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HOMOLOGICAL AND FINITENESS PROPERTIES
OF PICTURE GROUPS

DANIEL S. FARLEY

Abstract. Picture groups are a class of groups introduced by Guba and Sapir.
Known examples include Thompson’s groups F , T , and V .

In this paper, a large class of picture groups is proved to be of type F∞. A
Morse-theoretic argument shows that, for a given picture group, the rational
homology vanishes in almost all dimensions.

1. Introduction

There is now a substantial theory of diagram groups (see for example [11], [15],
[16], [17], [18], and [19]). Guba and Sapir first introduced annular and braided
diagram groups in [15] (see Section 16). Here, as in [10], these are called annu-
lar picture groups and picture groups, respectively. Some background on annular
picture groups and picture groups is in Section 2.

One of the original reasons to study diagram groups was that Thompson’s groups
F , T , and V (see [9] for an introduction) occur as diagram groups over a particularly
simple semigroup presentation, namely 〈x | x = x2〉. To be precise, T occurs as
an annular diagram group, and V occurs as a braided diagram group (see [10] and
[15]). It is often possible to prove that long-known theorems about Thompson’s
groups are also true more generally of diagram groups. For example, in [11], it was
shown that any diagram group over a finite presentation of a finite semigroup is of
type F∞, which generalized work of Brown and Geoghegan [8], who first showed
that F is of type F∞. In [10] and [11], it was shown that all types of diagram groups
act properly on CAT(0) cubical complexes (see [3], page 158, for the definition of
CAT(0), and page 111 for the definition of a cubical complex). This had not been
known, even in the case of Thompson’s groups.

Theorem 1 of this paper states that a wide class of annular diagram groups and
braided diagram groups (hereafter annular picture groups and picture groups) are
of type F∞. The precise hypothesis of this theorem is too technical to state here,
but the class of groups to which the theorem applies includes the groups T and V .
Theorem 1 may thus be considered a generalization of Brown’s work from [5] on
Thompson’s group. A proof is in Section 3.

The rest of the paper is devoted to proving that the rational homology of
picture groups vanishes in almost all dimensions. Fix a semigroup presentation
P = 〈Σ | R〉, where |R| = n. Theorem 11 states that the rational homology of
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any picture group over P vanishes in dimensions greater than n. Using a Morse-
theoretic argument, one can then show that, under somewhat technical hypotheses,
the rational homology vanishes in dimension n as well. This is Theorem 21. One
corollary of this theorem is that Thompson’s group V has the rational homology of
a point, which was first proved by Brown [6].

I thank the referee for doing an extraordinarily helpful and efficient job. The
argument in Section 3 of this paper is significantly clearer as a result, particularly
because of the reference [2]. I thank Ken Brown for answering some of my questions
regarding the chain complex in Section 4.

2. Background

Let P = {Σ | R} be a semigroup presentation. Thus, Σ is an alphabet and
the set of relations R is a set of equalities between positive, non-empty words. In
this paper, the relations all have a preferred left side and no relation of the form
w = w occurs. If u is the left side of the relation u = v, then it will sometimes be
useful to emphasize this by writing u → v. Assume also that if (u → v) ∈ R, then
(v → u) �∈ R.

A picture over P consists of a frame ∂([0, 1]2), a finite, possibly empty, collection
of transistors, each homeomorphic to [0, 1]2, and a finite non-empty collection of
wires, each homeomorphic to [0, 1]. Each wire is labelled by a letter of the alphabet
Σ. The frame and transistors come with well-defined top, bottom, left, and right
sides.

Any given wire connects a point on the bottom of one transistor to a point on
the top of another, or a point on the top or bottom of the frame to a point on the
top or bottom (respectively) of a transistor, or a point on the top of the frame to
a point on the bottom. The wires are also required to be pairwise disjoint. The
endpoints of a wire are called contacts and each contact in a picture inherits a label
from the unique wire it touches. Let T1 and T2 be transistors. Write T1 > T2 if
there is a wire connecting the bottom of T1 to the top of T2, and let > also denote
the transitive closure of this relation. One further requires of the attaching maps
of the wires that > be a strict partial order on the set of transistors.

There is one further condition on the transistors. Fix a transistor T . A word
uT may be obtained by reading the labels of the top contacts of T from left to
right. This is the top label of T . A word vT , called the bottom label of T , is defined
similarly. The final requirement is that uT = vT (or vT = uT ) be a member of R.
(It is not enough for uT = vT or vT = uT to be in the congruence generated by R.)
The relation uT → vT labels T if uT is the top label and vT is the bottom label.

Any labelled topological space satisfying the above conditions is a picture over
P. One can define the top and bottom labels for a picture ∆ over P in exactly the
way the top and bottom labels of a transistor were defined. If the top label of ∆
is the word u and the bottom label is v, then ∆ is a (u, v)-picture. A (u, ∗)-picture
is a picture having u as its top label, and any word for the bottom label. Figure 1
portrays two (acbd, abab)-pictures over the semigroup presentation P = 〈a, b, c, d |
cb = bc, ab = cd, ab = ba〉. The frames appear as dotted boxes. Ignore the dotted
circles for now.

A picture without transistors is a permutation picture. A picture in which no
two transistors are comparable with respect to the partial order on transistors is
called thin.
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Figure 1.

Two pictures ∆1 and ∆2 over P are isomorphic if there is a homeomorphism
between them which matches labels and preserves the orientations on the frame and
transistors; i.e., both the top-bottom orientations and the left-right orientations.
One writes that ∆1 ≡ ∆2.

Given a (u, v)-picture ∆1 and a (v, w)-picture ∆2, one can define the concatena-
tion ∆1 ◦∆2, which is the (u, w)-picture obtained by identifying the bottom of the
frame for ∆1 with the top of the frame for ∆2 by a homeomorphism which matches
contacts, and then removing the line segment corresponding to the bottom of ∆1

in the quotient, while keeping the wires passing through this line segment intact.
Two transistors T1 > T2 form a dipole if the top label of T1 is identical (as a

word in Σ+, the free semigroup on Σ) to the bottom label of T2, and the bottom
contacts of T1 are paired off by wires in order with the top contacts of T2. To
remove a dipole, delete the transistors T1 and T2 and all wires connecting them,
and then glue together in order the wires that formed top contacts of T1 with those
that formed bottom contacts of T2. The inverse operation is called inserting a
dipole. Two pictures ∆1 and ∆2 are equal modulo dipoles if one can be obtained
from the other by repeatedly inserting and removing dipoles. One writes that
∆1 = ∆2. Figure 1 shows a dipole (inside the circle in the left picture) and the
effect of removing this dipole (the picture on the right).

