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Abstract

We show that the automorphism group of a locally finite tree is discrete, or pro-finite, or not the
inverse limit of an inverse system of discrete groups, and provide necessary and sufficient conditions
for each of these possibilities to occur. More generally, we demonstrate that for certain proper CAT(0)
spacesX, the group of isometries ofX is not an inverse limit of Lie groups. 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

It is a classical theorem [2] that a locally compact Hausdorff topological groupG is
the inverse limit of an inverse system in the category of Lie groups provided the space
of components ofG is compact. For instance, ifG is totally disconnected thenG is pro-
finite providedG is compact. But without the hypothesis of compactness it is not so clear
whenG is the inverse limit of an inverse system of Lie groups.

One case of this occurs whenG= Isom(X), the group of isometries of a locally compact
metric space(X,d). This is a locally compact Hausdorff group, by the Arzela–Ascoli
Theorem, and ifX is a Riemannian manifold then Isom(X,d) is actually a Lie group. In
recent years there has been substantial interest in the extension of the classical differential
geometry of Riemannian manifolds of non-positive sectional curvature to the much more
general situation of proper CAT(0) spaces (defined below). The question naturally arises
as to whether Isom(X,d) is the inverse limit of an inverse system of Lie groups when
(X,d) is proper CAT(0). In Theorem 1 we show how to build examples where the answer
is negative.
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We can do better in caseX is a locally finite tree, i.e., a locally finite 1-dimensional sim-
ply connected simplicial complex. Anautomorphismof X is a simplicial homeomorphism
from X to itself. The group of all such homeomorphisms, Aut(X), is a locally compact
Hausdorff totally disconnected topological group when given the compact open topology.
In Theorem 2 we can say exactly when Aut(X) is and is not the inverse limit of Lie groups
(necessarily 0-dimensional, i.e., discrete).

Recall that a metric space isproper if every closed ball is compact. Ageodesicin X
is an isometric embeddingf : [0, d] → X; a geodesic segmentis the image of such an
embedding. A metric spaceX is geodesicif any two points ofX may be joined by a
geodesic. Ageodesic triangle∆ in a metric space consists of 3 pointsx1, x2, andx3, and
a choice of 3 geodesic segments connecting them. For any such∆ there is acomparison
triangle ∆̄ in R2, defined by choosing points̄x1, x̄2, andx̄3 so thatd(xi, xj )= d(x̄i, x̄j ),
for i, j = 1,2,3. There is an obvious, isometric correspondence between the sides of∆

and the sides of∆̄. Given a pointx ∈∆, thecomparison pointfor x is the corresponding
point x̄ in ∆̄. A geodesic metric spaceX is a CAT(0) spaceif for any geodesic triangle∆
inX and any two pointsx1, x2 ∈∆, d(x1, x2)6 d(x̄1, x̄2), wherex̄1 andx̄2 are comparison
points forx1 andx2. Thus, roughly speaking, a geodesic metric space is CAT(0) if all of
its triangles are no fatter than Euclidean triangles. We say that a geodesic metric spaceX

is non-positively curvedif, for every x ∈ X, there is an open neighborhoodU of x so
thatU is a CAT(0) space with respect to the subspace metric. Given a covering space
p : X̃→ X, whereX is a geodesic metric space, a natural way to define the length of
a pathα in X̃ is to set`(α) = `(p(α)). We then get a metricd on X̃, defined as follows:
d(x, y)= inf{`(α): α is a path connectingx to y}. This is thelength metricon the covering
spacẽX. Under appropriate hypotheses, which are satisfied in our case, the universal cover
of a non-positively curved space with its length metric is CAT(0) (see [1]).

The examples of our Theorem 1 are built using a theorem which involves putting a
metric on the quotient of two metric spaces. LetX be a metric space with an equivalence
relation∼, let SX be the set of all equivalence classes ofX under∼ and letp :X→ SX be
the natural projection. Definēd : SX× SX→R by the formula:

d̄(x̄, ȳ)= inf
∑
i

d(xi, yi),

where the infimum is taken over all sequencesC = (x1, y1, x2, y2, . . . , xn, yn) of points
ofX such thatx1 ∈ x̄, yi ∼ xi+1 for i = 1,2, . . . , n−1 andyn ∈ ȳ. It is easy to show that̄d
is symmetric and satisfies the triangle inequality, but in generald̄(x̄, ȳ) might be zero even
whenx̄ 6= ȳ. However, there is the following from [1]:

Proposition 1. Let Xi be compact, non-positively curved(i.e., locally CAT(0)) spaces,
and letAi ⊂Xi be closed, connected, locally convex subspaces,i = 1,2. Letj :A1→A2

be a bijective local isometry, and letX = X1 ∪j X2. Thend̄ is a metric and(X, d̄) is
non-positively curved.

