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CHAPTER 1

Introduction

The interplay between algebra and geometry has been one of the most impor-
tant mathematical ideas of the last century. Through the use of “ample invertible

”

sheaves,” it is well known that the class of projective schemes over a field £ is nearly
equivalent to the class of commutative, finitely generated, graded k-algebras. Many
theorems for projective schemes can be translated into theorems for commutative
graded rings, and vice versa. In the past ten years a study of “noncommutative pro-
jective geometry” has flourished. By using and generalizing techniques of commu-
tative projective geometry, one can study certain noncommutative rings and obtain
results for which no purely algebraic proof is known.

The most basic building block of the theory is the twisted homogeneous coordinate
ring. Let X be a projective scheme over an algebraically closed field k£ with ¢ a scheme
automorphism and let £ be an invertible sheaf on X. In [ATV] a twisted version
of the homogeneous coordinate ring B = B(X,0,L) of X was invented with the

grading B = &B,, for
Bn=H'X,LRL @ QL)

where L7 = ¢*L is the pullback of £. Multiplication on sections is defined by a-b =
o(a®b°") where a € B,,, b € B,, and ¢ is the natural map B,, ® (6™)*B,, — Byin.

Soon after their seminal paper, Artin and Van den Bergh formalized much of the
theory of these twisted homogeneous coordinate rings in [AV]. In the commutative
case, the most useful homogeneous coordinate rings are associated with an ample
invertible sheaf. A generalization of ampleness was therefore needed and defined as
follows.

An invertible sheaf £ is called right o-ample if for any coherent sheaf F,

H(X,FQLIL @ - QL )=0
for ¢ > 0 and m > 0. Similarly, £ is called left o-ample if for any coherent sheaf F,
H(X,LRL @ QL  @F")=0



for ¢ > 0 and m > 0. A divisor D is called right (respectively left) o-ample if
Ox (D) is right (respectively left) o-ample. If o is the identity automorphism, then
these conditions are the same as saying £ is ample. Artin and Van den Bergh proved
that if £ is right (respectively left) o-ample, then B is a finitely generated right
(respectively left) noetherian k-algebra [AV].

Twisted homogeneous coordinate rings have been instrumental in the classification
of rings, such as the 3-dimensional Artin-Schelter regular algebras [ATV], [St1, [St2]
and the 4-dimensional Sklyanin algebras [SS]. Artin and Stafford showed that any
connected (i.e. By = k) graded domain of GK-dimension 2 generated by Bj is the
twisted homogeneous coordinate ring (up to a finite dimensional vector space) of
some projective curve X, with automorphism o and (left and right) o-ample £ [AS].
Therefore any such ring is automatically noetherian!

While the concept of noncommutative schemes has grown to encompass more than
just twisted homogeneous coordinate rings (cf. [AZ]), they remain a guide for how
such a scheme ought to behave. However, fundamental open questions about these
coordinate rings and o-ample divisors have persisted for the past decade. In [AV],
the authors derived a simple criterion for a divisor to be g-ample in the case X is
a curve, a smooth surface, or certain other special cases. With this criterion, they
showed that B must have finite GK-dimension. In other words, they showed that B
has polynomial growth. They ask

Questions 1.0.1. [AV] Question 5.19]
1. What is the extension of our simple criterion to higher dimensions?
2. Does the existence of a o-ample divisor imply that B has polynomial growth?

The second question was asked again after [AS, Theorem 4.1].

One would also like to know if the conditions of right and left g-ampleness are
related and if B could be right noetherian, but not left noetherian. One might ask
for which (commutative) schemes and automorphisms a o-ample divisor even exists
and if one can be easily found.

In this thesis, all these questions will be settled very satisfactorily. The main
results are given in Chapter [3| where we prove:

Theorem 1.0.2 (See , 3.6)). The following are true for any projective scheme
X over an algebraically closed field.

1. Right and left o-ampleness are equivalent. Thus every associated B is (right

and left) noetherian.

2. A projective scheme X has a o-ample divisor if and only if the action of o on



numerical equivalence classes of divisors is quasi-unipotent (cf. for defini-

tions). In this case, every ample divisor is o-ample.

3. GKdim B is an integer if B = B(X,0,L) and L is c-ample. Here GKdim B 1is
the Gel’fand-Kirillov dimension of B in the sense of [KL].

These facts are all consequences of

Theorem 1.0.3 (See Remark . Let X be a projective scheme with auto-
morphism o. Let D be a Cartier divisor. D is (right) o-ample if and only if o is
quasi-unipotent and

D+oD+---+0™'D

s ample for some m > 0.

This is the “simple criterion” which was already known if X is a smooth surface
[AV Theorem 1.7]. We obtain the result mainly by use of Kleiman’s numerical
theory of ampleness [K].

Besides the results above, we derive other corollaries in §3.5[ and find bounds
for the GK-dimension in §3.6| via Riemann-Roch theorems. We also examine what

happens in the non-quasi-unipotent case and obtain

Theorem 1.0.4 (See Theorem [3.6.3)). Let X be a projective scheme with auto-
morphism o. Then the following are equivalent:

1. The automorphism o is quasi-unipotent.
2. For all ample divisors D, B(X,0,Ox(D)) has finite GK-dimension.
3. For all ample divisors D, B(X,0,Ox (D)) is noetherian.