A picture is reduced if it contains no dipoles. By Lemma 2.2 of [10], there is a
unique reduced picture in any equivalence class of pictures modulo dipoles.

For a fixed word w ∈ Σ+, the set of all (w, w)-pictures over P, modulo dipoles,
forms a group Db(P, w) under the operation of concatenation. These groups are the
same as the braided diagram groups defined in [15]; they were called picture groups
in [10]. One can also define annular picture groups (as in [10]). Given a picture ∆,
identify the left side of the frame {0} × [0, 1] with the right side {1} × [0, 1] in an
orientation-preserving way. Now remove the open line segment that corresponds to
{0} × (0, 1) in the quotient. The result looks like a picture, except that the frame
has been replaced by two disjoint circles. Each circle receives an orientation coming
from the left-right orientation of the top and bottom of the frame, respectively. If
the new space ∆ may be embedded in the plane in an orientation-preserving fashion,
then the original picture ∆ is called an annular picture. The set of annular (w, w)-
pictures forms a group denoted Da(P, w). These groups were also studied in [15],
where they were called annular diagram groups.

The groups Db(P, w) and Da(P, w) act on CAT(0) cubical complexes ([10], The-
orem 4.5). The CAT(0) cubical complexes for Db(P, w) and Da(P, w) are denoted
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K̃b(P, w) and K̃a(P, w), respectively. Here the complexes K̃b(P, w) will be de-
scribed; the complexes K̃a(P, w) are similar, but involve only annular pictures in
their definition. A vertex (or formal vertex ) is an equivalence class of reduced pic-
tures, where the pictures ∆1 and ∆2 are considered equivalent if ∆1 ◦ Φ ≡ ∆2, for
some picture Φ containing no transistors. A vertex of Db(P, w) is a vertex consist-
ing of (w, ∗)-pictures. (The vertices of K̃a(P, w) are defined in the same way, but
all of the pictures in question are annular.)

It is convenient to depict a vertex as a picture in which the bottom wires have
been clipped, so they do not touch the bottom of the frame. Figure 2a) portrays a
vertex in K̃b(P, x), where P = 〈x | x = x2〉. Let Cb(∆, Ψ) = {[∆◦Ψ′] | [Ψ′] ≤ [Ψ]},
where ∆ is a (w, ∗)-picture, Ψ is thin, i.e., no two of the transistors of Ψ are
comparable in the partial order on transistors, and [Ψ′] ≤ [Ψ] if there is some
picture Φ such that Ψ◦Φ and Ψ′ are isomorphic without reducing dipoles [10]. The
set Cb(∆, Ψ) is an abstract cube (or cube) of K̃b(P, w). A cube can be represented
by a picture in which the bottom wires have been clipped, and some subset of the
set of minimal transistors of the picture are painted white (see Lemma 3.4 in [10]).
(Here “minimal” means minimal in the sense of the partial order < on transistors.)
Figure 2b) represents a cube in K̃b(P, x), where P = 〈x | x = x2〉.

Choose some arbitrary white transistor to be numbered 1, another to be num-
bered 2, and so on, until every white transistor is assigned a natural number. See
Figure 3. If there are n white transistors, then this numbering describes a labelling

12

Figure 3.
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of the standard n-cube [0, 1]n. The label of (i1, . . . , in) ∈ [0, 1]n is the vertex
obtained by removing the kth white transistor if ik = 0, shading the kth white
transistor if ik = 1, and removing any dipoles that occur. Figure 4 shows how the
numbering in Figure 3 describes how to label [0, 1]2. The cubes of K̃b(P, w) are
glued together along faces sharing the same labellings. Details are in [10]. The
standard n-cube [0, 1]n = In inherits a natural orientation from Rn, so that the
identification of a cube C with [0, 1]n gives C an orientation as well.

A cube is said to be in standard form if any white transistor T is labelled by a
relation u → v in R. A thin picture is in standard form if each of its transistors
satisfies the same condition. Any cube may be put into standard form. Figure 5
illustrates in a simple case how to convert a cube into standard form. The cube
represented on the left is an edge in K̃b(P, w), where P = 〈x | x2 → x〉 and w = x.
The idea is to shade any offending transistor, attach a new transistor in order to
form a dipole, and then paint the new (bottom) transistor white.

A b-word is an equivalence class of words under the equivalence relation ∼, where
w1 ∼ w2 if w1 and w2 are equal in Σ+ after a permutation of their letters. Let 〈w〉b
denote the b-word containing the word w. A cyclic word is an equivalence class

Figure 5.
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of words under the equivalence relation ≈, where w1 ≈ w2 if w1 and w2 are cyclic
shifts of each other. Let 〈w〉a denote the cyclic word containing the word w. Define
the bottom label of a vertex v in Db(P, w) to be the b-word formed by the collection
of bottom labels of pictures ∆ ∈ v. The bottom label of a vertex in Da(P, w) can
be similarly defined as a cyclic word.

A rewrite system is an oriented graph; the vertices of a rewrite system are objects
and the directed edges are moves. If there is a move from one vertex v1 to another,
say v2, then write v1 → v2. If there is no move from a given object v, that object
is reduced. A rewrite system is terminating if every sequence a1 → . . . → an → . . .
is finite. The reflexive, transitive closure of the relation → is a partial order on the
vertices of a terminating rewrite system.

To a given semigroup presentation P, one can associate three different rewrite
systems. Let Γ(P) be the rewrite system having the words of Σ+ as its vertex set,
and having an oriented edge originating at u and terminating at v if there is a
relation u2 → v2 such that u = u1u2u3 and v = u1v2u3, where one or both of the
words u1 and u3 may be empty, and the “=” means equality in the free semigroup
Σ+. Let Γa(P) be the rewrite system obtained from Γ(P) by identifying any two
vertices that represent the same cyclic word. Let Γb(P) be the rewrite system
obtained by identifying any two vertices that represent the same b-word. If some
(or all) of these rewrite systems are terminating, then there is a partial order on
the set of words, cyclic words, or b-words in the alphabet, as the case may be.

3. Some groups of type F∞

The goal in this section is to prove the following theorem:

Theorem 1. If P is a finite semigroup presentation and Γb(P) (respectively, Γa(P))
is a terminating rewrite system with only finitely many reduced objects, then
Db(P, w) (respectively, Da(P, w)) is of type F∞.

