophiolite and the mélangé are distinguished by their high Zr/Y (>7) ratios and show no iron enrichment. The mélange samples follow the high-Fe tholeiitic trend of Arculus (2003). Most of the ophiolitic gabbros and volcanic rocks follow an iron enrichment trend that extends along the boundary between low-Fe and medium-Fe fields (Fig. 9c). The pyroxenites of the Fawakhir ophiolite show no iron enrichment along with the boninitic gabbros reported by El-Sayed et al. (1999) in the Fawakhir ophiolite. The correlation between Zr and TiO₂ confirms the subdivision into compositional groups indicated by SiO₂ versus FeO*/MgO (Fig. 9d).

7.3. Fractional crystallization and partial melting

In this section, we evaluate qualitatively the variations in the whole-rock chemistry of the Fawakhir ophiolitic gabbros and volcanic rocks and of the volcanic rocks in the mélange as a result of fractional crystallization and partial melting processes. The relationship between pyroxenites and older ophiolitic rocks will be discussed in the next section. Tatsumi and Eggins (1995) used the FeO*/MgO ratio (<1) and Mg-number (>70) as criteria to identify the potential primitive magmas. The Fawakhir volcanic rocks have FeO*/MgO less than one (Fig. 9c), and low Mg-number (38–66). In addition, the Fawakhir ophiolitic rocks have low Cr (7–314 ppm) and Ni (32–198 ppm) contents. The low abundances of the mantle-compatible elements indicate that the ophiolitic magmas were not in equilibrium with mantle residue (Smith et al., 1997). The evolved nature of the Fawakhir ophiolitic rocks suggests that fractional crystallization played a major role in the evolution of their magmas. Plots of Zr, which is an immobile and highly incompatible fractionation index, versus selected major and trace elements are used to assess the role of fractional crystallization. Variations in the abundance of these elements relative to Zr may indicate a co-genetic origin and chemical evolution through fractional crystallization (Fig. 6).

The Zr contents range from 5 to 33 ppm in gabbros and from 24 to 102 ppm in volcanic rocks, whereas the Zr content of the volcanic blocks in the mélange ranges from 58 to 124 ppm. The negative correlation between MgO and Ni versus Zr may indi-
Fig. 9. (a) Zr/TiO₂ versus Nb/Y diagram of Winchester and Floyd (1977) for the ophiolitic rocks, the eastern mélangé rocks and younger dikes. (b) Zr versus Y diagram of Barrett and MacLean (1994) to distinguish the magma series of the different rocks types. (c) SiO₂ versus FeO*/MgO diagram showing four magma series, the dotted line from Miyashiro (1974) and the bold lines are from Arculus (2003). (d) Zr versus TiO₂ variation diagrams. (Dashed line fields in a and b are the gabbros and volcanics of the Fawakhir ophiolite. The grey diamond, square, triangle symbols in c are the ophiolitic boninitic gabbro, gabbros, volcanics respectively. The grey triangle with arrow is MV-33 from El-Sayed et al., 1999 as the rest.)
Fig. 10. Cr versus Y discrimination diagram (Pearce et al., 1984) for the Fawakhir ophiolite, calc-alkaline dikes and eastern mélangé blocks. The arrows are qualitative fractional crystallization trends (parallel to fractional crystallization trends of Pearce, 1982) for the Fawakhir ophiolitic volcanic rocks (green) and eastern mélangé pillow lava (purple). The red lines are partial melting trends of primordial mantle (dotted red line) and depleted mantle (solid red line) from Pearce et al. (1984). (El-Ambagui field from El-Mahallawi, 1994; symbols as Fig. 9). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

