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Abstract

We show that the automorphism group of a locally finite tree is discrete, or pro-finite, or not the
inverse limit of an inverse system of discrete groups, and provide necessary and sufficient conditions
for each of these possibilities to occur. More generally, we demonstrate that for certain progy CAT
spacesX, the group of isometries of is not an inverse limit of Lie groups] 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

It is a classical theorem [2] that a locally compact Hausdorff topological g@up
the inverse limit of an inverse system in the category of Lie groups provided the space
of components o5 is compact. For instance, @ is totally disconnected the@ is pro-
finite providedG is compact. But without the hypothesis of compactness it is not so clear
whengG is the inverse limit of an inverse system of Lie groups.

One case of this occurs whéh= Isom(X), the group of isometries of a locally compact
metric space X, d). This is a locally compact Hausdorff group, by the Arzela—Ascoli
Theorem, and ifX is a Riemannian manifold then Is@, d) is actually a Lie group. In
recent years there has been substantial interest in the extension of the classical differential
geometry of Riemannian manifolds of non-positive sectional curvature to the much more
general situation of proper CAU) spaces (defined below). The question naturally arises
as to whether IsolX, d) is the inverse limit of an inverse system of Lie groups when
(X, d) is proper CATO0). In Theorem 1 we show how to build examples where the answer
is negative.
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We can do better in casgis a locally finite tree, i.e., a locally finite 1-dimensional sim-
ply connected simplicial complex. Asutomorphisnof X is a simplicial homeomorphism
from X to itself. The group of all such homeomorphisms, @i, is a locally compact
Hausdorff totally disconnected topological group when given the compact open topology.
In Theorem 2 we can say exactly when AXj is and is not the inverse limit of Lie groups
(necessarily 0-dimensional, i.e., discrete).

Recall that a metric space @oper if every closed ball is compact. geodesidn X
is an isometric embedding: [0, d] — X; a geodesic segmeid the image of such an
embedding. A metric spack is geodesidf any two points of X may be joined by a
geodesic. Ageodesic triangleA in a metric space consists of 3 points x2, andxs, and
a choice of 3 geodesic segments connecting them. For anytlshre is acomparison
triangle A in R2, defined by choosing poinfs, X2, andxs so thatd (x;, x;) = d(x;, X;),
for i, j =1,2,3. There is an obvious, isometric correspondence between the sides of
and the sides of\. Given a pointx € A, thecomparison poinfor x is the corresponding
pointx in A. A geodesic metric spacé is a CAT(0) spaceif for any geodesic triangley
in X and any two points1, xz € A, d(x1, x2) < d(x1, X2), wherex; andx, are comparison
points forx; andxz. Thus, roughly speaking, a geodesic metric space is(QAT all of
its triangles are no fatter than Euclidean triangles. We say that a geodesic metricspace
is non-positively curvedf, for every x € X, there is an open neighborhodd of x so
that U is a CAT(0) space with respect to the subspace metric. Given a covering space
p:X — X, whereX is a geodesic metric space, a natural way to define the length of
a pathe in X is to set¢(a) = £(p(x)). We then get a metrid on X, defined as follows:
d(x,y)=inf{¢(a): o is apath connectingto y}. This is thelength metricon the covering
spaceX~. Under appropriate hypotheses, which are satisfied in our case, the universal cover
of a non-positively curved space with its length metric is Q&T(see [1]).

The examples of our Theorem 1 are built using a theorem which involves putting a
metric on the quotient of two metric spaces. Xebe a metric space with an equivalence
relation~, let X be the set of all equivalence classesXofinder~ and letp: X — X be
the natural projection. Definé: X x X — R by the formula:

d(x,5) =infy " d(xi, ),

where the infimum is taken over all sequenc¢es- (x1, y1, X2, y2, ..., X5, yn) Of points
of X suchthat € x, y; ~xjp1fori =1,2,...,n—1andy, € y. Itis easy to show that
is symmetric and satisfies the triangle inequality, but in gen&saly) might be zero even
whenx # y. However, there is the following from [1]:

Proposition 1. Let X; be compact, non-positively curvéde., locally CAT(0)) spaces,
and letA; C X; be closed, connected, locally convex subspacesdl, 2. Letj: A1 — A»

be a bijective local isometry, and le&f = X1 U; X». Thend is a metric and(X, d) is

non-positively curved.

