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FREE PRODUCTS AND THE LACK OF STATE-PRESERVING
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ABSTRACT. Let A be a homogeneous C*-algebra and ¢ a state on A. We show
that if ¢ satisfies a certain faithfulness condition, then there is a net of finite-
rank, unital completely positive, ¢-preserving maps on A that tend to the
identity pointwise. This, combined with results of Ricard and Xu, shows that
the reduced free product of homogeneous C*-algebras with respect to these
states has the completely contractive approximation property. We also give
an example of a faithful state on M>®C/0, 1] for which no such state-preserving
approximation of the identity map exists, thus answering a question of Ricard
and Xu.

1. INTRODUCTION

It is not completely understood which approximation properties of C*-algebras
are preserved by reduced free products. One of the most satisfying positive results
was obtained by Dykema [4] when he showed that exactness is preserved by reduced
free products. On the other hand the non-nuclear C*-algebra C*(F3) is isomorphic
to C*(Z) = C}(Z) (with respect to the canonical trace); hence nuclearity is not
preserved by reduced free products. But J. de Canniere and Haagerup showed
in [2] that C*(F3) does have the completely contractive approximation property
(CCAP). Recall that a C*-algebra has the CCAP if there is a net of finite rank,
complete contractions that converge to the identity pointwise and that the CCAP
is strictly weaker than nuclearity yet strictly stronger than exactness. Bozejko and
Picardello extended this result in [I] by showing that the reduced C*-algebras of
free products of amenable groups have the CCAP, and Ricard and Xu [6] extended
this to the case of weakly amenable groups (with constant 1). Weak amenability
(with constant 1) is the group theoretic analog of the CCAP; hence it is natural
to ask if the CCAP is preserved by reduced free products. This problem is still
open; in fact it is unknown if the reduced free product of nuclear C*-algebras has
the CCAP.

The goals of this paper are (i) to show that reduced free products of homogeneous
C*-algebras with respect to certain well-behaved states have the CCAP and (ii) to
answer a question of Ricard and Xu by giving examples of states on nuclear C*-
algebras that are not CP-approximable.
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2720 CALEB ECKHARDT

Definition 1.1. Let A be a unital, nuclear C*-algebra and ¢ a state on A. We say
that ¢ is CP-approximable if there is a net (T,,) of finite-rank, unital, completely
positive maps on A such that T, converges to the identity pointwise and ¢oT,, = ¢
for all a.

Our goals are related by the following theorem of Ricard and Xu:

Theorem 1.2 (Ricard and Xu, [6]). Let (4;, ®;) be a family of nuclear C*-algebras
with states ¢; such that the corresponding GNS representations are faithful. If each
¢; is CP-approximable, then the reduced free product of (A, ¢;) has the CCAP.

This theorem then provides a promising strategy for showing that free products
of nuclear C*-algebra have the CCAP and already covers many cases of interest.
Indeed, one sees that all product states on UHF algebras are CP-approximable and
that all states on a commutative C*-algebra or on a subalgebra of the compact
operators are CP-approximable.

Therefore, we would like to know if all states on nuclear C*-algebras are CP-
approximable. In Section 2 we give an example of a faithful state on M> ® C0, 1]
which is not CP-approximable. On the other hand, in Section Bl we show that if A
is a homogeneous C*-algebra and ¢ is a GNS-faithful state (Definition BI]), then
¢ is CP-approximable. This, combined with Theorem [[.2], shows that the reduced
free product of homogeneous C*-algebras with respect to GNS-faithful states have
the CCAP. In Section ] we discuss some open questions raised by this work.

We will use the following notation throughout: For a C*-algebra A, we let AT
denote the positive cone and we write M, for the n x n matrices over C. For a
linear map T between C*-algebras we define the map T# as T# (x) = T'(x*)*. For
sets X C Y we let 1x denote the characteristic function of X and X¢ denote the
complement of X. We write UCP as shorthand for the phrase “unital completely
positive”.

2. A NON-CP-APPROXIMABLE FAITHFUL STATE ON M, ® C0, 1]

In this section, we give an example of a faithful, non-CP-approximable state
on My ® C[0,1]. We first show that the approximating maps for CP-approximable
diagonal states can be manipulated to take a nice form.