The arguments for Db(P, w) and Da(P, w)) are the same in almost every respect,
so it is enough to make the argument for Db(P, w) and note what needs to be
changed to cover the other case.

It will be helpful to use a proposition from [5].

Proposition 2 ([5], Corollary 3.3, part a.). Let X be a contractible G-complex
such that the stabilizer of every cell is of type F∞. Let {Xj} be a filtration such
that each Xj is finite mod G. Suppose the connectivity of the pair (Xj+1, Xj) tends
to infinity as j tends to infinity. Then G is of type F∞. �

Assume now that P is a finite semigroup presentation and the rewrite system
Γb(P) is terminating and has only finitely many reduced objects. Choose a sequence
(〈wn〉b) of b-words (i.e., vertices of Γb(P)) to have the property that, for any word
w ∈ Γb(P)0, whenever w ≤ wj , one has w ∈ {w1, . . . , wj}. This can be done by
induction under the given hypotheses. For each j, let Vj = {∆ ∈ K̃b(P, w)0 | the
bottom label of ∆ is in {w1, . . . , wj}}, and let Kj be the largest subcomplex of
K̃b(P, w) with the property that K0

j = Vj . Each Kj is Db(P, w)-finite since each
Vj is Db(P, w)-finite and K̃b(P, w) itself is locally finite (see the proof of Theorem
4.9 in [10] for a discussion of the orbit of a vertex under the action of Db(P, w), and
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for the proof that K̃b(P, w) is locally finite). Moreover, the stabilizer in Db(P, w)
of any cell in K̃b(P, w) is finite (see Theorem 4.9 in [10]), so the first condition of
Proposition 2 is satisfied.

Consider the effect of passing from Kk to Kk+1. The bottom label of each of the
vertices in Kk+1 is the b-word 〈wk+1〉b. Let [∆] be an arbitrary vertex in K0

k+1−K0
k .

If ε is small, then Kk+1 −Nε([∆]) will strong deformation retract onto the complex
K ′ by radial projection, where K ′ is the largest subcomplex of K̃b(P, w) having
K0

k+1 − {[∆]} as its zero skeleton.
The strong deformation retractions from each vertex in K0

k+1−K0
k are compati-

ble with one another, because no cube of Kk+1 can contain two vertices having the
bottom label 〈wk+1〉b (cf. [11], Lemma 4.7). The boundary of each neighborhood
Nε([∆]) is homeomorphic to |lk↓(〈wk+1〉b)|, where lk↓(〈v〉b) is defined below. Each
such ε-neighborhood is itself a cone on |lk↓(〈wk+1〉b)|, and hence contractible. It
follows that Kk+1 is homotopy equivalent to the complex obtained by attaching to
Kk countably many cones on |lk↓(〈wk+1〉b)| along their bases. From this observa-
tion, it is easy to argue, using the Mayer-Vietoris sequence, van Kampen’s theorem,
and the Hurewicz theorem (see, e.g., [22]), that

Proposition 3. If |lk↓(〈wk+1〉b)| is n-connected, then the pair (Kk+1, Kk) is n-
connected. �

Now one needs to define lk↓(〈v〉b). First, some additional definitions are nec-
essary. The formal vertex [Ψ] uses a contact on the top of its frame if the wire
leading from this contact is attached to the top of some transistor of [Ψ]. If two
formal vertices [Ψ1] and [Ψ2] have the same top label v, then [Ψ1] and [Ψ2] overlap
if there is some i such that [Ψj ], for j = 1, 2, uses the ith contact from the left on
the top of its frame.

Definition 4 (cf. [1]). The descending link of the b-word 〈v〉b, denoted lk↓(〈v〉b),
is the simplicial complex satisfying:

i) lk↓(〈v〉b)0 = {[Ψ] | [Ψ] is a vertex with one transistor, Ψ is in standard form,
and the top label of [Ψ] is v}.

ii) a collection of vertices in lk↓(〈v〉b)0 forms a simplex if and only if no two of
them overlap.

The isomorphism type of lk↓(〈v〉b) does not depend on the choice in i) of the
word v from 〈v〉b.

The descending link of a cyclic word 〈v〉a, denoted lk↓(〈v〉a), is defined in the
same way, except that all pictures occurring in the definition are assumed to be
annular. The descending link of a word v, denoted lk↓(v), was defined in [11], but
it can be defined in an equivalent way with the above definition, if every picture in
this definition is understood to be “ordinary”, i.e., planar.

The above characterization of the descending link follows easily from the iso-
morphism between lkab([Π]) and (Vv, Sv) ([10], Proposition 4.7); here the bottom
label of [Π] is 〈v〉b. It also follows that lk↓(〈v〉b) is a flag complex, from the same
reasoning that is used to show that lkab([Π]) is a flag complex (see the proof of
Theorem 4.9 in [10]). (Recall that a simplicial complex L is a flag complex if every
finite subset of L0 that is pairwise joined by edges spans a simplex ([3], page 210).)

The rest of the argument requires some definitions, most of which can be found
in [21]. Let K be a simplicial complex. The subcomplex L is full in K if L is the
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largest subcomplex of K having L0 as its 0-skeleton. The star of a vertex v in K,
denoted st(v, K), or st(v) if the ambient complex is understood, is the subcomplex
of K consisting of all the simplices containing v, together with the faces of these
simplices. It is not difficult to check that the star L of a vertex v in a flag complex
K is a full subcomplex of K. Thus, the star of a vertex v in a flag complex is
simply the full subcomplex generated by v and all adjacent vertices. The star of
any vertex in a simplicial complex is contractible.

The link of a vertex v in a simplicial complex K, denoted lk(v, k), consists of
those simplices spanned by vertices v1, v2, . . . , vk such that v �∈ {v1, v2, . . . , vk} and
v, v1, v2, . . . , vk span a simplex in K. Thus the link of a vertex v in a flag complex
K is also a full subcomplex, and lk(v, K)0 = st(v, K)0 − {v}.

Recall that if C is a cover of a topological space X, then the nerve of this
cover is the simplicial complex having elements of C as its set of vertices, and a
collection of vertices spans a simplex if the corresponding elements of C have non-
empty intersection. It will be useful to appeal to the Nerve Theorem (see, e.g.,
A. Björner: “Topological Methods” in [2], Theorem 10.6, page 1850):

Theorem 5 (Nerve Theorem). Let ∆ be a simplicial complex and (∆i)i∈I a family
of subcomplexes such that ∆ =

⋃
i∈I ∆i. If every non-empty finite intersection

∆i1 ∩ . . . ∩ ∆it
is (k − t + 1)-connected, then ∆ is k-connected if and only if the

nerve N (∆i) is k-connected. �

The following lemma will be used in the remainder of the proof of Theorem 1.