The authors of [1] add, in a remark, that the inclusion ofXi intoX is a local isometry,
for i = 1,2.
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Note that, under the hypotheses of the previous theorem,X̃ with its length metric is a
CAT(0) space. With this background we can state our Theorem 1:

Theorem 2. LetX,Xi,Ai , andj be as in Proposition1, i = 1,2. If there is an isometry
g :X1→ X1, g 6= 1, which is the identity onA1, and there is someγ ∈ π1(X2) which is
not conjugate to any element in the image ofi∗ :π1(A2)→ π1(X2), thenIsom(X̃, d̃) is not
the inverse limit of an inverse system of Lie groups, whered̃ is the length metric.

The statement of Theorem 2 requires some definitions. Tits [3] proved that any
“hyperbolic” (fixed-point free) automorphismγ of a locally finite treeX acts on some
line ` in X by translation. This line is called atranslation axisfor γ . An edge which lies
on a translation axis will be called atranslation edge.Ge denotes the stabilizer inG of the
edgee. A groupG⊆ Aut(X) is edge independentprovided wheneverγ ∈Ge (e an edge),
we have alsoγ ′ ∈G, whereγ ′ is the identity on one of the connected components ofX− e
and equal toγ everywhere else. Note in particular that Aut(X) is edge independent for any
treeX.

Theorem 3. LetX be a locally finite tree, and letG6 Aut(X) be edge independent.
(1) SupposeG contains a fixed point free automorphism.

(a) If Ge is trivial for some translation edgee, thenG is discrete.
(b) If Ge is non-trivial for some translation edgee, thenG is not the inverse limit

of an inverse system of discrete groups.
(2) SupposeG does not contain a fixed point free automorphism(equivalently, every

automorphism inG has a fixed point).
(a) If G has a bounded orbit, thenG is pro-finite.
(b) If every(equivalently, some) orbit is unbounded, thenG is not the inverse limit

of an inverse system of discrete groups.

As a consequence of Theorem 2, we get the following:

Corollary 1. If X is a locally finite tree, thenAut(X) is either discrete, or pro-finite, or
not the inverse limit of an inverse system of discrete groups.

2. Preliminaries onCAT(0) spaces

In this section we collect various results from the theory of CAT(0) spaces to be used in
the proof of Theorem 1. All of the results and definitions here are from [1].

The mapπ :X→ C described in the following proposition is called theprojection
ontoC.

Proposition 2. LetX be aCAT(0) space, and letC be a closed convex subset which is
complete in the induced(i.e., subspace) metric. Then,
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(1) for every x ∈ X, there exists a unique pointπ(x) ∈ X such thatd(x,π(x)) =
d(x,C) := infy∈C d(x, y);

(2) the mapx 7→ π(x) is a retraction ofX ontoC which does not increase distances.
The mapH :X× [0,1]→X associating to(x, t) the point at distancet from x on
the geodesic segment[x,π(x)] is a continuous homotopy from the identity map of
X to π .

Note that, lettingC be a single point, this proposition shows that CAT(0) spaces are
contractible.

A function c : [0,1]→X, with X a metric space, is alinearly reparametrized geodesic
if there is a constantλ such that for anys, t ∈ [0,1], λ|s − t| = d(c(s), c(t)). A function
f :X→R defined on a geodesic metric space isconvexif for any linearly reparametrized
geodesicc we havef (c(t))6 (1− t)f (c(0))+ tf (c(1)), for eacht ∈ [0,1].

The following corollary is a consequence of the previous proposition and the convexity
of the distance function in a CAT(0) space.

Corollary 3. Let C be a complete convex subset in aCAT(0) spaceX. The distance
functiondC is convex.

The next theorem requires some definitions. Ageodesic linein a CAT(0) spaceX is
a distance preserving map from the real line intoX. Two linesc andc′ areparallel (or
asymptotic) if there is a constantK > 0 such thatd(c(t), c′(t)) < K, for anyt in R.