cate the early crystallization of olivine from the ophiolitic magmas (Fig. 6a and b). On the Cr versus Y diagram (Pearce, 1982), the ophiolitic rocks plot parallel to the Cr axes indicating the early crystallization of Cr-spinel (Fig. 10). Olivine and Cr-spinel were reported as a cumulus phase in the peridotites of the Fawakhir area by Nasseef et al. (1980). Crystallization of olivine and Cr-spinel was followed by clinopyroxene and plagioclase (Fig. 11a). On the Zr/Y versus Zr diagram, the ophiolitic gabbros follow mainly the olivine and plagioclase fractionation trend (see Pearce and Norry, 1979; Magganas, 2002). The ophiolitic volcanic rocks have a wider range of Zr/Y, which can be attributed to pyroxene fractionation. Europium anomalies display some variations between the ophiolitic rocks. On the Zr versus Eu/Eu* plot, the Eu anomalies range mainly from positive in the least evolved gabbroic rocks to negative in the fractionated volcanic rocks (Fig. 11b), probably indicating plagioclase fractionation. Plagioclase fractionation results in a systematic decrease in Al₂O₃ from the gabbros to volcanic rocks. The Fawakhir ophiolitic rocks show a consistent increase of TiO₂ from 0.15 to 0.73 wt% in gabbros and up to 1.18 wt% in the volcanic rocks. The fractional crystallization of the Fe–Ti oxide phase appears to have taken place at the late stage. This is indicated by the decrease of the

TiO₂ content in the evolved ophiolitic volcanic rocks on the Zr–TiO₂ variation diagram (Fig. 9d).

Assessment of the role of fractional crystallization in the magmatic evolution of the volcanic blocks in the mélangé is difficult due to the limited number of samples. However, the possible influence of fractional crystallization can still be detected through the range of Zr content (58–124) and Mg-numbers (50–66) of these rocks. In comparison with the Fawakhir ophiolitic rocks, Zr and Mg-numbers in the mélangé blocks have a smaller range, indicating limited effects of fractionation in their formation. Variations on the Cr versus Y and Zr/Y versus Zr diagrams of these samples suggest that olivine, Cr-spinel and clinopyroxene were the main fractionating phases (Fig. 10).

Irrespective of the mechanism of partial melting, the Cr versus Y plot can provide some information on the degree of partial melting (see Pearce et al., 1984). Extrapolation line passing through the volcanic rocks of the Fawakhir ophiolite intersects the partial melting path of the primordial mantle at a point of 30–35% of partial melting. The line of fractionation of the volcanic rocks in the mélangé intersects the same partial melting curve at about 15%. As the partial melting curve calculation depends on the primordial mantle composition (Pearce, 1982), the amount of melt fraction represents the maximum tentative value. El-Sayed et al. (1999) suggested that the melting proportions of the Fawakhir ophiolite might range from 10 to 35% covering the degrees of partial melting of the Fawakhir ophiolite and the volcanic blocks in the eastern mélangé as suggested by our study. The inferred high degrees of partial melting might have resulted from introduction of hydrous fluxes derived from a subducted slab. The HREE patterns and abundances (Fig. 7)
in the Fawakhir ophiolite are consistent with decompresional partial melting at a shallow depth and elevated temperatures (cf., Stern and Bloomer, 1992; Tatsumi and Eggins, 1995; Zanetti et al., 2009).

7.4. Mantle source characteristics

The geochemical characteristics of the Fawakhir ophiolite, volcanic blocks in the mélangé along Qift-Quitcer Road, and post-ophiolitic dikes are generally similar. Their primitive mantle-normalized patterns are systematically enriched in Th and LREE over HFSE (Nb, Zr, Y) and HREE, and exhibit pronounced negative Nb anomalies (Fig. 8). In addition to LREE, gabbros are also enriched in LIL (Fig. 8a). These geochemical characteristics are similar to those of magmatic rocks formed at convergent plate margins (cf., Pearce, 1982; Saunders et al., 1991; Hawkesworth et al., 1993). Compositions of magmatic rocks in this setting are controlled by both fluid-derived components from the subducted slab and the mantle wedge composition (Tatsumi and Kogiso, 2003). Enrichment of fluid-derived components from the subducted slab and the mantle wedge composition (Tatsumi and Kogiso, 2003). Enrichment of fluid-derived components from the subducted slab and the mantle wedge composition (Tatsumi and Kogiso, 2003).