Lemma 6. Let K be a finite flag complex.
i) K is (n − 1)-connected provided, for any collection of vertices S ⊆ K(0), the

intersection
⋂

v∈S lk(v) is (n − |S|)-connected.
ii) If S is any collection of vertices of K and

⋂
v∈S lk(v) is n-connected, then so

is
⋂

v∈S st(v).

Proof. For each set S of vertices, put

KS :=
⋂
v∈S

st(v) and LS :=
⋂
v∈S

lk(v).

Let Lc
S denote the complementary complex of LS in KS that contains precisely

those simplices of KS that are disjoint from LS .
The next step is to show that the complex Lc

S is a simplex unless it is empty.
Since KS is flag (being an intersection of stars in a flag complex), it suffices to show
that any two distinct vertices u and w in Lc

S are joined by an edge. Since u is not
in LS , there is a vertex v ∈ S not connected to u by an edge. On the other hand,
u ∈ KS whence u ∈ st(v). Thus, v = u and so u belongs to S. Now, w ∈ KS

implies w ∈ st(u), so w and u span an edge. Thus Lc
S is a simplex.

By the same reasoning, every vertex in LS is connected to every vertex in Lc
S .

Since KS is flag, KS = LS ∗Lc
S whence it is either contractible (if Lc

S is non-empty)
or at least n-connected. This proves ii). Statement i) of the lemma follows from the
Nerve Theorem applied to the cover of K by the stars of all of the vertices in K.
Indeed, all of the subcomplexes KS have the required connectivity. Moreover, KS

is non-empty unless |S| > n+1. Hence the n-skeleton of the nerve N is isomorphic
to the n-skeleton of a huge simplex. Thus, the n-skeleton of N is (n−1)-connected,
which implies that K is (n − 1)-connected. �
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The proof of Theorem 1 is, up to this point, exactly the same for the groups
Db(P, w) and Da(P, w). The only difference of any substance between the two
cases occurs here:

Proposition 7. Suppose P is a finite semigroup presentation and Γb(P) (respec-
tively, Γa(P)) is a terminating rewrite system with only finitely many reduced ob-
jects. Let Nb be an integer such that Nb > �(v) for any reduced b-word in Γb(P)0.
Let N be an integer such that N > �(v) for any reduced word in Γ(P)0. Let R be
the length of the longest word occurring as the left side of some relation in R. Let
n ∈ Z.

i) If v is a b-word and �(v) ≥ 2(n + 1)R + Nb, then lk↓(〈v〉b) is n-connected.
ii) If v is a cyclic word and �(v) ≥ (n + 2)N + (n + 3)(R − 1), then lk↓(〈v〉a) is

n-connected.

Proof. i) The proof is by induction on n. In the first non-trivial case, n = −1, one
has �(v) ≥ Nb. By the assumption on Nb, this implies that 〈v〉b is not reduced, so
there is some picture in standard form having v as its top label and having exactly
one transistor, which implies that lk↓(〈v〉b) is non-empty.

For the inductive step, fix v ∈ 〈v〉b. Each [Ψ] ∈ lk↓(〈v〉b)0 is a formal vertex in
standard form with a single transistor, and having the top label v.

Let �(v) ≥ 2(n+1)R+Nb. To show that lk↓(〈v〉b) is n-connected, it is enough, by
Lemma 6 i), to demonstrate that |lk([Ψ1])|∩ . . .∩|lk([Ψk])| is (n−k+1)-connected,
for any choice [Ψ1], . . . , [Ψk] of vertices. At most kR contacts are used by the formal
vertices [Ψ1], . . . , [Ψk]. The complex |lk([Ψ1])|∩. . .∩|lk([Ψk])| is the full subcomplex
of lk↓(〈v〉b) spanned by the vertices of lk↓(〈v〉b) which do not overlap with any of
the [Ψi], for i = 1, . . . , k. Thus |lk([Ψ1])| ∩ . . . ∩ |lk([Ψk])| is homeomorphic to
|lk↓(〈v1〉b)|, where v1 satisfies

�(v1) ≥ 2(n + 1)R − kR + N

≥ 2(n − k + 2)R + N.

This implies that |lk↓(〈v1〉b)| is (n − k + 1)-connected, completing the proof.
ii) The first non-trivial case to consider occurs when n = −1. In this case

�(v) ≥ N +2(R− 1) ≥ N . Thus, for any word v ∈ 〈v〉a, v is not reduced. It follows
that 〈v〉a itself is not reduced, so lk↓(〈v〉a) is non-empty.

Now let

�(v) ≥ (n + 2)N + (n + 3)(R − 1) (n ≥ 0)

and fix a specific word v ∈ 〈v〉a. Fix a vertex [Φ] ∈ lk↓(〈v〉a) such that the top label
of the transistor of [Φ] contains no subword that is the left side of some relation
in P. Consider the cover of lk↓(〈v〉a) by the stars of the vertices in the collection
{[Ψi] | i = 1, . . . , p} of vertices that overlap with [Φ].

A first step is to show that the intersection |st([Ψi1 ])|∩ . . .∩|st([Ψim
])| is (n−1)-

connected, for any choice [Ψi1 ], . . . , [Ψim
] of vertices as above (2 ≤ m ≤ p). To do

this, it is enough, by Lemma 6 ii), to show that |lk([Ψi1 ])|∩. . .∩|lk([Ψim
])| is (n−1)-

connected. Since every vertex [Ψi1 ], . . . , [Ψim
] overlaps with [Φ], no more than 3R−2

contacts are used by the [Ψij
], j = 1, . . . , m, and these contacts occur consecutively

(in the cyclic sense). The subcomplex |lk([Ψi1 ])|∩ . . .∩|lk([Ψim
])| is the same as the

full subcomplex of lk↓(〈v〉a) generated by the vertices which do not overlap with
any of the [Ψij

], j = 1, . . . , m. Thus, by the choice of [Φ], |lk([Ψi1 ])|∩. . .∩|lk([Ψim
])|
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is homeomorphic to |lk↓(v1)|, where v1 is a word satisfying

�(v1) ≥ (n + 2)N + (n + 3)(R − 1) − (3R − 2)
= (n + 2)N + nR − (n + 1)
≥ (n + 1)N + n(R − 1).