2.1. Technical reformulation. Let n € N and A be a unital C*-algebra. Let e;;
denote the standard matrix units on M, ® 14 C M,, ® A.

Definition 2.1. Let ¢ be a state on M,, ® A. We say that ¢ is diagonal if
¢(e;j ® a) =0 for all a € A whenever ¢ # j.

Lemma 2.2. Let A be a unital C*-algebra and ¢ a faithful, CP-approximable,
diagonal state on M, ® A. Then, for every 1 < i < j < n there are nets of finite
rank maps Rij o : A — A such that

Rita Ri2a - - Ripa

R, = Rﬁ,a RQQ,@ T RZ?L,O{
o =

Rf&n,a an,oc Rn’ﬂ,a

is UCP with ¢ o R, = ¢ for every a and R, converges to the identity pointwise.
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FREE PRODUCTS OF NUCLEAR C*-ALGEBRAS 2721

Proof. Let S be a UCP map on M,, ® A such that ¢ o S = ¢ and ¢;;S(e;;)ei # 0
for i = 1,...,n. Define the map S on M,, ® A by

n
S(x) = Z eiiS(eiize;jj)e;;.
ij=1
Then, clearly S is completely positive and maps e;; ® A into e;; ® A. We now slightly
modify S to make it unital and ¢-preserving. For each k = 1,...,n define
Plexnverr — errS(exnrerr)err)

Tk(x) = ¢(ekk:)

Since

dlerrrerr) = d(S(errrerr))

> d(enS(ernuert)ei)
i=1

> d(errS(exnrerk)erk),

we see that each T}, is completely positive. A direct calculation shows that R =
S+ > p_, Ty is ¢-preserving. As in [6, Proposition 4.5], we define

fk(x) _ Perrrerr) { 1

P(exr) Rk HR(Ekk)HR(ekk) '

Let V be the diagonal matrix diag(||R(e11)| "2, | R(e22)|| "2, ..., | R(enn)|| " 2). We
finally define

R(z) = VR(x)V + Y _ Ti(x).
k=1

Then R is unital ¢-preserving and maps e;; ® A into e;; ® A for each 1 <4,5 < n.
The conclusion of the lemma now follows from the above construction. O

2.2. Construction of the example. Let m denote Lebesgue measure on [0, 1].
By [7], there is a Borel subset X C [0, 1] such that for every non-empty open subset
O C [0,1] we have

(2.1) m(XNO)>0and m(X°NO) > 0.
Define the diagonal state ¢ on My ® C10, 1] as
. 1X dm 0
(2:2) ¢= 0 lxe dm |’
iLe. &((fij)ij) = [x fir dm+ [y. foo dm. By () it follows that ¢ is faithful on
M, ® C[0,1].

We thank the referee for significantly simplifying the proof of the following.

S11 Si2 }
S =
{ St Sas

be a finite rank, ¢-preserving UCP map on Ma®C|0, 1]. Then S12 = 0. In particular,
¢ is not CP-approzximable.

Proposition 2.3. Let
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2722 CALEB ECKHARDT

Proof. Let ¢y = [(-)dp and ¢y = [.(-)dp. Since each Sj; is of finite rank, it
follows that S : C[0,1]** — C0, 1]. Moreover, we have ¢; o S* = ¢; for i = 1, 2.

Let f > 0 be in C[0,1]. We prove that Si2(f) = 0. Since X is a Borel set, we
can realize that 1x,1x. € C[0,1]**. We have

¢1 0511 (flxe) <[ fllo1(S77(1xe)) = [IFl#1(1x<) = 0.
Since S77(f1lxe) € C[0,1] and ¢, is faithful, it follows that S;7(f1lxe) = 0. Since
f >0, we have
0 < ST (flxe)  Si3(flxe) | { 0 S5 (flxe)
T (S S5 (fLxe) (5%)7(F1xe) S35 (f1x)
Hence S75(f1xe) = 0. By replacing X ¢ with X and S}7 with S35 in the above proof,

we obtain S75(f1x) = 0 as well. Therefore S12(f) = S75(f1lx) + Sia(flxe) = 0.
That ¢ is not CP-approximable now follows from Lemma a

3. GNS-FAITHFUL STATES

In this section we show that all states of the following type on homogeneous
C*-algebras are CP-approximable:

Definition 3.1. Let B be a unital C*-algebra and ¢ a state on B with associated
GNS representation and cyclic vector (mg,&s). We say that ¢ is GNS-faithful if
the vector state ((-)&e,&g) is faithful on 74 (B)".