7.5. Pyroxenite genesis

Occurrence of pyroxenite is a common feature in many Proterozoic and Phanerzoic ophiolites. Pyroxenites occur as cumulate rocks in the transitional zone between the petrologic Moho and the seismic Moho of the ophiolitic sequence (Stern et al., 2004). The Onib ophiolite provides an example of cumulate pyroxenite formation in the Neoproterozoic Arabian-Nubian Shield (Hussein et al., 2004). Pyroxenites occur also as veins and dikes crosscutting ophiolitic upper-mantle peridotites (Varfalvy et al., 1997). The formation of pyroxenite dikes and veins can be attributed to the metasomatism of mantle peridotite by melt or fluid migration derived from the subducted slab (Berly et al., 2006). Another possibility for the formation of pyroxenite dikes and veins is through the intrusion of discrete magmas derived from a highly depleted mantle source (Edward, 1995).

There are different interpretations for the spatial and petrogenetic relationships between pyroxenites and the rest of the ophiolitic rocks in the Fawakhir area. Nasseef et al. (1980) have reported that the pyroxenites of the Fawakhir ophiolite occur as veins and isolated bodies with no clear genetic relationship with the surrounding serpentinized mantle rocks. They have also reported the presence of pyroxenites at the base of the serpentinites separated by a gradational igneous contact. Stern (1981) and El-Gaby et al. (1984) described a gradual contact between the ophiolitic gabbro and the pyroxenite, which overlies the serpentinites. El-Sayed et al. (1999) reported the pyroxenite as dikes and bands crosscutting and underlying the coarse-grained gabbro. They also noticed the occurrence of local gradual contacts between pyroxenites and the coarse-grained gabbros.

Based on our field observations, the pyroxenite bodies are interpreted as irregular, sheared lenses within the serpentinites close to the contacts with the ophiolitic gabbro. These pyroxenites have geochemical characteristics of supra-subduction zone magma rep-
Fig. 12. (a–e) Plot of M/Yb versus Nb/Yb for the ophiolitic rocks and associated dikes at the Wadi Ghadir area where M is (a) Zr, (b) Y, (c) La, (d) Sm, and (e) U. MORB and OIB represent the position of the mid-ocean ridge and oceanic island mantle source respectively. The mantle array (MORB-OIB array) after Green (2006). (f) Th/Yb versus Ta/Yb diagrams with mantle array after Pearce (1983).

Represented by enrichment of LILE, LREE and Th and relative depletion of HFSE (Zr, Y) and REE combined with negative Nb anomalies (Hawkins, 2003) (Fig. 8a). On the SiO$_2$ versus FeO*/MgO diagram, they follow a trend which is different from the one followed by the ophiolitic gabbros and the volcanic rocks (Fig. 9c). These observations imply that the pyroxenites are not a part of cumulates of the Fawakhir ophiolite. Furthermore, as they are enclosed within the serpentinites rather than extend along the contact between the serpentinite and the ophiolitic gabbros, they may represent tectonically disrupted dikes intruding the mantle section such as the pyroxenite dykes recorded by Nasseef et al. (1980) and El-Sayed et al. (1999). The geochemical trend of the pyroxenites on the SiO$_2$ versus FeO*/MgO diagram (Fig. 9c) is concordant with the boninite-like gabbros identified byEl-Sayed et al. (1999). On the TiO$_2$ versus Al$_2$O$_3$/TiO$_2$ diagram, the pyroxenites and the boninite-like gabbros are extend almost parallel to the other ophiolitic gabbros and volcanic rocks but show lower Ti contents (Fig. 14). Low-Ti trend may indicate re-melting of a highly depleted mantle source (Sun and Nesbitt, 1978). The lower Nb/Yb ratios (Fig. 12) of the pyroxenites support their derivation from a mantle source that is more depleted than the mantle source from which the ophiolitic gabbros and volcanic rocks were derived. The depleted trace element signature of pyroxenites can be acquired by interaction between MORB-like tholeiitic melt and highly depleted mantle or by formation of depleted melt in advanced stage melting of adiabatically upwelling mantle (cf., Kurth-Velz et al., 2004, and references therein). The relatively lower Cr and Ni contents of the pyroxenites minimize the possibility of mantle–melt interaction (cf., Nicolas, 1986).
inferred by El-Sayed et al. (1999) for the boninite-like gabbros in the Fawakhir ophiolite, the pyroxenites might have originated from poly-baric melting of rising mantle. The uppermost part of the mantle column may have become a highly depleted residue in due course. Melting of this highly depleted mantle might have been facilitated by hydrous input from the subducted slab.