Proposition 4.11 from [11] says that whenever �(v) ≥ (n + 2)N + (n + 1)(R − 1),
|lk↓(v)| is n-connected. This implies that |lk↓(v1)| is (n − 1)-connected. Thus
|st([Ψi1 ])| ∩ . . . ∩ |st([Ψim

])| is (n − 1)-connected for any choice of vertices [Ψi1 ],
. . ., [Ψim

] which overlap with [Φ]. Part ii) now follows by applying the Nerve
Theorem to the cover {st([Ψi]) | i = 1, . . . , p}. Note that the nerve of this cover is
a simplex. �

Now, since �(〈wn〉b) → ∞ and �(〈wn〉a) → ∞ as n → ∞, it follows that Db(P, w)
and Da(P, w) are of type F∞, by Propositions 2, 3, and 7. Theorem 1 follows.

4. The rational homology of picture groups

4.1. Vanishing of rational homology in high dimensions. Note that only the
picture groups Db(P, w) are under consideration in the remaining sections, and not
the annular groups Da(P, w).

The following proposition will be fundamental to the homology calculations in
the remainder of the paper. I am indebted to Ken Brown for the proof, which was
relayed to me by the referee.

Proposition 8. If X is a contractible G-complex with finite cell stabilizers, then
C∗(X, Q), the cellular chain complex of X with coefficients in Q, is a projective
resolution of QG.

Proof. Since the complex is clearly a resolution, we only need to make sure that
the modules Cp(X, Q) are projective for each dimension p. It follows from formula
(7.5) on page 173 in [4] that

Cp(X, Q) =
⊕

σ∈Xp

Qσ ↑G
Gσ

.

Here the modules Qσ are projective Gσ-modules by Exercise 5 on page 30 in [4].
Since induction takes projectives to projectives, the modules Qσ ↑G

Gσ
are projective.

�

Now suppose that P is an arbitrary semigroup presentation. Since Db(P, w) acts
with finite cell stabilizers on K̃b(P, w) (see the proof of Theorem 4.9 in [10]), the
rational homology of Db(P, w) may be computed from Q ⊗Db(P,w) C∗(K̃b(P, w)),
where C∗(K̃b(P, w)) is the cellular chain complex associated to the cell complex
K̃b(P, w).

Proposition 9. Let C be a cube of K̃b(P, w) in standard form.
i) If there are two white transistors of C labelled by the same relator, then there

is ∆1 ∈ Db(P, w) such that ∆1 maps C to itself and reverses its orientation.
ii) If no two of the white transistors of C are labelled by the same relator and

Γb(P) is terminating, then any element in Db(P, w) that fixes C, fixes C pointwise.
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Proof. i) Let C = Cb(∆, Ψ), where Ψ is in standard form and the bottom label of
∆ is w1; suppose that T1 and T2 are white transistors of Ψ which are labelled by
the same relation. Assume that T1 (thus also T2) has m top contacts. Throughout
the following argument, “the ith top contact” means “the ith top contact from the
left”. The number of a contact is its number when counting from the left along the
top or bottom of a given transistor (or along the frame).

If a wire w meets the kth top contact of T1, let ik be the number of the top
contact of Ψ at the other end of w. Similarly, if a wire w meets the kth top contact
of T2, let jk be the number of the top contact of Ψ at the other end of w. Note
that the ikth and jkth top contacts of Ψ necessarily have the same label.
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Figure 6.

Let Φ be the (w1, w1) permutation picture such that the ikth top contact is con-
nected by a wire to the jkth bottom contact and the jkth top contact is connected
by a wire to the ikth bottom contact. All other wires in Φ should connect the �th
top contact with the �th bottom contact.

Now consider the action of ∆1 = ∆ ◦ Φ ◦ ∆−1 on C = Cb(∆, Ψ):

(∆ ◦ Φ ◦ ∆−1) · C = Cb(∆ ◦ Φ, Ψ).

Thus, by the definition of Φ, the action of ∆1 simply interchanges the transistors
T1 and T2, leaving the cube C fixed. The operation of interchanging T1 and T2

corresponds to an orientation-reversing homeomorphism of |C|.
The idea of part i) is illustrated in Figure 6. The top picture in a) is ∆ and the

bottom picture is (the equivalence class of) Ψ, with one white transistor marked to
indicate the orientation. The picture in b) is ∆1 = ∆ ◦ Φ ◦ ∆−1 for the choice of
∆ and Ψ in a). The cube depicted in c) is Cb(∆ ◦ Φ, Ψ). Note that the cubes in
a) and c) are the same, but any isomorphism between the two underlying pictures
must carry the unmarked transistor to the marked transistor. This implies that ∆1

reverses the orientation.
ii) Since Γb(P) is terminating, the cube C has a unique vertex [∆] with the

property that 〈w1〉b, the bottom label of [∆], is larger than the bottom labels of
all of the other vertices of C in the partial order on b-words. (In fact, the vertex
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[∆] may be obtained by removing the white transistors of C.) Since the action of
Db(P, w) on K̃b(P, w) preserves the bottom labels of vertices, any group element
∆′ which fixes the cube C must map the vertex [∆] to itself. Thus ∆′ ◦∆ = ∆◦Θ1,
where Θ1 is a permutation picture, so ∆′ = ∆ ◦ Θ1 ◦ ∆−1.

Now choose any vertex of C that is adjacent to [∆]. Such a vertex has the form
[∆◦Ψ1], where Ψ1 is a thin picture with just one transistor. One wants to show that
the vertex [∆◦Ψ1] is fixed by ∆′. If not, then (∆◦Θ1 ◦∆−1)◦∆◦Ψ1 = ∆◦Ψ2 ◦Θ2,
for some thin picture Ψ2 with just one transistor and some permutation picture
Θ2. Note that, by the assumption on C, the transistor in Ψ1 has a different label
from the transistor in Ψ2. But then Θ1 ◦ Ψ1 = Ψ2 ◦ Θ2, and the pictures Θ1 ◦ Ψ1

and Ψ2 ◦ Θ2 each contain just one transistor, and these transistors are labelled by
different relations. This is a contradiction. It follows that the vertex [∆] and each
vertex of C adjacent to [∆] is fixed by the action of ∆′. This means that ∆′ must
fix the whole cube. �
Lemma 10. Let Cb(∆, Ψ) be an oriented cube of K̃b(P, w), where Ψ is in standard
form. If two (or more) transistors of Ψ are labelled by the same relation, then
1 ⊗Db(P,w) Cb(∆, Ψ) = 0 in Q ⊗Db(P,w) C∗(K̃b(P, w)).