The authors of [1] add, in a remark, that the inclusiorXefinto X is a local isometry,
fori=1,2.
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Note that, under the hypotheses of the previous theofemith its length metric is a
CAT(0) space. With this background we can state our Theorem 1:

Theorem 2. Let X, X;, A;, andj be as in Propositiori, i = 1, 2. If there is an isometry
g:X1— X1, g # 1, which is the identity om 1, and there is someg € 71(X>2) which is
not conjugate to any elementin the image,ofr1(Az) — w1(X2), thenlsom()?, d) is not
the inverse limit of an inverse system of Lie groups, whdeethe length metric.

The statement of Theorem 2 requires some definitions. Tits [3] proved that any
“hyperbolic” (fixed-point free) automorphism of a locally finite treeX acts on some
line ¢ in X by translation. This line is calledtaanslation axisfor y. An edge which lies
on a translation axis will be calledteanslation edgeG, denotes the stabilizer i@ of the
edgee. A groupG < Aut(X) is edge independeprovided whenevey € G, (e an edge),
we have als@’ € G, wherey’ is the identity on one of the connected components efe
and equal tgr everywhere else. Note in particular that AXi) is edge independent for any
treeX.

Theorem 3. Let X be a locally finite tree, and le& < Aut(X) be edge independent.
(1) Suppose&; contains a fixed point free automorphism.
(a) If G, is trivial for some translation edge, thenG is discrete.
(b) If G, is non-trivial for some translation edge thenG is not the inverse limit
of an inverse system of discrete groups.
(2) Supposes does not contain a fixed point free automorphi@quivalently, every
automorphism inG has a fixed point
(a) If G has a bounded orbit, the@ is pro-finite.
(b) If every(equivalently, someorbit is unbounded, thet is not the inverse limit
of an inverse system of discrete groups.

As a consequence of Theorem 2, we get the following:
Corollary 1. If X is a locally finite tree, theut(X) is either discrete, or pro-finite, or
not the inverse limit of an inverse system of discrete groups.
2. Preliminaries on CAT(0) spaces

In this section we collect various results from the theory of @ATspaces to be used in
the proof of Theorem 1. All of the results and definitions here are from [1].

The mapx : X — C described in the following proposition is called tpeojection

ontoC.

Proposition 2. Let X be aCAT(0) space, and leC be a closed convex subset which is
complete in the inducefile., subspagemetric. Then,
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(1) for everyx € X, there exists a unique point(x) € X such thatd(x, 7 (x)) =
d(x,C):=infyecd(x,y);

(2) the mapx — 7 (x) is a retraction ofX onto C which does not increase distances.
The mapH : X x [0, 1] — X associating ta(x, ¢) the point at distance from x on
the geodesic segmept, 7 (x)] is a continuous homotopy from the identity map of
Xtorm.

Note that, lettingC be a single point, this proposition shows that G@Tspaces are
contractible.

A functionc¢:[0, 1] — X, with X a metric space, is inearly reparametrized geodesic
if there is a constant such that for any, ¢ € [0, 1], A|s — #| = d(c(s), c()). A function
f X — R defined on a geodesic metric spaceasivexf for any linearly reparametrized
geodesia we havef (c(t)) < (1—1) f(c(0)) +tf(c(1)), for eachr € [0, 1].

The following corollary is a consequence of the previous proposition and the convexity
of the distance function in a CAD) space.

Corollary 3. Let C be a complete convex subset inC&AT(0) spaceX. The distance
functiond¢ is convex.