In Chapter 4| we will then generalize our results to the case of multi-homogeneous
coordinate rings in the sense of [C]. These rings will be defined more fully in that

chapter. In part, we obtain

Theorem 1.0.5 (See Corollaries , . Let X be a projective scheme
with automorphism o and o-ample invertible sheaf L. Let Y be a projective scheme
with automorphism T and T-ample invertible sheaf M. Set B = B(X,0,L) and
B'=B(Y,7,M). Then

1. If B is generated in degree one, then the Rees ring B[It] = @I"t" is noetherian
where I = Bxg.

2. The ring B ® B’ is noetherian.



Chapter [2| contains previously known results which are relevant to this thesis. In
particular, it covers the definition of twisted homogeneous coordinate rings in detail
and connects these rings to the more recent category-theoretic work of [AZ]. We
also review well-known results from classical algebraic geometry, mainly related to
intersection theory.

Chapter (3] is then the heart of the thesis, proving new results for twisted homo-
geneous coordinate rings. In particular it covers Theorems [.0.2HI.0.4, Most of the
material in that chapter has appeared in [Kel]. The new results of Chapter 4| pertain
to multi-homogeneous coordinate rings and will appear in [Ke2].



CHAPTER 2

Background material

2.1 Introduction

This chapter will cover previously known results pertaining to this thesis. Sec-
tion will define twisted homogeneous coordinate rings of a projective scheme. We
save most of the analysis of these rings for

Sections [2.3] and describe a more general construction of “coordinate rings”
which does not require the presence of a projective scheme, but rather just a nicely
behaved abelian category. This construction greatly simplifies proofs and reveals
more of what is “really going on.” Then in §2.5, we relate twisted homogeneous
coordinate rings to these categorical coordinate rings to deduce noetherian properties
for twisted homogeneous coordinate rings.

Finally, in we recall well-known results of classical algebraic geometry which
will be of use, particularly intersection theory and the numerical theory of ampleness.

2.2 Definitions and an example

In this section, we will introduce the twisted homogeneous coordinate ring more
formally and give a simple example. The idea of a twisted homogeneous coordinate
ring relies heavily on commutative geometry, so we must assume familiarity with
the ideas in [H2]. However, we will attempt to point the reader to the appropriate
material in that lucid book.

First, we must fix our terminology and notation for graded rings. A graded ring

is a ring R with an abelian group decomposition

R= éRi
1=0

such that R;R; C R;;;. One can also grade over Z or even other monoids, but in

this thesis, all rings will be N-graded. Usually in noncommutative geometry, these



rings are k-algebras, where k is an algebraically closed field. In this case, each R;
is a vector space over k and k C Ry. If dimy R; < oo for all 7, then R is called
finitely graded. Note that this is automatic if R is finitely generated as a k-algebra
and dimy Ry < oo. All graded rings in this thesis will be finitely graded. If Ry = k
and R is finitely graded, then R is defined to be connected. A graded right R-module
M is a right R-module with a decomposition

M= M,
such that M;R; C M;,;. Note that M is Z-graded.
The submodule M, is the module

Mzs == é Mz

We define M-, similarly. The module M|n] is the shifted module with graded pieces
Mi{n]; = M,,+;. We call this functor the degree shift.

Now we need to recall some algebraic geometry. Let X be a proper scheme over an
algebraically closed field k£ and let F be a coherent sheaf on X. The global sections
H°(X,F) form a finite dimensional vector space over k [H2, p. 252, Remark 8.8.1].
If £ is an invertible sheaf on X, one can form a finitely graded ring B = B(X, L),

known as a homogeneous coordinate ring. The graded pieces are
B, = H'(X,L™),

where L™ = L£®™. The isomorphisms L"®L"= L™ induce a natural multiplication
B,, ® B, — Bp1n.

Now we will look at a twisted homogeneous coordinate ring. Again, let X be a
proper scheme and let £ be an invertible sheaf. In addition, let o be an automorphism

of X and denote the pullback o*F by F?. For notational convenience we set
(2.2.1) Ln=LQL ® - QL.
Let B = B(X, 0, L) be the ring with graded pieces

B, = H(X,L,,).

We will first briefly sketch the usual presentation of multiplication in B. Then we
will give a more detailed presentation that will show the connection with a category-
theoretic notion of homogeneous coordinate rings defined in §2.3] Recall that for
any coherent F, one has H°(X, F) = Hom(Ox, F) [H2, p. 234, Proposition 6.3(c)].



For a coherent sheaf F and integer n, we may define a k-vector space isomorphism
Hom (O, F)= Hom(O, F°"), which we also denote as ", as follows.

Let f € Hom(O, F). So f is a collection of maps f|y : O(U) — F(U), where f|y is
an O(U)-module map. Now the ring O(U) has an O(¢"U)-module structure, defined
via the isomorphism ¢" : O(U)=>O(¢"U), with ¢" induced by the isomorphism
O=070. The map o"(f)|y should be a map from O(U) to F(o"U) @o(nvy OU).
So we may define

o"(flo = (f

The vector space map ¢” is easily seen to be an isomorphism. We then have a

onU o gDn> ® 1

natural multiplication
(2.2.2)  HYX,L,) ® HY (X, L) >H(X,L,) @ H' (X, L) — HY(X, Lyim).