In summary, the Fawakhir pyroxenites are characterized by high MgO and SiO$_2$ (Table 2). The low Nb/Yb ratios are consistent with their derivation from a highly depleted mantle source. The enrichment of LILE and LREE relative to HFSE and negative Nb anomalies indicate their formation in a supra-subduction zone (Fig. 8a). These pyroxenites show some geochemical similarities to the boninite-like gabbros described by El-Sayed et al. (1999). Both the pyroxenite and the boninite-like gabbros may represent the late-stage magmatic episode in a trench-rollback system, as observed in most Tethyan ophiolites (Dilek et al., 2007, 2008; Dilek and Furnes, 2009; Shervais, 2001).

7.6. Geodynamic setting

Geochemical characteristics of the Fawakhir ophiolite, such as the enrichment of LILE, LREE and Th over HFSE (Zr, Y) in conjunction with negative Nb anomalies on primitive mantle-normalized diagrams, are consistent with its evolution in a supra-subduction zone tectonic setting (cf., Pearce, 2003). Previous workers (i.e., El-Gaby et al., 1984; El-Sayed et al., 1999) have concluded that the Fawakhir ophiolite may represent a supra-subduction oceanic crust that formed in a back-arc environment.

Supra-subduction zone ophiolites have island arcs geochemical affinities but the structure of oceanic crust is formed by seafloor spreading processes (Pearce et al., 1984; Dilek et al., 1998; Dilek et al., 2007; Metcalf and Shervais, 2008). These ophiolites form during the initial stages of subduction, ridge-trench intersection, and back-arc rifting and spreading (Pearce, 2003). Subduction initiation is considered as the most important process for ophiolite formation within the life cycle of a supra-subduction ophiolite (Casey and Dewey, 1984; Shervais, 2001). With subduction initiation, the early, infant arc (or pre-arc as mentioned by Pearce et al., 1984) magmatism is characterized by depleted arc tholeiitic and boninitic magmas that occur in extensional environments similar to slow-spreading centers (Stern and Bloomer, 1992; Bloomer et al., 1995). The formation of many Phanerozoic ophiolites has been attributed to subduction initiation (Casey and Dewey, 1984; Shervais, 2001). The forearc crust of the Izu-Bonin-Mariana (IBM) arc system in the Western Pacific is a good example of infant-arc formation (Stern and Bloomer, 1992; Bloomer et al., 1995).

The Fawakhir ophiolite is composed mainly of low-Ti tholeiitic rocks and has a poorly developed sheeted dike complex. Although rocks of boninitic affinity were not found in our study, they have been reported by El-Sayed et al. (1999). The pyroxenite intrusions within the serpentinized peridotites may also indicate the presence of a highly depleted mantle source (cf., Kurth-Velz et al., 2004). These features collectively suggest that the Fawakhir ophiolite may have formed in an incipient arc–forearc setting during subduction initiation (cf., Stern and Bloomer, 1992).