Remark 3.2. The state ¢ constructed in Section is a faithful state that is not
GNS faithful. We mention that Dykema has also considered a faithful, non-GNS-
faithful state in [3].

For a function g : X — Y between sets, we will adopt the common practice from
measure theory by writing {¢(g)} as shorthand notation for {z € X : ¢(g(z))},
where ¢ is some formula (for example ¢(z) = “z < 10” or “x is invertible”).

The following is easy to verify from the Riesz representation theorem, Radon-
Nikodym theorem and basic facts about the GNS construction.

Lemma 3.3. Let X be a compact Hausdorff space, n € N and ¢ a state on A =
M, ®C(X). Let T denote the tracial state on M,,. There is a reqular Borel probability
measure j1 on X and a bounded measurable function g : X — M such that

(3.1) o(f) = /X r(g(@) f(x))du for f € A.

Moreover, if ¢ is GNS-faithful, then the natural extension of ¢ to M, @ L>=(X, )
1s faithful. In particular,

(3.2) u({g is invertible }) =1

Theorem 3.4. Let X be a compact Hausdorff space, n € N and ¢ be a GNS-faithful
state on A = M, ® C(X). Then ¢ is CP-approzimable.

Proof. Let F C C(X) be a finite subset and ¢ > 0. We construct a finite rank,
UCP, ¢-preserving map T : A — A such that

3.3 T(b - <e.
(33) max  max (T f) - be [ <e
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FREE PRODUCTS OF NUCLEAR C*-ALGEBRAS 2723

To this end, let B be a finite set of disjoint Borel subsets of X with positive measure
and |JB = X such that

. <¢/8.
(3.4) Ipeagrggng;el)B\f( z) = f(y) <e/8

Let p,7 and g be as in Lemma B3l Set ||g|| := sup,ex |lg(2)| ar, . For each 6 > 0
define
Zs={a€Mf:5<a<|gl}

For a subset W C M,,, we let conv(WW) denote the closed convex hull of W. Partition
Zs into finitely many disjoint Borel subsets Z s, ..., Zn, s such that
(3.5) max_ sup{|lazb™? — 1| : a,b € CONV(Z; 5)} < <

i=1,...,Ns ’ 8
By (B2 we may suppose that § has been chosen small enough so that for every

B € B we have u(BN{g > ¢}) > 0. Then for each B € B there is an index
1 <1 < Njs such that

(3.6) 0<r:= gelréu(B N{g€Zi,s}).
Let F': (0,1) — (0,1) be an increasing function that satisfies the following sentence:
(3.7
1,1
(Va,b € M, )(sp(a),sp(b) C [s, gl (lla — b < F(s) = la2 = b~ 2| < ¢/(|lg]l8))-

By (82) there is a v < ¢ such that
eor

(3-8) pfg =119 <5 mm{” T F((or WZ)’M}'

Now obtain a finite partition of Z,; Z1 ,, ..., Zn, , that satisfies (3.5 and such that
Zis = Zi for all 1 <7 < Ns. For each B € B define the set

(3.9) Yip:=BN({g=7}"U{g € Zi, s}
Then let Y5 p, ..., YN, B be an enumeration of the sets
(3.10) {Bn{geZ}:n(BNn{ge Z~}) >0andi+#ig}.