Now we will define our multiplication a second time, via composition, so that in
§2.5) we may study B with the methods of §2.3] First, note that canonically Ox = O%
for any automorphism 7. To see this, given any open U, the natural isomorphisms,

OU)=0(rU) ®@o(-v) OU) = O"(U),

are given by 1 — 1 ® 1.

Now we also have natural isomorphisms
Lo =Ly @07,
Thus, we may define B with
B,, = Hom(O, L,, ® O°™").
If b € B,,, there is a unique corresponding map
Y € Hom(O", L7 @ 07"™)

for any n € Z. We write this b/ as ¢”(b). If one considers ¢* as pulling back not only
objects but also homomorphisms, then o™ (b) = (¢")*(b). Also note that this ¢"(b)
is nearly the same as the ¢”(b) in our first sketch of multiplication.

Then if a € B,,,b € B,,,

a € Hom(O, L, ® O7"),
V=1®0"(b) € Hom(L, ® O L, @ LS @07"™).

So there is a composition map (1 ® ¢™(b)) o a. In order to be consistent with the
earlier definition of the multiplication in B we let automorphisms act on the right,
so that

(1® 0" (b)) oa =ac™(b) € Hom(O, Lypsm @ O7") = By



Finally, we note that using the sheaf isomorphisms O—=0¢'O, one can show that
the multiplication (2.2.2) is naturally isomorphic to this new multiplication.

Definition 2.2.3. Let B = &B,,, where
By, =H'X,L,®0")
and define multiplication by
(2.2.4) a-b=ac"(b) € Bpin
for a € B,,,b € B,,, where the product ac”(b) is the one described above. We denote
B as B(X, 0, L) and call it a twisted homogeneous coordinate ring.

Lemma 2.2.5. Let X be a proper scheme with automorphism o and invertible sheaf
L. Then B(X,07', L) = B(X,0,L).

Proof. Set B = B(X,07',£) and B’ = B(X, 0, £)°?. Let - be multiplication in B and
* be multiplication in B’. There is a natural map 7: B — B’ given by 7(a) = 6" !(a)
for a € B, where 0" !(a) is the pullback of a via ¢"~! as above. Extend 7 linearly

so it is a vector space map. It is obviously a vector space isomorphism. Finally, for
a € B,,be B,
7(a-b) = r(ac™"(b)) = o™ a)o™ 7 (b),
7(a) * 7(b) = o™ a) x ™1 (b) = o™ (b)o" T (a).
Thus 7(a - b) = 7(a) * 7(b), as required. O

Example 2.2.6. Let o be an automorphism of X = P!. Form the twisted homoge-
neous coordinate ring

B = B(P',0,0x(1)) = éﬂo(mﬂ, Opi(1)® - ® Op (1)),

Note that since Pic(P') = Z, we have 6*Opi(1) = Opi(1), so actually B,, =
HO(P!, Op1(m)).

For P!, any automorphism ¢ is induced by an automorphism (also written o)
of the fraction field k(u) of P! [H2, p. 46, Exercise 6.6]. Here u = y/x, thinking
of P! as Speck[z/y] U Spec kly/x]. The sheaves Opi(m) can be embedded in the
sheaf of rational functions K so that H°(P', Opi(m)) is generated by {1,u,...,u™}
as a k-vector space. Soif x =1 € B; and y = u € By, then in the commutative

multiplication,
?=1®1—1,
zy =1 u— u,

V¥ =u®u— u® € By.



If ¢ € k*, then 0: u +— qu is an automorphism of k(u). We have the multiplication

rules

ry=100c(u) =11® qu — qu,
y-r=u®0c(l)=u®1+— u€ By

where - is the new multiplication. So we have the multiplication rule z -y = qy - z.

Thus there is a homomorphism

def
It is easy to see that ¢ is surjective by taking a geometric point of view. Because
Op1(1) is generated by global sections, there is an exact sequence

0 — Ker f — H(P*, Ox(1)) ® Op1 -5 Opa(1) — 0.
Tensoring with Op1(n) and taking global sections, we get part of a long exact sequence
0 — H°(P', Ker f ® Op1(n)) — By ® B,, — By, — H'(P",Ker f ® Op1(n)) — 0.

The sheaves involved are the same whether we are in the commutative or noncom-
mutative case since 0*Op1(1) = Opi(1). So we have in either case H'(P!, Ker f ®
Opi(n)) = 0 (since we know that this particular H' must be 0 for the commutative
multiplication maps to be surjective). Now ¢ respects the grading, each graded piece
is finite dimensional, and the dimensions match, so ¢ must be an isomorphism.

One can repeat the argument with the automorphism u +— u + 1. In this case,
one constructs the Jordan quantum plane

(2.2.8) U, < Ko,y (x-y—y-x—2?).