Proof. By Proposition 9, there is some ∆1 ∈ Db(P, w) such that ∆1 reverses the
orientation of Cb(∆, Ψ). Write ⊗ in place of ⊗Db(P,w):

(1⊗Cb(∆, Ψ)) = ((1 ·∆1)⊗Cb(∆, Ψ)) = (1⊗ (∆1 ·Cb(∆, Ψ))) = (1⊗−Cb(∆, Ψ)).

From this, it follows that (1 ⊗ Cb(∆, Ψ)) = 0. �
One has this corollary:

Theorem 11. If the semigroup presentation P has only n relations, then
Hm(Db(P, w); Q) = 0 when m > n.

Proof. If m > n, then any chain in Q⊗Db(P,w) Cm(K̃b(P, w)) can be represented as
a linear combination of elements of the form 1 ⊗ Cb(∆, Ψ), where one can assume
that Ψ is in standard form, and thus two or more of the transistors of Ψ are labelled
by the same relation. It follows from Lemma 10 that all such elements are 0, so
Q ⊗Db(P,w) Cm(K̃b(P, w)) = 0. �

The rest of the paper is devoted to showing that the above theorem is also true
for m = n, in case the rewrite system Γb(P) is terminating.

4.2. Morse theory. This section contains a simple version of combinatorial Morse
theory, based on the work of Forman [13] and Brown’s idea of a collapsing scheme
from [7]. The idea here is to algebraicize their geometric arguments so that the
theory will apply to the chain complex from the previous section.

Let ({Cn}n≥0, ∂n) be a chain complex of free R-modules, where R is a commu-
tative ring with 1. (In this paper, R = Q.) Call the chain map f : C∗ → C∗ a
discrete flow on ({Cn}n≥0, ∂n) if:

i) f is chain homotopic to the identity, and
ii) for any chain c ∈ C∗, there is n ∈ N such that fn(c) = fn+1(c).
If f is a discrete flow, then property ii) implies that f∞(c) is well-defined for any

chain c. The map f∞ : C∗ → C∗ is a chain map. Let If (C)∗ denote the R-module
of f -invariant chains in C∗. It is clear that If (C)∗ = f∞(C∗).

Lemma 12. The map f∞ : C∗ → If (C)∗ induces an isomorphism on homology.
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Proof. Since f∞ is a chain map, it maps cycles to cycles and boundaries to bound-
aries. The map f∞ is also surjective on cycles, since, for any cycle c ∈ If (C)∗, c is
also a cycle in C∗, and f∞(c) = c.

Finally, one needs to show that a chain c is mapped to a boundary if and only
if c is itself a boundary. If f∞(c) = ∂d, then f∞(c) = f∞ ◦ f∞(c) = ∂f∞(d).
There is some m ∈ N such that f∞(c) = fm(c) and f∞(d) = fm(d). This implies
that fm(c) = ∂fm(d), so fm(c) = 0 on the level of homology. Since fm induces an
isomorphism on homology, c is a boundary. �

Choose a basis Bn for each Cn. Let ±Bn = Bn ∪ −Bn ∪ {0}.
Let V : B∗ → ±B∗+1 satisfy the following conditions:
a) If V (b1) = ±V (b2) �= 0, then b1 = b2;
b) V V = 0;
c) for any b ∈ Bn(n ≥ 0), either V (b) = 0 OR b occurs in ∂n+1Vnb with the

coefficient −1;
d) for b1, b2 ∈ Bn, write b1 > b2 if b2 occurs in ∂V b1 or V ∂b1 with a non-zero

coefficient and b1 �= b2. One requires:
d.1) that for each b0 ∈ Bn, there are only finitely many b1 ∈ Bn satisfying

b0 > b1, i.e., satisfying condition d), and
d.2) that the irreflexive, transitive closure of >, also denoted >, be a strict

partial order with no infinite descending chains.
The map V can be extended to a map from C∗ to C∗+1 by linearity.
Define the height h(b) of a basis element b ∈ Bn to be the length of the largest

strictly descending chain b > b1 > . . . > bn. Thus, if b is minimal in the partial
order >, then h(b) = 1. The height of a basis element is well defined because of the
following lemma, which was provided by the referee.

Lemma 13. Let M be a set with a binary relation → satisfying the following two
conditions:

(1) There is no infinite chain m1 → m2 → m3 → . . ..
(2) For every m ∈ M , there are only finitely many m′ ∈ M with m → m′.

Then the irreflexive transitive closure of → is a strict partial order on M such that
every m ∈ M has a well-defined height

h(m) := max{n | there is a chain m = m1 → . . . → mn}.
Proof. The first hypothesis implies that the transitive closure of → is a strict partial
order on M . Thus, we only need to argue that heights are well defined and finite.

Let Tm be the rooted tree whose vertices are finite chains starting at m and such
that the parent of the chain

m = m1 → m2 → . . . → mn−1 → mn

is the chain
m = m1 → m2 → . . . → mn−1.

The second hypothesis implies that Tm is locally finite. By the first hypothesis,
Tm does not contain any infinite path. Thus, by König’s Lemma, the tree Tm is
finite. �

If c ∈ C∗ is any non-zero chain, let h(c) = max{h(b) | b ∈ B∗ occurs in c with a
non-zero coefficient}. Call a basis element b ∈ Bn critical if V (b) = 0 and b �∈ Im V .
Call a basis element b ∈ Bn collapsible if b ∈ Im V . Call a basis element b ∈ Bn
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redundant if V (b) �= 0. It is clear from the definitions that any given basis element
is critical, collapsible, or redundant, but not more than one of these.

Let g = ∂V + V ∂ and f = 1 + g.

Lemma 14. Let b ∈ Bn.
i) If b is critical, then g(b) = 0 or h(g(b)) < h(b), and every basis element

occurring in g(b) is collapsible.
ii) If b is collapsible, then f(b) = 0 or h(f(b)) < h(b) and every basis element

occurring in f(b) is collapsible.
iii) If b is redundant, then f(b) = 0 or h(f(b)) < h(b).