Theorem 4. LetX be aCAT(0) space, and letc :R→X andc′ :R→X be geodesic lines
in X. If c andc′ are asymptotic, then the convex hull ofc(R)∪ c′(R) is isometric to a flat
stripR× [0,D] ⊂ E2.

Let (X,d) be a metric space. Thelength metricd̄ associated tod is defined by letting
d̄(x, y) be the infimum of the lengths of the paths joiningx to y. A closed local geodesic
in a metric space(X,d) is a mapc : (S1, d̄)→ (X,d) which is locally distance preserving,
whered̄ is the length metric associated to the metricS1 inherits as a subset ofR2, with its
usual metric.

Proposition 3. If X is a compact, locally simply connected, geodesic space, then every
closed loopc :S1→X is homotopic to a closed local geodesic.

Since CAT(0) spaces are contractible, and non-positively curved spaces are locally
CAT(0), the previous proposition applies to theX of our Theorem 1.

3. Proof of Theorem 1

LetX =X1∪j X2. Letp : X̃→X be the universal cover ofX. Choose a basepoint∗̃ in
X̃ so thatp(∗̃)= ∗ is in A1. The spacẽX contains a copy of̃X1 and a copy of̃X2 which
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intersect in a copy of̃A1 containing the base point∗̃. Whenever̃X1, X̃2, or Ã1 is mentioned,
we refer to these copies. We will also refer tõA1 asÃ2 when we especially want to think
of it as a subset of̃X2. TheX̃1 directionis {x ∈ X̃: the geodesic joiningx to ∗̃meets̃X1−
Ã1}.

Let g be the isometry ofX1 fixing A1. The mapf from X to itself which agrees
with g on X1 and with the identity onX2 is an isometry ofX, since it preserves the
lengths of paths. The pointed mapfp : (X̃, ∗̃) → (X,∗) lifts to a pointed isometry
f̃ : (X̃, ∗̃)→ (X̃, ∗̃). SetF equal tof̃ in the X̃1 direction, and the identity elsewhere.
This new function is an isometry, since it preserves the lengths of paths.

We next show thatF is the identity on balls of arbitrarily large radius. Letγ ∈ π1(X2)

have no conjugate ini∗(π1(A2)). The conjugacy class of the elementγ in π1(X2) can
be represented by a closed local geodesicc in X2, by Proposition 3, and, since the
inclusion ofX2 into X is a local isometry, thisc is also a closed local geodesic inX.
Coveringc is a geodesic linel in X̃, and thisl is contained iñX2. DefinedÃ2

: X̃→ R
by dÃ2

(x) = inf{d̃(a, x): a ∈ Ã2} . The functiondÃ2
is convex, by Corollary 2, and the

restriction of dÃ2
to l is a convex function defined on the entire real line; it follows

that dÃ2
is unbounded alongl, or constant. Definepl : X̃ → l and pÃ2

: X̃ → Ã2 to
be the projections onto the complete, closed, convex subspacesl and Ã2, respectively.
Proposition 2 says that these projections do not increase distances. IfdÃ2

is constant onl,
it is easy to see, from the definitions ofpl andpÃ2

, thatplpÃ2
is the identity onl. Since

pl does not increase distances,pÃ2
mapsl ontopÃ2

(l) isometrically. It follows thatl and
pÃ2

(l) are parallel lines iñX and, by Theorem 3, their convex hull is a flat strip. In the
quotient spaceX we get a cylinder with one component of the boundary inA2 and the
other component equal toc. This shows thatc is freely homotopic to a loop inA2, which
contradicts the assumption aboutγ . This proves thatdÃ2

is not constant onl. Now the ball
of radiusdÃ2

(x) centered atx ∈ l is contained in the fixed set ofF , andx may be chosen
so thatdÃ2

(x) is arbitrarily large.
We now claim thatF is in the kernel of any homomorphismφ : Isom(X̃)→G, whereG

is any Lie group. Let such aφ be given. It is well known that Lie groups have no small
subgroups, that is, there is a neighborhoodU of 1∈G such thatU contains no subgroup
of G except the trivial group. Using continuity ofφ, there is some compactC in X̃ so that
if β ∈ Isom(X̃) is the identity onC, thenφ(β) ∈ U . In fact, if this is the case,β ∈ Kerφ,
sinceβn ∈ U , for all n ∈ Z, and thusφ(〈β〉) is the trivial group. The group Isom(X̃) acts
cocompactly oñX, so there isθ ∈ Isom(X̃) such thatθ(C) is contained in the fixed set
of F , by the previous paragraph. It follows thatθ−1Fθ is the identity onC. This proves
the claim.