These are the only twisted homogeneous coordinate rings of (P, Opi(1)) generated
in degree 1, up to isomorphism. We know this because any automorphism acts on
x,y as an element of PGL(1, k) [H2, p. 151, Example 7.1.1], and hence is conjugate

tor—z,y—qyuorz—x,y—x+y.

Recall that as a set, X = Proj R is all homogeneous prime ideals of R which do not
contain R~q, where R is a commutative finitely generated, finitely graded k-algebra.
If B = B(X,L£) is a commutative homogeneous coordinate ring of X = Proj R,
generated in degree one with £ ample, then Proj B = ProjR. We would like to
make such a statement in the noncommutative case also. However, noncommutative

rings do not have many prime ideals in general. For instance consider

Us/ly — ax) = k{z,y}/(z-y —y-x — 2,y — azx) = k[z]/(2?),
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for any @ € k. Thus (y — ax) is not a prime ideal. Indeed, if chark = 0, then
the only homogeneous prime ideals are (0), (x), and (z,y). By following the usual
definition of Proj as a set, one has ProjU; = {(0), (z)}. Another tactic is needed.
We will use categories to make a new definition for Proj R in the next section. We
will then return to twisted homogeneous coordinate rings B in and discuss how

they are related to this new definition of Proj.

2.3 Category-theoretic proj

As stated above, the goal of this section will be to give a new definition of Proj
which works well for noncommutative rings. Our treatment is only partial; for the
full story, see [AZ, §2-4].

Let R be a right noetherian finitely graded k-algebra. Then gr R will denote the
category of noetherian graded right R-modules. Maps in gr R are graded homomor-
phisms of degree 0. This means that if f: M — N, then f(M;) C N; for all i. Note
that the functor M — M|n] is an autoequivalence of gr R for any n € Z.

A module M is left bounded if M; = 0 for all i < 0. Similarly, if M; = 0 for all
1> 0, then M is right bounded. We say that M is bounded if it is both left and right
bounded. Note that any finitely generated graded R-module must be left bounded
since R is N-graded. An element m € M is torsion if there exists an s such that
mR>s = 0. Let 7(M) be the set of all torsion elements of M. The set 7(M) is easily
seen to be a submodule. If 7(M) = M, then M is called torsion and if 7(M) = 0,

then M is torsion-free.

Lemma 2.3.1. A finitely generated graded module M over a graded ring R is torsion
if and only if it is bounded.

Proof. Suppose that M is torsion and let mq, ..., m; be generators of M. Let j =
max; deg(m;). Then Y m; R>s_deg(m,) € M>sfor s > j. Since M is finitely generated,
we have equality for s > 0. But since M is torsion, the left hand side is 0 for s > 0.
So M is right bounded and since it is finitely generated, it is bounded. The converse
is easily seen to be true even if M is not finitely generated. O

Let tors R be the full subcategory of all torsion modules. This is a dense subcat-
egory in the sense that for a short exact sequence

0—-M —->M-—->M'—0

one has M € tors R if and only if M', M" € tors R [Pl p. 165]. Thus we can form the
quotient category qgr R = gr R/ tors R. The details of this standard construction are
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in [P, p. 165-173, §4.3]. This category has the same objects as gr R. Let mM denote
the image of M in qgr R. Then we define |[AZ, Equation 2.2.1]

(2.3.2) Homyg, p(mM,7N) = shjgo Homyg, p(M>s, N).

Specifically, given a map f € gr R, the corresponding map f € qgr R is an isomor-
phism if and only if the map f € gr R has bounded kernel and cokernel. Thus, if
there exists s such that M>; = N>, then M = N in qgr R. The converse holds since
M and N are assumed to be noetherian. Because of this, qgr R is sometimes called
tails R. We define proj R to be the pair (qgr R, 7R).

Now if R is commutative and finitely generated by Ry, then qgr R = coh(Proj R),
where coh(X) is the category of coherent sheaves on X [H2, p. 125, Exercise 5.9].
This is the idea which can be generalized to noncommutative rings. First, we need a
few more definitions. A category C will be called k-linear if it is an abelian category
and its objects and Hom groups are k-vector spaces. For more on abelian categories,
one may consult [Mad, Chapter VIII] or [P]. For our purposes, one can think of
an abelian category as a category of modules over a ring. Of course the module
categories we work with are k-linear. Further, we will assume C is a noetherian
category. That is, for each object M in C, any set of subobjects of M has a maximal
member.

We wish to construct a ring from C, mimicking the construction of a homogeneous
coordinate ring when C = coh(X) for a proper scheme X. As we saw in the last
section, given X and an invertible sheaf £, the coordinate ring B(X, £) has the form

éHom((’)X,Ei).

i=0
Also, the functor F — F ® L is an autoequivalence of coh(X), so we will include an
autoequivalence in our construction.

In general, for a noetherian k-linear category C, distinguished object O, and
autoequivalence s, we define the homogeneous coordinate ring of (C, O, s) to be

B=T(C,0,s)s0=T(0)z = @ Hom(O, 5'0).
i=0
Given an object M € C, there is a corresponding graded right B-module of the form

M=T(M)= é Hom(O, s'M).