The next theorem requires some definitionsg@odesic lindn a CAT(0) spaceX is
a distance preserving map from the real line iltoTwo linesc andc¢’ are parallel (or
asymptoti¢ if there is a constank > 0 such that/(c(r), ¢’(r)) < K, for anyz in R.

Theorem 4. Let X be aCAT(0) space, and let:R — X andc¢’:R — X be geodesic lines
in X. If c and¢’ are asymptotic, then the convex hull@R) U ¢’ (R) is isometric to a flat
stripR x [0, D] C E2.

Let (X, d) be a metric space. THength metricd associated td is defined by letting
d(x, y) be the infimum of the lengths of the paths joiningo y. A closed local geodesic
in a metric spacéX, d) is a mape: (S, d) — (X, d) which is locally distance preserving,
whered is the length metric associated to the meffldnherits as a subset &2, with its
usual metric.

Proposition 3. If X is a compact, locally simply connected, geodesic space, then every
closed loopr: St — X is homotopic to a closed local geodesic.

Since CAT(0) spaces are contractible, and non-positively curved spaces are locally
CAT(0), the previous proposition applies to tieof our Theorem 1.
3. Proof of Theorem 1

Let X = X1U; X2. Let p: X — X be the universal cover df. Choose a basepoitin
X so thatp(*) = = is in A1. The spaceX contains a copy oX1 and a copy ofX2 which
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intersectin a copy oﬁl containing the base poiﬁatWheneveD?l, 552, oer is mentioned,
we refer to these coples We will also referA@ asA, when we especially want to think
of it as a subset on TheX1 directionis {x € X: the geodesic joining to * meetle —
A]_}.

Let ¢ be the isometry ofX; fixing A1. The mapf from X to itself which agrees
with ¢ on X1 and with the identity onX» is an isometry ofX, since it preserves the
lengths of paths. The pointed mafp : (X, %) — (X, ) lifts to a pointed isometry
f:(X,% — (X,%). SetF equal to f in the X1 direction, and the identity elsewhere.
This new function is an isometry, since it preserves the lengths of paths.

We next show thaf is the identity on balls of arbitrarily large radius. Lete 71(X2)
have no conjugate in,.(71(A2)). The conjugacy class of the elementin 71(X2) can
be represented by a closed local geodesio X2, by Proposition 3, and, since the
inclusion of X, into X is a local isometry, thig is also a closed local geodesic
Coveringc is a geodesic liné in X, and this! is contained inX>. Definedy,: X->R
by dg,(x) = inf{d(a, x): a € A2} . The functiond; is convex, by Corollary 2, and the
restriction ofdz, to / is a convex function defined on the entire real line; it follows
that dz, is unbounded alongd, or constant. Definey; : X — [ and Pi, X — A2 to
be the projections onto the complete, closed, convex subsybmmﬂ;Az, respectively.
Proposition 2 says that these projections do not increase distandgs isfconstant on,
it is easy to see, from the definitions pf and p3,, that p; p3, is the identity onl. Since
pi does not increase distances;, maps/ onto pz, (/) isometrically. It follows that and
pj, (1) are parallel lines inX and, by Theorem 3, their convex hull is a flat strip. In the
quotient space&X we get a cylinder with one component of the boundaryinand the
other component equal to This shows that is freely homotopic to a loop id 2, which
contradicts the assumption abgutThis proves that/;, is not constant oh Now the ball
of radiusd; (x) centered ak €/ is contained in the fixed set df, andx may be chosen
SO thardA (x) is arbitrarily large.

We now claim thatF is in the kernel of any homomorphisgn |SOTT‘(X) — G, whereG
is any Lie group. Let such & be given. It is well known that Lie groups have no small
subgroups, that is, there is a neighborh@bdf 1 € G such thatU contains no subgroup
of G except the trivial group. Using continuity @f, there is some compactin X so that
if Be Isom(X) is the identity onC, then¢ (8) € U. In fact, if this is the case € Kerg,
sinceg” € U, for all n € Z, and thusp ({8)) is the trivial group. The group Iso(rﬁ) acts
cocompactly onX, so there ig) € Isom()?) such that (C) is contained in the fixed set
of F, by the previous paragraph. It follows th#t! F6 is the identity onC. This proves
the claim.