On the Cr versus Y diagram (Pearce et al., 1984), the Fawakhir ophiolite plots within the arc field, similar to the Mariana forearc crustal rocks (Fig. 10). On other discrimination diagrams, such as Ti–V and Th–Zr–Nb, the gabbros and volcanic rocks also plot in the island arc field (Fig. 15). Pyroxenite and boninitic gabbros from the
Fig. 16. Schematic model for the history of tectonic evolution of the Fawakhir ophiolite and Central Eastern Desert along the Qift-Qusier Road. (a) The formation of infant arc crust and lithosphere. (b) The formation of arc–back-arc rocks with the cession of forearc extensional stresses and beginning of true subduction. (c) Obduction–accretion of the oceanic crusts and reversing the subduction polarity from east-dipping to west-dipping and the formation of calc-alkaline magmatism related to Andean-type continental margin and associated foreland sedimentation of Hammamat sediment (a and b are depicted from Fig. 8 of Stern and Bloomer, 1992). Orientations are in the present coordinate system and ages are approximate after Stern (2008).

Fawakhir area are also plotted on the Ti–V diagram to compare them with the ophiolitic gabbros and volcanic rocks (Fig. 15b). The pyroxenites extend within the boninitic field of the Ti–V plot along with the boninitic gabbro of El-Sayed et al. (1999). The extended trend of the pyroxenites and the boninitic gabbros in very low Ti/V field suggests derivation of their magmas by low-pressure partial melting of more depleted, relative to the Fawakhir ophiolitic gabbro and volcanic rocks, mantle source that was metasomatized by fluids derived from the subducted slab (cf., Bonev and Stampfl, 2009).

The infant-arc signature and structure of the Fawakhir ophiolite is consistent with the appearance of depleted harzburgite mantle rocks in the Eastern Desert similar to ultramafic rocks from modern forearc tectonic settings (Fig. 16a; Azer and Stern, 2007; Khalil and Azer, 2007). The association of arc tholeiitic gabbros and volcanic rocks, and pyroxenite dykes derived from more refractory source represents the early stages (birth and youth) of an ophiolite life cycle described from the Tethyan ophiolites (Shervais, 2001; Dilek and Furnes, 2009). The birth stage represents the subduction initiation and formation of the Fawakhir oceanic crust and the youth stage represents re-melting of the depleted mantle. These stages are also recorded in other Phanerozoic ophiolites, such as the Troodos (Cyprus), Semail (Oman), Vourinos (Greece), and Betts Cove (Newfoundland) (Bédard et al., 1998; Dilek and Furnes, 2009).

Volcanic blocks within the mélange, to the east of the Fawakhir ophiolite, and closer to the Wadi Ambagui area (Fig. 2), also have a supra-subduction geochemical signature, as they are enriched in Th and LREE relative to HFSE (Nb, Zr, Y) (Fig. 8c). Although both rock assemblages have similar Mg-numbers, the eastern mélange blocks have higher TiO₂ (0.83–1.86 wt%) than the Fawakhir ophiolite (0.15–1.18 wt%). High TiO₂ and a supra-subduction signature can be attributed to formation in a back-arc tectonic setting (cf., Serri, 1981). The higher Al₂O₃/TiO₂ ratios of the Fawakhir volcanic rocks relative to the eastern mélange indicates a transition from an island arc tholeiite (IAT) signature in the west to a MORB-like signature in the east (cf., Sun and Nesbitt, 1978). On the Cr versus Y and Ti versus V tectonic discrimination diagrams, the eastern mélange blocks plot in the MORB field together with the basalts of Wadi Ambagi (Figs. 10 and 15). The IAT and MORB geochemical
association is a feature of rocks formed in a back-arc environment (see Pearce et al., 1984). The transitional characteristic of the pillow lavas of the eastern mélangé between MORB and IAT affinities are seen on the Th–Zr–Nb ternary diagram (Fig. 15a). The eastern mélangé lavas plot closer to the MORB field than the Fawakhir ophiolitic volcanic rocks. The pillow basals of the eastern mélangé may have been part of the Wadi Ambagi belt, which is interpreted to have formed in a mid-ocean ridge setting (El-Mahallawi, 1994). Given the mobility of LILE and the lack of Nb data in his analyses, it is likely that back-arc basin basalts were interpreted as MORB by El-Mahallawi (1994).