The multiplication on B is given by composition of maps. More specifically, if a €
B,, = Hom(O, s"Q) and b € B,, = Hom(O, s"O), then

(2.3.3) a-b=s"a)obe Hom(O,s"™O) = Byin.
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The module structure of M is defined similarly. Notice that in gr B, one has a natural
autoequivalence [+1], the degree shift, and

(2.3.4) D(M)[+1] = D(sM).

We are interested in situations where this induces an equivalence of categories I :
C—= qgr B, such that O — 7B. Since automatically holds, we say the triples
(C,0,s) and (qgr B, nB, [+1]) are equivalent. More generally, two triples (C, O, s)
and (C',0',s") are equivalent if there exists an equivalence of categories : C=C’
such that §(O) = O’ and for any M € C, we have §(sM) = s'6(M).

In the case of C = coh(X), tensoring with an ample invertible sheaf £ plays a
special role, since then one has qgr B = coh(X), as mentioned above. Thus we need
a definition for an ample autoequivalence s or more specifically a pair (O, s). In
order to make the analogy clearer, consider the standard definition of ampleness in

the classical case:

Definition 2.3.5. [H2, p. 145, Theorem 7.6, p. 229, Proposition 5.3] An invertible
sheaf £ on a proper scheme X is ample if one of the following three equivalent
conditions hold:

1. For all coherent sheaves F, there exists mg such that for all m > mg and ¢ > 0,
HY (X, Fe L") =0.

2. For all coherent sheaves F, there exists mg such that for all m > mgy, F @ L™
is generated by global sections.

3. There exists m such that £™ is very ample, i.e., L™ = ¢*(Opn(1)) for some n

and some closed immersion ¢.

We now make a definition for ample autoequivalences of C, similar to the one

1

above. For an autoequivalence s, there is a quasi-inverse s~'. That is, s7! is an

autoequivalence that is a left and right adjoint of s. Given M € C, we will denote
sM as M[d] for d € Z.

Definition 2.3.6. Let C be a noetherian, k-linear category with a distinguished
object O. Let s be an autoequivalence of C. The pair (O, s) is ample if both of the
following two conditions hold:

1. For all epimorphisms M — N € C, there exists mq such that for all m > my,
the natural maps

Hom(O, M[m]) — Hom(O, N'[m])

are surjective.
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2. For all M € C, there exist integers ly,...,l; > 1 such that there exists an

epimorphism
¢
&P o] - m.
=0

Let us emphasize again that ampleness depends both on O and s.

Note that the first condition for ampleness is a weakening of the cohomological
definition of ampleness of an invertible sheaf £ (or more formally of (Ox, — ® L£)).
The second condition is a weakening of the global sections definition.

Before stating the main theorem of [AZ], we need one more definition. It will be

convenient to have the notation

Hom(N, M) = @ Homy, p(N, M|i])

1=—00

and similarly for Ext?. When N and M are finitely generated, we have Hom (N, M) =
Hompg (N, M), the group of all R-module homomorphisms, since any homomorphism
can be decomposed into a sum of homomorphisms which preserve the grading, but
may shift degrees. In our arguments, we will use whichever representation is more

convenient.

Definition 2.3.7. Let R be a finitely graded right noetherian k-algebra. The ring
R is said to satisfy x; if for all finitely generated modules M and all [ < j,

dimy, Ext'(R/R=q, M) < .

If R satisfies x; for all j > 0, we say R satisfies .

The authors of [AZ] discuss many rings which satisfy x;. Perhaps most impor-
tantly, any commutative noetherian graded k-algebra satisfies x; and, in fact, x [AZ,
Proposition 3.11(c)].

We now state a specialized version of the main theorem of [AZ].

Theorem 2.3.8. ([AZ, Theorem 4.5]) Let C be a noetherian k-linear category with

distinguished object O and autoequivalence s. Suppose that
1. dimy Hom(O, M) < oo for all M € C.
2. The pair (O, s) is ample.

Then B =T'(O)sg, the homogeneous coordinate ring of (C, O, s), is a right noether-
wan, finitely graded k-algebra satisfying x1. There is an equivalence of triples

(C,0,s) = (qer B, 7B, [+1]).
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Conversely, suppose that R is a right noetherian, finitely graded k-algebra satis-
fying x1. Then (qgr R, 7R, [+1]) is ample. Also, R and I'(qgr B, wB, [+1])>o differ

only by a finite dimensional vector space.

We will only prove part of this theorem, namely that I'(C, O, s)>¢ is right noether-
ian. We first need a standard lemma.

Lemma 2.3.9. Let R be a graded ring. The ring R is right noetherian if and only
if every homogeneous right ideal of R is finitely generated.

Proof. The proof is standard and left as an exercise for the reader. m

Proposition 2.3.10. Let (C,0,s) be as in the first paragraph of Theorem [2.3.8
Then B =T'(C, O, s)>q is right noetherian.

Proof. Let N be a homogeneous right ideal of B. Any homogeneous element = &€
N, C B, is an element of Hom(O, OJr]). Thus x induces a map f, € Hom(O[—r], O).
Given any finite set X of homogeneous elements of N, let

Px = P O[-rdl,

zeX

where r, = deg(z). There is a map fx: Px — O given by the direct sum of the f,
for x € X.