Proof. i) If b is critical, then g(b) = V ∂b. Assume g(b) �= 0. All of the basis
elements occurring in V ∂b are of course collapsible. Thus, if b1 ∈ B∗ occurs in V ∂b,
b �= b1 and, by definition, b > b1. It follows easily that h(b1) < h(b).

ii) Assume f(b) �= 0. If b is collapsible, then b = V (b1) for some b1 ∈ ±Bn−1. It
follows that b1 occurs in ∂V (b1) with a coefficient of −1. Now

f(b) = (1 + ∂V + V ∂)(V (b1)) = V (b1) + V ∂V (b1)

= V (b1) + V ([∂V b1 + b1] − b1) = V [∂V b1 + b1],

where ∂V b1 + b1 contains no occurrence of b1 after cancelling. By property a) of V ,
b therefore does not occur in f(b). Each basis element occurring in f(b) therefore
occurs in V ∂(b) so that, for any basis element b2 occurring in f(b), b > b2. It follows
that h(b) > h(f(b)). By the above calculation, f(b) ∈ Im V , so each basis element
in f(b) is collapsible.

iii) Assume f(b) �= 0. If b is redundant, then b occurs in ∂V b with a coefficient
of −1. Thus the sum b + ∂V b contains no occurrence of the basis element b after
collecting terms, and each basis element b1 that does occur is such that b > b1. It
follows that h(b) > h(b + ∂V b).

Each basis element occurring in V ∂b is collapsible, so b does not occur in V ∂b.
If b1 occurs in V ∂b, then b > b1 by the definition of >, and it follows that h(b) >
h(V ∂b). Therefore h(b) > h(f(b)). �
Corollary 15. An f-invariant chain contains no occurrence of any redundant basis
element. �
Proposition 16. If f = 1 + ∂V + V ∂ (V as above), then f is a discrete flow.

Proof. Since f is clearly chain homotopic to the identity, it is sufficient to show
that, for any basis element b, there is n ∈ N such that fn(b) = fn+1(b).

The proof is by induction on h(b). If h(b) = 1, then, by Lemma 14, f(b) = 0 if b is
redundant or collapsible, or f(b) = b is b is critical. In either case f(b) = f(f(b)). If
h(b) > 1 and b is redundant or collapsible, then, again by Lemma 14, h(f(b)) < h(b)
and the conclusion that fn(b) = fn+1(b) for some n follows easily by induction.

The only case left to consider occurs when h(b) > 1 and b is critical.

f2(b) − f(b) = f(f(b) − b) = fg(b).

By Lemma 14, only collapsible basis elements occur in fg(b). It then follows easily,
again from Lemma 14, that fm(fg(b)) = 0, for some m. Thus fm+2(b) = fm+1(b).

�
Let Mf (C)n be the free R-submodule of Cn generated by the critical basis ele-

ments of Cn. Let ΠMf (C)∗ denote the projection onto Mf (C)∗.
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Proposition 17. f∞ : Mf (C)∗ → If (C)∗ and ΠMf (C)∗ : If (C)∗ → Mf (C)∗ are
mutually inverse isomorphisms.

Proof. Choose a basis element b ∈ Bn in Mf (C)∗. Lemma 14 implies that f∞(b) =
b+ collapsible elements, so ΠMf (C)∗f

∞(b) = b.
Conversely, choose a chain c ∈ If (C)∗. The chain c contains no occurrences of

redundant basis elements by Corollary 15. Thus ΠMf (C)∗(c)−c contains occurrences
only of collapsible basis elements. It follows from Lemma 14 that

f∞(ΠMf (C)∗(c) − c) = 0.

Therefore f∞ΠMf (C)∗(c) − f∞(c) = 0, so f∞ΠMf (C)∗(c) = f∞(c) = c. �

Now identify Mf (C)∗ with If (C)∗ by the isomorphism f∞. This identification
gives the R-modules Mf (C)∗ the structure of a chain complex (Mf (C)∗, ∂̃∗) in
which ∂̃∗ = ΠMf (C)∗−1∂f∞. This complex is called the Morse complex associated
to the flow f . It is now easy to prove:

Theorem 18. The Morse complex (Mf (C)∗, ∂̃∗) and (Cn, ∂n) have isomorphic
homology groups. �

4.3. Terminating semigroup presentations and vanishing rational homol-
ogy. One needs an explicit description of the chain complex Q⊗Db(P,w)C∗(K̃b(P, w).

Lemma 19. Suppose that Γb(P) is terminating. Let Cb(∆1, Ψ1) and Cb(∆2, Ψ2)
be cubes of K̃b(P, w), where Ψ1 and Ψ2 are in standard form. These cubes are in
the same orbit under the action of Db(P, w) if and only if there are permutation
pictures Φ1 and Φ2 such that Φ1 ◦ Ψ1 ◦ Φ2 = Ψ2.

Proof. Suppose first that there are permutation pictures Φ1 and Φ2 such that Φ1 ◦
Ψ1 ◦ Φ2 = Ψ2. Let ∆3 = ∆2 ◦ Φ1 ◦ ∆−1

1 .

∆3 · Cb(∆1, Ψ1) = ∆3 · Cb(∆1 ◦ Φ−1
1 , Φ1 ◦ Ψ1)

= ∆3 · Cb(∆1 ◦ Φ−1
1 , Φ1 ◦ Ψ1 ◦ Φ2)

= Cb(∆2, Ψ2).

Conversely, if Cb(∆1, Ψ1) and Cb(∆2, Ψ2) are in the same orbit, and Ψi is in stan-
dard form, for i = 1, 2, then Ψ1 and Ψ2 must have the same number of transistors
of any given label. (Recall that the label of a transistor T is a pair (uT , vT ) ∈ Σ+,
where uT is the top label and vT is the bottom label.) Moreover, for i = 1, 2,
Cb(∆i, Ψi) has a unique vertex, namely [∆i], such that the bottom label 〈ui〉b of
[∆1] is larger in the partial order on b-words than the bottom label of any other
vertex in Cb(∆i, Ψi). There is also, for i = 1, 2, a unique vertex, namely [∆i ◦Ψi] of
Cb(∆i, Ψi) with a bottom label 〈vi〉b that is smaller than that of any other vertex
in Cb(∆i, Ψi). Since the action of Db(P, w) on K̃b(P, w) preserves the bottom label
of any vertex, it follows that 〈u1〉b = 〈u2〉b and 〈v1〉b = 〈v2〉b.