For each B € B and 1 <i < Np obtain a compact set K; g C Y; p and an open set
O;,B 2 Y, p such that

(3.11) e ZB\KzB)<1m1n{“ T F((yp(Ys, ))/2)’%}

Then,

Np
(312)  KipNKyp =0 if (i,B)#(/,B) and |J|JOip=X
BeBi=1

Let {pip : B € B,1 <i< N} CC(X)C M, ®C(X) be a partition of unity
subject to the open cover {O; p}. By (B12), we have

(3.13) pig(x) =1 forevery z € K; p.
Denote by E : M,, ® L= (X, u) — M, the conditional expectation idas, @ [(-)du
Note that E satisfies the following equations:

(3.14) 7(aE(h)) = /T(ah(;v))d,u(:t) foralla € M,, and h € M, ® L*™(X, u).
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2724 CALEB ECKHARDT

Before constructing our map 7', we first need a few estimates. Let B € B. Due
to the difference in definitions of Y7 p and Y; p for ¢ > 1, we first isolate the case
i = 1. We have

E(p1.pg) = E(lKLBﬁ{QEZiB,é}pLBg) + E(1(K1,Bm{gezi5,s})cpl,Bg)
> 0(r —pu(O1,8\ K1,8) — u({g > 7}°)) + E(1(K1,Bﬂ{g€Z1‘BvéDCpLBg)
or
> ? + E(1(K1v3ﬂ{§€ZiB’5})Cp1’Bg).

From this we deduce that

(315)  sp(Blprno) € [ ol and (B0t < (2)7)

Now, set a1, := E(lKl‘Bm{geZiB,g}Pl,B@- By B.8) and B.I1) it follows that

IE(p1,89) = 1,51l = 1B (1, roez.y apepr.89) | < F((67)/2),

from which, in conjunction with (B1) and (BI5), we deduce that

(3.16) I(E(p1,59)) "% - afé;ll < ¢/(8[lgl)-

Notice that u(K1,5N{g € Yig.s}) ‘a1,p € conv(Z;, s). So by B.3) and BI6) we
obtain

(3.17)

sup
YE€EZig s

N

9(y)*E(p1,9) "2 — (K1 5N{g € Zip 5}) 7% (K pN{g € Zig 51) 7%,

<e
4

We isolated the case ¢ = 1 above because we had to take into account the sets
Bn{g > v}°. When i > 1, we no longer concern ourselves with these sets. Therefore,
by essentially the same (but slightly simpler) estimates as above and using line

BI1), we obtain

3.18 ‘ YE(p; 5) "% — w(K; 5)" % < Su(K, 5)3
(3.18) max max I A 9(y)*E(pi.p)"* — p(Kip) 1HEiB)
and
(3.19) 1Eep) < (o)

. i,B S| ———— .

' yu(Yi,5)

We now define the map T : A — A as
(3.20) => Z { pipg) *E (Pi,BQ%hgé)E(Pi,BQ)fé} ® pi,B-

BeB i=1
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It is clear that T" is UCP and of finite rank. We now show that T" preserves ¢. To
this end, fix a pair (i, B). Then by (B and [BI4]) we have

¢([]E(Pi,Bg)_%]E(Pi,Bg%hg%)E(pi,Bg)_%] ® pi,B)

— [ 7(E(0s09) *E(pi0 kgD E(p100)Fprn()g(a) ) dto)

= T(E(m,gg)’%ﬂ*i(m,fsg%hg%)E(pi,Bg)’%E(pi,Bg))

= T(]E(pi,Bg%hg%))

— [ (@) dute).
Since the p; p form a partition of unity, it follows that ¢ o T' = ¢.

We now show that T approximately fixes matrices. Let b € M,, of norm 1 and

a € M, with 7(Ja]) < 1. Again, we will isolate the case i = 1 for each B € B. For
convenience we denote S = K; pN{g € Y;, s} and s := u(S). Then,
‘T(aE(pl,Bg)*%E(m,Bg%bg%)E(m,BQY%) - T(ab)‘

E(pr.ag) ? ) du(y) - 7(ab)|

1

- ‘/O T(aE(pl,Bg)’%pl,B(y)g(y)Ebg(y)

N|=

< | [ (a9 o) ba0)  Ep1.50) ) = r(ab)] + 40w \ S)lalElp)
<| [ 7(aBor.09)Ha)Fb000) *B(p1.00)F) i) + 5 (o @), @TD, @T)
<s [ST<ab>*T<ab>\+zssupllg< )2E(p1.59) % lg(y) *Epr.mg) * —s 2|+ 1