Set Nx = Im(fx) C O. Since O is noetherian, there is a (unique) maximal N.
Fix a set X corresponding to the maximal Ny, writing N' = Nx and P = Px.
Further, set

N"=T(N)so, P"=€PB[-r), N =) aB.
zeX zeX
Note that N’ = Im(P” — B) where the map is given on each component B|[—r,| by
left multiplication by z. Also, N' C N.
Let y € N, for some r. Since N is maximal, Im(f,) C N. Thus

y € Hom(O,Im(f,)[r]) € Hom(O,N[r]) =T'(N), = N/

and so N C N”.

By definition of A/, there is an epimorphism P — N. Since the pair (O, s)
is ample, the maps Hom(O, P[n]) — Hom(O,N|n|) are onto for n > 0. Thus
I'(N)/ImT(P) is right bounded and

N, =T(N)sp =ImI(P)>,

for n > 0.
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Now consider typical summands O[—r] and B[—r] of P and P” respectively. We
have I'(O[—r]), = Hom(O, O[—r + n|) = B_,1,, if n > r. And so for n > max, r,,
we have I'(P),, = P. Thus I'(P)/P" is right bounded.

Thus we have a chain

N" 2 Im[(P)sg 2 ImP" = N’

with each factor bounded. So N”/N’ is bounded, hence a finite dimensional k-vector
space, hence a right noetherian By-module. Thus the submodule N/N’ is a right
noetherian By-module. But it is then also a finitely generated right B-module. By
construction, N’ is finitely generated. So N is finitely generated, which is what we

wished to prove. O

We have chosen to work with the category of noetherian modules since it is more
convenient for our purposes. However, the main ideas of this section can be made
in terms of Gr R, the category of all graded R-modules. A class of objects C’' in a
category C generates C if for any M, N € C and f,g € Hom¢(M,N) with f # g,
there exists P € C’' and h € Home(P, M) such that fh # gh [P, p. 4. The
subcategory gr R generates Gr R. To see this, suppose that f,g: M — N with
f # g. Choose m € M with f(m) # g(m). The module P = mR is obviously
finitely generated and if h: P — M is the natural injection, we have fh # gh.

If Tors R is the full subcategory of torsion modules in Gr R, then tors R generates
Tors R. (We emphasize here that R is assumed to be right noetherian; otherwise,
Tors R must be defined as the category of submodules 7(M) C M € Gr R such
that 7(M) is the smallest submodule with M/7(M) torsion-free [AZl p. 233].) One
can then form the quotient category QGr R = Gr R/ Tors R and qgr R determines
QGr R up to equivalence [AZ, Proposition 2.3]. Thus Theorem [2.3.8|can be expressed
without essential change in terms of a locally noetherian category C (meaning it
has a noetherian generating subcategory) and QGr R. So Proj R is defined to be
(QGr R, mR).

2.4 Comments on Y

Let us say a few words about the importance of the condition y;. We will present

a special case where it is clear that the condition x; is necessary to achieve the results

of Theorem [2.3.8, Consider the exact sequence
OHR21—>R—>R/R21 — 0.
Choose a torsion-free noetherian right R-module M. Applying Hom(—, M), there is

an exact sequence

0 — Hom(R/R>1, M) — M — Hom(Rs,, M) — Ext'(R/Rx1, M) — 0.
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Since M is torsion-free, Hom(R/R>1, M) = 0. For any n > 0, there is a natural
map ¢: Hom(R>;, M) — Hom(R>,, M). Suppose that f € Hom(R>1, M) goes to
the zero map, i.e., f(R>,) =0. If r € R;, 1 <i < mn, then f(r)R>,—; = 0. Since M
is torsion-free, we must have f(r) = 0, i.e., f is the zero map. Thus ¢ is an injection.
So by (2.3.2), Hom(R>1, M) injects into I'(xM).

Now if y; does not hold for M, then Ext'(R/R>1, M) is not bounded. But then
the cokernel of the map M — T'(7M) cannot be bounded, so we do not get the
desired isomorphism in qgr R. In particular, if R is torsion-free and y; fails for
M = R, then R and I'(mR)> differ by an infinite dimensional vector space.

Example 2.4.1. Unfortunately, not all right noetherian graded k-algebras satisfy
x1- Let k be a field of characteristic 0 and U = Uy = k{x,y}/(zy — yx — %), as in
Example , and let R = k+ Uy. In [StaZ, §2] it is shown that R does not satisfy
X1- In addition, R is (left and right) noetherian. However, one still has that the
degree shift [+1] is ample and (qgr R, 7R, [+1]) = (coh(P'), Op1, s) for some s. Thus
the coordinate ring I'(qgr R, 7R, [+1])>0 has x; and in fact this ring is U; [StaZ,
Proposition 2.7].

It is not the case that the degree shift is ample for any ring. If one takes R = k+Uy
as above and T' = R[z] with z a central indeterminate, then 7' is noetherian by
the Hilbert Basis Theorem. Also, I'(qgr T, 7T, [4+1])>o = T [StaZl, Corollary 2.11].
However, T' does not satisfy x; and thus (77, [+1]) cannot be ample.