An easy argument using the claim and the universal property of the inverse limit shows
that Isom(X̃) is not an inverse limit of Lie groups.

Remark. The referee suggests an alternative hypothesis and proof. If we assume that
neither mapπ1(Ai)→ π1(Xi) (i = 1,2) is surjective, and remove the hypothesis that
there is an element ofπ1(X2) which is not conjugate to any element ofπ1(A2), then the
theorem is still true, and can be proved in the following way:
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Using the structure ofπ1(X) as an amalgamated free product, we can find an element
γ ∈ π1(X) which is not conjugate to any element ofπ1(X1) or π1(X2). The conjugacy
class ofγ can be represented by a closed local geodesicc and, by the assumption onγ ,
c ∩ (X2−A2) 6= ∅. A line l :R→ X̃ coveringc may thus be chosen so thatl(0) ∈ Ã2 and
l([0, ε))⊂ X̃2. Now asx→∞, the distance betweenl(x) and theX̃1 direction becomes
arbitrarily large. Therefore, the isometryF of X̃ is the identity on balls of arbitrarily large
radius. The rest of the proof is unchanged.

4. Proof of Theorem 2

Proof. (1) (a) is trivial. In what follows, suppα, for an automorphismα, will denote the
support ofα in the ordinary sense, i.e., suppα is the closure of{x ∈X: α(x) 6= x}. If Ge
is non-trivial for some translation edgee, then there is a hyperbolic automorphismγ1 in G
and an automorphismγ2 in G which fixes some edgee along the translation axis̀of γ1.
After using edge independence, if necessary, we may assume suppγ2 meets only one path

component ofX− ◦e. Identify the real lineR (considered as a simplicial complex with a
vertex at each integer) with the translation axis ofγ1 in such a way that large-numbered

vertices lie inside the path component ofX− ◦e containing suppγ2. Now eitherγ1 or γ−1
1

acts on the translation axis ofγ1 by addition by a positive integerk; we may assume that
γ1 does.

For all integersn, defineX>n to be the path component ofn in X− (n−1, n). It is clear
thatγ1X>n =X>n+k andX>m ⊆X>n, whenm> n.

Now if e = [m − 1,m] then suppγ2 ⊆ X>m. Let C be a compact subset ofX. For
sufficiently large positivet , C ∩ X>t = ∅. Pick someN ∈ Z which is so large that
t < m+Nk . . .

suppγN1 γ2γ
−N
1 ∩C = γN1 suppγ2 ∩C

⊆ γN1 X>m ∩C =X>m+Nk ∩C
⊆ X>t ∩C = ∅.

This shows that for any compact subsetC of X, there is some member of the sequence
(γ n1 γ2γ

−n
1 ), sayγN1 γ2γ

−N
1 , so that suppγN1 γ2γ

−N
1 ∩ C = ∅; therefore,(γ n1 γ2γ

−n
1 )→ 1.

It follows thatγ2 is in the kernel of any homomorphism fromG to any discrete group. As
in the proof of Theorem 1, this implies thatG is not the inverse limit of any inverse system
of discrete groups. This proves (1).

(2) If G has a bounded orbit thenG is a compact Hausdorff totally disconnected
topological group. According to [2],G is pro-finite, proving (a).

In caseG has no bounded orbit,G has no global fixed point, so a theorem of Tits [3] says
that there is a unique endξ fixed by all ofG. Using edge independence we can produce an
automorphismα which has connected support. There is a unique rayr connecting suppα
to ξ . Identify r with [0,∞) in such a way that suppα ∩ r = {0}.

LetC be a compact subset ofX. After enlargingC, if necessary, we can assume thatC

is a finite subtree which meetsr in some finite interval[M,N], say. There exists some
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γ ∈G so thatXγ ∩ r = [K,∞), whereK >N andXγ is the fixed set ofγ . The geodesic
joiningC to [K,∞) is [N,K]. The geodesic joiningγ suppα toC is γ [0,K] ∪ [N,K]; it
follows thatγ suppα∩C = suppγαγ−1∩C = ∅. It follows that{γαγ−1: γ ∈G} has the
identity as a limit point. This implies thatα is in the kernel of any homomorphism fromG
to a discrete group. This proves (2).2
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