The geochemical similarities between the Fawakhir ophiolite and Izu-Bonin-Mariana forearc crust and between the eastern mélangé block and Mariana Trough rocks may indicate the presence of a Neoproterozoic forearc–back-arc association analogous to the Mariana arc system (Fig. 16b). Spatial variation in geochemical signatures from back-arc-like mélangé blocks in the east to the forearc Fawakhir ophiolite in the west suggests that the subduction direction was likely to the east (in the present coordinate system). The same approach was used by Khan et al. (1997) to predict the subduction polarity of the Kohistan intra-oceanic arc. Near Marsa Alam, the same east-dipping subduction polarity was inferred for the formation of the Ghadir ophiolite (Abd El-Rahman et al., 2009).

The forearc Fawakhir ophiolite to the west and the back-arc eastern mélangé are separated by Meatiq gneissic dome (Fig. 2). The ages of these gneisses are a matter of debate (Andresen et al., 2009, and reference therein), Loizenbauer et al. (2001) interpreted the Meatiq gneissic dome as a metamorphic core complex. The exhumation of the deeper crustal rocks at the Meatiq dome may have caused the erosion of the intervening arc edifice separating the forearc crust to the west and the back-arc rocks to the east. Some exposures of andesitic calc-alkaline rocks were noticed within the mélange to the east of the Meatiq dome, between the Wadi Ambagui and the Meatiq dome. These andesitic calc-alkaline rocks could be part of the arc belt exposed in the Wadi Hammariya area. The Wadi Hammariya extends parallel to the Qift-Qusier Road and is covered mainly by metamorphosed island arc belt that extends to the south of the Meatiq dome (Abdel-Karim et al., 2008). This island arc belt may represent part of the island arc edifice separating the Fawakhir forearc ophiolite from the eastern mélange with back-arc geochemical signature. Ali et al. (2009) reported the extension of the island arc belt and the back-arc assemblage further to the south of Wadi Hammariya.

The Fawakhir ophiolite is intruded by younger evolved calc-alkaline dikes. These post-ophiolitic dikes have lower Mg-number, Cr and Ni contents, have a subduction signature represented by Th and LREE enrichment over HFSE (Nb, Zr, Y), and plot in the calc-alkaline basalt field of the Th–Zr–Nb tectonic discrimination diagram (Figs. 8d and 15a). They are different from the ophiolitic and mélange rocks in that they have higher concentrations of Nb over Zr and Zr over Y, and high Ce/Yb ratios (Fig. 13), which indicate a contribution from a source enriched in incompatible elements such as sub-continental lithospheric mantle (cf., Pearce, 1983). Both the petrography and geochemistry of the calc-alkaline dikes are similar to the Dokhan Volcanic unit of the Eastern Desert (see Basta et al., 1980; Eliwa et al., 2006). Calc-alkaline dikes and the Dokhan volcanic rocks represent Andean-type rocks that were emplaced in an active continental margin (El-Gaby et al., 1988; Abdel Rahman, 1996; Eliwa et al., 2006; Alaabed and El Tokhi, 2009). We infer that the post-ophiolitic calc-alkaline dikes crosscutting the Fawakhir ophiolite were emplaced after the accretion of the intra-oceanic arc–forearc system onto the continental margin and the subsequent reversal of subduction direction to a west-dipping one beneath the Saharan craton (Fig. 16c). Formation of the Andean-type continental margin gave rise to calc-alkaline magmatism derived partly from partial melting of the sub-continental lithospheric mantle in the Eastern Desert at ca. 620–710 Ma (Stern and Hedge, 1985; Loizenbauer et al., 2001; Elia et al., 2006). Subsequently, and with the subduction polarity reversal, a Cordilleran stage in the tectonic evolution of the Eastern Desert (reported by El-Gaby et al., 1988) started (Fig. 16c). Production of continental arc magmatism following the island arc accretion and reversal of the subduction polarity has been documented in several ancient orogens such as the Mesoproterozoic Grenville orogen (Martin and Dicks, 2005), the Paleozoic Appalachian–Caledonian orogen (Van Staal et al., 1998), the Mesozoic collision between the Kohistan arc and Karakorum (Khan et al., 1997), and Ecuadorian Western Cordilleran margin (Vallejo et al., 2009), as well as for the Western Pacific island systems such as the Luzon (Clift et al., 2003) and Papua New Guinea arcs (Harris, 2003).