One may wonder what effect the stronger condition x has on a ring. The authors
of [AZ] show

Theorem 2.4.2. ([AZ, Corollary 7.5]) Let (C,O,s) be as in the first paragraph of
Theorem[2.3.8 Let H(M) = Ext?(O, M) for ¢ >0 and M € C. Assume that

1. dimy HI(M) < oo for all ¢ > 0 and all M.

2. For each M, there exists mqy such that HY(M[m]) = 0 for all m > my and
q>0.

Then I'(C, O, s)>¢ satisfies x.
Conversely, if R is a right noetherian, finitely graded k-algebra which satisfies x,
then (qgr R, mR, [+1]) satisfies the conditions and of the first paragraph. [

We will see that the twisted homogeneous coordinate rings B(X, o, £), the main
objects of study in this thesis, do satisfy x. However, there are right noetherian rings
R which satisfy x; but not y» [StaZl, Corollary 4.4].
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2.5 Autoequivalences of coh(X)

We now wish to show the connection between the twisted homogeneous coordinate
rings of and the category-theoretic coordinate rings of §2.3l To do so, let us
discuss the possible autoequivalences of the category coh(X) where X is a proper
scheme over k, not necessarily projective. Such an X is also called a complete scheme.
Since X is proper, we know dimy H?(X,F) < oo for all ¢ > 0 and any coherent F
[H2, p. 252, Remark 8.8.1]. In we will see that non-projective schemes are not
interesting for our purposes, so the reader may wish to think of X as being projective.

The autoequivalences of coh(X) can be given in terms of bimodules in a category,

which for us will mean the following special objects:

Definition 2.5.1. Let X be a proper scheme with automorphism ¢ and invertible
sheaf £. An invertible bimodule is the symbol L, with the following actions on a
coherent sheaf F:

L LQF=LRL Q@@L QF",
2. FRLM=FQLRIL @@L .

The symbol L, is called an invertible bimodule because on an open set U C X,
L, acts like an Ox (U)-module on the right, but as as Ox(cU)-module on the left.
There is a more general theory of Ox-bimodules, however to go into this theory
would take us too far afield; see [AV] §2] for the general definition.

Consider the following functor s = £, ® — from coh(X) to itself. So for F €
coh(X), we set s(F)=LRF°. If f: F — G, then s(f) is the natural map 1 ® o(f).
One has

S"F =Ly F,

where L£,, is given by the formula (2.2.1). Recall that canonically, O% = Ox. So,
if t = (L7 ) )p1 @ —, then st = ts = lox) canonically. Therefore s is an
autoequivalence.

We now examine the coordinate ring R = I'(C, O, s)>¢. One has a multiplication
as in ([2.3.3)), setting R,, = Hom(Ox, s"Ox). For a € R,,,b € R,,,

a-b=s"(a)ob.
Now

s™(a) =1® 0™ (a) € Hom(Ly @ O, L @ LI @ 07,
b € Hom(O, L,,, ® O7™).
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Thus
(2.5.2) a-b=s"(a)obeHom(O, Lyin @ O™ = Ryin.

In the notation of ({2.2.4), we write this as 0™ (a)b.
This multiplication is closely related to the one seen in ([2.2.4]) for twisted homo-
geneous coordinate rings. First, R = B(X, 0, L) as vector spaces over k. Comparing

(2.5.2)) and (2.2.4)) one sees that

Proposition 2.5.3. ([AZl p. 262]) Let X be a proper scheme with automorphism
o and invertible sheaf L. Let B = B(X,0,L) and R = I'(coh(X), Ox, L, ® —)>o0.
Then R = B°P. [

The reason for our giving more than one presentation for the multiplication is his-
torical; in [AV], the multiplication is defined as in , whereas the multiplication
above is more natural in terms of §2.3| which follows [AZ].

For the most part, we simply need that the left action of L, is an autoequivalence,
as explained above, so that we may use Theorem [2.3.8] However, to make some
category-theoretic deductions in §3.7, we will use

Proposition 2.5.4. ([AZ, Corollary 6.9], [AV] Proposition 2.15]) Let X be a proper
scheme. Then any autoequivalence s of coh(X) is naturally isomorphic to L, ® —

for some automorphism o and invertible sheaf L. 0

Thus, by studying the twisted homogeneous coordinate rings, we are studying all
possible coordinate rings I'(coh(X), Ox, s)>o.

We now define a concept of ampleness for £ and ¢. This is the definition given
in [AV]. We will then explain how this implies ampleness of the pair (Ox, L, ® —)
in the sense of Definition 2.3.6l

Definition 2.5.5. Let X be a proper scheme with automorphism ¢ and invertible
sheaf L.

1. We say L is right o-ample if for all coherent sheaves F, there exists mg such
that
H(X,FQLR - L") =0,

for m > mg and ¢ > 0.

2. We say L is left o-ample if for all coherent sheaves F, there exists mg such that

m—1

H(X,L® --@L @F")=0,

for m > mg and ¢ > 0.
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These two conditions are not unrelated. In fact, one of our main goals in this
thesis is to show they are equivalent. But for now, we have

Lemma 2.5.6. ([St3|, p. 31]) An invertible sheaf L is right o~'-ample if and only if
L is left o-ample.