All of this information together implies that the transistors in Ψ1 and Ψ2 have the
same labels (and these labels occur with the same multiplicities), and the same is
true of the wires of Ψ1 and Ψ2. Thus, the thin pictures Ψ1 and Ψ2 are completely
determined up to the attaching maps of the wires to the frame. It follows that
Φ1 ◦ Ψ1 ◦ Φ2 = Ψ2, for appropriate permutation diagrams Φ1 and Φ2. �
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Now consider the effect of tensoring C∗(K̃b(P, w)) with Q over Db(P, w). By
Lemma 10, the only (potentially) non-zero terms of Q⊗Db(P,w) C∗(K̃b(P, w)) (here-
after C∗) are sums of rational multiples of elements of the form 1⊗Cb(∆, Ψ), where
Cb(∆, Ψ) is an oriented cube, Ψ is in standard form, and no two transistors of Ψ
are labelled by the same relation. Lemma 19 shows that two such cubes Cb(∆1, Ψ1)
and Cb(∆2, Ψ2) are in the same orbit if and only if Φ1 ◦ Ψ1 ◦ Φ2 = Ψ2. Propo-
sition 9 ii) shows that the effect of taking the tensor product is simply to identify
the basis elements corresponding to two such cubes, without, for instance, making
either of these basis elements 0. The conclusion is that a basis for C∗ consists of
{1 ⊗ Cb(∆i, Ψi)}, where the Cb(∆i, Ψi) are a choice of oriented cubes, any two
of which are from different orbits, with the additional property that the Ψi are
in standard form, and no two transistors of a given Ψi are labelled by the same
relation.

If Γb(P) is terminating, define the standard basis of C∗ to be the set of equivalence
classes, denoted 〈 〉, of thin pictures in standard form, where 〈Ψ1〉 = 〈Ψ2〉 if there
are permutation pictures Φ1 and Φ2 such that Φ1Ψ1Φ2 = Ψ2, and no two transistors
of a given Ψi are labelled by the same relation. A member 〈Ψ〉 of the standard basis
can also be thought of as a subset of R ⊆ (Σ+ × Σ+), which represents the labelling
of the transistors in Ψ, together with a b-word 〈u〉b, which represents the labellings
of the wires that do not touch the transistors. There is a one-to-one correspondence
f between the basis elements (1 ⊗ Cb(∆, Ψ)) mentioned in the previous paragraph
and the standard basis, given by f(1 ⊗ Cb(∆, Ψ)) = 〈Ψ〉. Identify the two sets
by the map f . With this identification, the boundary of 〈Ψ〉, denoted ∂〈Ψ〉, is a
well-defined notion. In the remainder of the argument, it will never be necessary
to compute the boundary of 〈Ψ〉 explicitly; it is sufficient to know which terms
occur in ∂〈Ψ〉 with a non-zero coefficient. (In fact, the coefficient of any term
will be ±1 or 0.) These terms may all be described as follows: Suppose that
L = {(u1, v1), . . . , (uk, vk)} is the set of labels of the transistors of Ψ, and the
remaining wires are represented by the b-word 〈u〉b. Remove one of the relations
(ui, vi) from L, and replace the b-word 〈u〉b by 〈uui〉b or 〈uvi〉b. The element 〈Ψ′〉
represented by the new data occurs with a non-zero coefficient in ∂〈Ψ〉.

Let Ψ be a member of the standard basis. (The brackets 〈 and 〉 will be omitted
hereafter.) The relation u → v is applicable to Ψ if there is some word w in the
b-word associated to Ψ such that w = w1uw2 in Σ+, where the words w1 and w2

may be empty. To apply this relation to Ψ, add u → v onto the list of defining
relations for Ψ and let 〈w1w2〉b be the new b-word associated to the new standard
basis element Ψ′. The inverse operation is called removing a relation.

Choose some injective function rk : R → N. The rank of a relation r is rk(r).
The rank of a transistor is the rank of its label.

If there is some relation r such that r is applicable to Ψ and rk(r) < rk(s) for
any relation s already present in Ψ, then choose the minimal relation r with this
property and apply it to Ψ to get ±V (Ψ). (It is always possible to choose the sign
of V (Ψ) so that condition c) of the previous subsection is satisfied, so it will be
dropped hereafter.) Otherwise, let V (Ψ) = 0.

Lemma 20. V satisfies properties a), b), c), and d).

Proof. a) Suppose that Ψ1 and Ψ2 are elements of the standard basis, and V (Ψ1) =
V (Ψ2) �= 0. It follows from the definition of V that, for i = 1, 2, Ψi may be
obtained from V (Ψi) by removing the transistor of lowest rank in V (Ψi). Since
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V (Ψ1) = V (Ψ2), the results of removing the lowest-rank transistors from each
must be the same. Thus Ψ1 = Ψ2.

b) is easy to check, and c) is true by definition.
d.1) It is enough for this argument to consider only the primitive relation > (as

opposed to its transitive closure). Consider a sequence Ψ1 > Ψ2 > Ψ3 > Ψ4 > . . .
of elements of the standard basis. It is clear that V (Ψi) and Ψi have the same
top label. There are two possibilities for the top label of Ψi+1: 1. the top label
of Ψi+1 is the same as the top label of Ψi, or 2. the equivalence class of the
top label of Ψi+1 is less than that of Ψi in the partial order on b-words. In any
infinite, strictly descending sequence Ψ1 > Ψ2 > . . . > Ψn > . . . of members of the
standard basis, at most finitely many b-words may occur as top labels of the Ψis,
since the rewrite system Γb(P) is terminating. Thus, to rule out any such sequence,
it is enough to consider the case in which all standard basis elements occurring in
Ψ1 > . . . > Ψn > . . . have the same top label.

In this case, each Ψi is determined by the ranks of its relations. Thus each Ψi

may be identified with an m-tuple (a1, a2, . . . , am) ∈ N, for some m, where the ajs
are the ranks of the relations of Ψi, arranged in ascending order. (Note that each
Ψi has the same number of relations, namely m.) Now, if Ψi > Ψi+1, the first
coordinate of the m-tuple for Ψi is strictly larger than that of Ψi+1. This obviously
implies that there can be no infinite descending chain, since the entries of these
m-tuples are natural numbers.

d.2) Since the semigroup presentation P has only finitely many relations and
each picture Ψ contains only finitely many wires and transistors, this condition
follows easily from the definition of <. �

Theorem 21. If Γb(P) is a terminating rewrite system and the presentation P has
n relations, then Hj(Db(P, w); Q) = 0, for j ≥ n.

Proof. Under the given hypotheses, an element Ψ of the n-dimensional standard
basis involves all of the relations in P. Consider the formal vertex Ψ′ formed by
removing from Ψ the transistor corresponding to the relation of lowest rank in P.
By the definition of V , V (Ψ′) = Ψ, which implies that Ψ is not critical. It follows
from Theorem 18 that Hn(Db(P, w); Q) = 0.

For j > n, the statement follows from Theorem 11. �
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