An easy argument using the claim and the universal property of the inverse limit shows
that Ison{X) is not an inverse limit of Lie groups.

Remark. The referee suggests an alternative hypothesis and proof. If we assume that
neither mapr1(A;) — 71(X;) (i = 1, 2) is surjective, and remove the hypothesis that
there is an element of1(X2) which is not conjugate to any element®of(A»), then the
theorem is still true, and can be proved in the following way:
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Using the structure of1(X) as an amalgamated free product, we can find an element
y € m1(X) which is not conjugate to any elementof(X1) or 71(X2). The conjugacy
class ofy can be represented by a closed local geodesiad, by the assumption on
cN(X2—A2) # %.Alinel:R — X coveringec may thus be chosen so th#d) € A, and
1([0,¢)) C X,. Now asx — oo, the distance betweeil(lx) and theX; direction becomes
arbitrarily large. Therefore, the isometFy of X is the identity on balls of arbitrarily large
radius. The rest of the proof is unchanged.

4. Proof of Theorem 2

Proof. (1) (a) is trivial. In what follows, supg, for an automorphisra, will denote the
support ofe in the ordinary sense, i.e., supps the closure ofx € X: a(x) # x}. If G,
is non-trivial for some translation edgethen there is a hyperbolic automorphigmin G
and an automorphismp in G which fixes some edgealong the translation axisof y1.
After using edge independence, if necessary, we may assume-supets only one path
component ofX — e. Identify the real lineR (considered as a simplicial complex with a
vertex at each integer) with the translation axis/@fin such a way that large-numbered
vertices lie inside the path componentof e containing supp. Now eithery; or yfl
acts on the translation axis ¢f by addition by a positive integds, we may assume that
y1 does.

For allintegers:, defineX >, to be the path componentafn X — (n — 1, n). Itis clear
thatle>n = X>ntk andX>m S X, whenm > n.

Now if e = [m — 1,m] then suppy> C X>,. Let C be a compact subset &f. For
sufficiently large positiver, C N X», = ¥. Pick someN € Z which is so large that
t<m+4 Nk...

suppyi’ y2y; " NC = yy suppy2NC
Y1 Xom N C=Xomink NC

-
g X},ﬁCZ@.

This shows that for any compact subgseof X, there is some member of the sequence
vays™), sayy vay; N, so that suppY yay; N N C = 0; therefore,(yf yay; ") — 1.

It follows thaty» is in the kernel of any homomorphism froéhto any discrete group. As
in the proof of Theorem 1, this implies th@tis not the inverse limit of any inverse system
of discrete groups. This proves (1).

(2) If G has a bounded orbit the@ is a compact Hausdorff totally disconnected
topological group. According to [217 is pro-finite, proving (a).

In caseG has no bounded orbi; has no global fixed point, so a theorem of Tits [3] says
that there is a unique ergdfixed by all of G. Using edge independence we can produce an
automorphisnw which has connected support. There is a unique-regnnecting supp
to &. Identify r with [0, co) in such a way that supp N r = {0}.

Let C be a compact subset &f. After enlargingC, if necessary, we can assume thiat
is a finite subtree which meetsin some finite interva| M, N], say. There exists some
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y € G sothatX” N r =[K, 00), whereK > N andX? is the fixed set of.. The geodesic
joining C to [K, o0) iS [N, K]. The geodesic joining suppa to C is y[0, K]U [N, K1; it
follows thaty suppe N C = suppyay ~1NC =@. It follows that{yay ~1: y € G} has the
identity as a limit point. This implies that is in the kernel of any homomorphism froth
to a discrete group. This proves (2)a
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