< ‘571 /ST(ab)du - T(ab)‘ + 25(575(1 + Z)sféi) + i (by (BI7))

<

oo|\‘

Once again, by very similar (but slightly simpler) estimates we obtain

(3.21)  max max T(a]E(pi,Bg)’%E(pi,Bg%bgé)E(pi,Bg)’%) - T(ab)’ < %-
Since a and b were arbitrary, we obtain the following:
max max sup H]E(pl Bg)f%]E(pi Bg%bg%)E(pi BY) 7% — bH < E
BEB i=1,....,Np pe M, ||b]|=1 ’ ’ ’ 8

From this it follows that ||7'(b) — b|| < I for every b € M,, of norm 1.

Finally, since all of the functions f € F have variation at most €/8 on the sets
B € B, very easy estimates show that |[T(b® f) —b® f|| < € for every f € F and
b € M,, of norm 1. This completes the proof. O

Corollary 3.5. Let (A;, ¢i)icr be a family of homogeneous C*-algebra such that
each ¢; is GNS faithful. Then the reduced free product of the family (A;, ¢;)icr has
the CCAP.

Proof. This follows from Theorem [3.4] and Theorem O
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2726 CALEB ECKHARDT

4. FURTHER REMARKS
Proposition 2.3 raises the following natural question:

Question 4.1. Let A be a nuclear C*-algebra. Is there a nice characterization of
CP-approximable states?

In general, we feel that there will be no satisfying answer to Question LIl because
the set of CP-approximable states needn’t be convex or norm closed.
Indeed consider ¢ from Proposition 2.3l It is easy to see that the states

o[ 1xdm 0 N I
¢1_2[ 0 o}’ ¢2_2[0 1Xcdm]

are both CP-approximable, but ¢ = 1/2(¢; + ¢2) is not CP-approximable. Fur-
thermore, Theorem [B:4] shows that ¢ is the norm limit of CP-approximable states.
We thank the referee for asking the following natural question related to Ques-

tion .1}

Question 4.2. If ¢ is a faithful CP-approximable state on a homogeneous C*-
algebra, is ¥ necessarily GNS-faithful? In other words, does GNS-faithfulness pro-
vide a characterization of CP-approximable states for homogeneous C*-algebras?

We do not know the answer to this question. It seems plausible that for diagonal
states at least, the answer should be yes.

It is fairly straightforward to see that all states on a commutative C*-algebra
or on a unital subalgebra of K(H)! (the unitization of the compact operators)
are CP-approximable. Moreover, the class of C*-algebras for which every state is
CP-approximable is clearly closed under cp-sums. Since My ® C]0,1] has a non-
CP-approximable state, we feel the answer to the following should be yes:

Question 4.3. Let A be a separable nuclear C*-algebra such that every state is
CP-approximable. Is A commutative, isomorphic to a unital subalgebra of K (H)*
or a ¢g sum of such algebras?

We note that the separability condition is necessary as it is straightforward to
show (using ideas similar to those in Theorem B.4]) that every state on M, ® L*>°[0, 1]
is CP-approximable. It is the abundance of projections in M,, ® L°°[0, 1] that allows
one to show that all states are CP-approximable; hence it is natural to consider if
all states on a real rank zero C*-algebra are CP-approximable. Applying a deep
theorem of Kirchberg we see that real rank zero doesn’t help:

Corollary 4.4. Let My~ be the CAR algebra. Then there is a state ¥ on Mo that
is not CP-approximable. Since Mo is simple, the GNS representation associated
with 1 is necessarily faithful.

Proof. By [5, Corollary 1.5] there are unital completely positive maps T : My ®
C[0,1] = M and S : My~ — M>®C|0,1] such that ST = id. By Proposition[Z3]
it follows that ¢ = ¢ o S is not CP-approximable. g

Finally, Proposition 3] leaves open the natural question:

Question 4.5. Does the reduced free product of (Mz ® C[0, 1], ¢) with itself have
the CCAP?
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