8. Conclusions

In this study, we used high-precision geochemical data from the Fawakhir ophiolite and mélange fragments from Qift-Qusier Road in the Eastern Desert to assess the geodynamic evolution of this part of the Arabian–Nubian Shield. Previously proposed models for the evolution of the Arabian–Nubian Shield assigned a back-arc tectonic setting for the Neoproterozoic oceanic crust in the Eastern Desert (El-Bayoumi, 1983; El-Sayed et al., 1999; Farahat et al., 2004). The trace element geochemical characteristics of the crustal rocks in the Fawakhir ophiolite (La/SmN = 2.13–2.48, Gd/YbN = 2.04–4.25, Th/NbN = 3.2–5.8, La/NbN = 2.5–4.9) are consistent with a supra-subduction zone tectonic setting. The Fawakhir ophiolite appears to have originated during the initiation of an intra-oceanic subduction, as in the Izu-Bonin-Mariana forearc system. The Fawakhir magmas were derived from melting of a variably depleted, N-MORB-like, mantle source within the spinel stability field.

A west-dipping subduction interpretation is a widely accepted model to account for the subduction zone geochemical signature of the ophiolitic rocks in the Eastern Desert (El-Bayoumi and Greiling, 1984; Kröner, 1985; Kröner et al., 1987). Although Ries et al. (1983) proposed an east-dipping subduction direction, their model could not account for supra-subduction signatures of the Neoproterozoic ophiolites in the region (see Kröner et al., 1987). In this study and on the basis of spatial variation of the geochemical data along the Qift-Qusier Road (Fig. 2), we propose that subduction direction reversed from east to west following the accretion of the Fawakhir ophiolite onto the West Gondwana margin (Saharan craton) at about 630 Ma (Fig. 16). The mélange blocks to the east of the Fawakhir ophiolite are compositionally similar to present-day back-arc basin volcanic rocks, whereas volcanic rocks of the Fawakhir ophiolite have a forearc geochemical signature (Fig. 10). Accordingly, the compositional difference and spatial relationships between the western Fawakhir ophiolite and the eastern mélange blocks are consistent with an east-dipping subduction direction during the formation of these rocks in an intra-oceanic arc system.

Following the accretion of the incipient arc–forearc units onto the western Gondwana margin, the Fawakhir ophiolitic rocks were intruded by basaltic to andesitic calc-alkaline dikes. The geochemical data for the post-ophiolitic calc-alkaline dikes (Ce/Yb = 23–63, Zr/Yb = 101–160) are consistent with the formation of their magmas at an Andean-type continental margin. These dykes are undeformed and exhibit lower degrees of metamorphism. The systematic enrichment of their magmas in highly immobile incompatible elements, similar to other calc-alkaline rocks formed in active continental margins, indicates contributions from an enriched source such as sub-continental lithospheric mantle (cf., Pearce, 1983). One of the reasons stated by Kröner et al. (1987) to refute the east-dipping subduction model of Ries et al. (1983) is the difficulty in generating calc-alkaline magmatism, characteriz-
ing the Cordilleran stage of the evolution of the Eastern Desert, from a mantle below a passive continental margin of West Gondwana.

Acknowledgements

Two reviewers (anonymous and J. Dostal) and editor (P. Cawood) are acknowledged for their constructive comments, which have resulted in significant improvements to the paper. We thank J.C. Barrette, J.C. Ordóñez-Calderón and Zhaoping Yang for their help during geochemical analyses. This is a contribution of PREA and NSERC grants (250926) to A. Polat and NSERC grant (83117) to B. Fryer.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.precamres.2009.09.008.

References

Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirida ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174–209.