Proof. Let £ be right o~ *-ample. Then for any coherent sheaf F, there exists an my
such that
H(X,F°@L® - ®L ")=0

for ¢ > 0 and m > mg. Since cohomology is preserved under automorphisms, pulling
back by o™ !, we have

H(X,L®--@L" @F ") =0

for ¢ > 0 and m > myg. So L is left o-ample. Clearly, the argument can be reversed.
]

As promised, these concepts of o-ampleness imply the categorical ampleness. Sup-
pose that s = L, ® — and L is left o-ample. Let F 4 G be an epimorphism of coher-
ent sheaves. Then H'(X, s™(Ker ¢)) = 0 for m > 0, so H*(X, s™F) — H°(X, s™G)
is an epimorphism for m > 0. Thus (Oy, s) satisfies condition (1)) of Definition [2.3.6]
For condition ({2) we need

Proposition 2.5.7. ([AV], Proposition 3.2]) Let X be a projective scheme with auto-
morphism o and invertible sheaf L. Suppose that L is left o-ample. Then for any
coherent sheaf F, there exists an integer mqg such that

£®.__®£O’m71®f’0'm
1s generated by global sections for m > my. [

Note that a similar statement holds for right o-ample via Lemma [2.5.6, since the
proposition will hold for £ left o~ t-ample.

Now given this proposition, we have that s™F is generated by global sections for
some large m. Then there is an epimorphism &Ox — s™F and hence an epimor-

phism &s " Ox — F. So we obtain

Proposition 2.5.8. Let X be a projective scheme with automorphism o and in-
vertible sheaf L. If L is left o-ample, then (Ox,L, @ —) is ample in the sense of
(12.3.6)). [

Theorem 2.5.9. ([AV, Theorem 1.4]) Let X be a projective scheme with auto-
morphism o and invertible sheaf L. Let B = B(X,0,L). If L is right c-ample, then
B is a right noetherian, finitely generated k-algebra. If L is left o-ample, then B is
a left noetherian, finitely generated k-algebra.
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Proof. As noted in Proposition [2.5.3 we have B? = I'(coh(X), Ox, s)>o with s =
L, ® —. If L is left o-ample, then (Ox,s) is ample. Thus by Theorem 2.3.8 B is
left noetherian.

If £ is right o-ample, then £ is left o~'-ample by ([2.5.6). So B(X,07', £) = B

is left noetherian and hence B is right noetherian. O]

Remark 2.5.10. The main results of this thesis will be proved in terms of Cartier
divisors rather than line bundles. However, the reader should note that, unravelling
the definitions, one has Ox(cD) = Ox (D)’
convenient to work with a right o~ '-ample line bundle £ = Ox(D), since then D is

It is therefore notationally more

right o~ !-ample if and only if
HY (X, FROx(D+oD+---+0™'D))=0

for all ¢ > 0 and m > 0. Obviously, this will have no effect on the final theorems.
Throughout this thesis, we will use the notation A,, = D+ oD +--- 4+ o™ 'D.

Before ending this section, let us say a few more words about notation. In Chap-
ter 3] we will deal with only one o-ample invertible sheaf £. It will be important
to consider the actual invertible sheaves L ® -+ ® L'“m*l, thus we will not use the
invertible bimodule notation in that chapter. In Chapter [4, however, we must deal
with several pairs of invertible sheaves £ and automorphisms ¢. Thus it will be more
convenient to use the compact notation L£,. In that chapter, when we wish to speak

of the invertible sheaf Ox @ L' we will use the following notation.

Notation 2.5.11. Given an invertible bimodule £,, the notation |£,| will mean the
underlying invertible sheaf Ox ® L,. For example, given L,, one has

L0 =LRL @@L .

It is often useful to replace £ with |£)'| and ¢ with ¢™ to assume £ and o have

a desired property. Using standard techniques, one can also show

Lemma 2.5.12. ([AV Lemma 4.1]) Let £ be an invertible sheaf on X. Given a

positive integer m, L is right o-ample if and only if |L7| is right o™-ample.

Proof. We follow the method of [H2, p. 154, Proposition 7.5]. If £ is right o-ample,
it is clear that |£2'] is right o™-ample.

Conversely, suppose that [£7] is right o™-ample. Then by definition, given a
coherent sheaf F, there exists ny such that the higher cohomology of F @ (L)
vanishes for n > ngy. Similarly, for 7 = 1,...,m — 1, there exists n; such that
the higher cohomology of F ® £ ® (L£™)™ vanishes for n > n;. If we take N =
m - max{n;|j = 0,...,m — 1}, then the higher cohomology of F ® L vanishes for
n > N. Thus L is right g-ample. O]
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2.6 Intersection theory and ampleness

In this section, we will review commutative algebraic geometry results which are
pertinent to this thesis. Let us briefly summarize for the benefit of the reader already
well-versed in the theory.

Recall that throughout this thesis, we will work in the case of a proper scheme
X over an algebraically closed base field k£ of arbitrary characteristic. Usually, X
will be projective. A variety will mean a reduced, irreducible scheme. All divisors
will be Cartier divisors unless otherwise stated. For a projective scheme, the group
of Cartier divisors, modulo linear equivalence, is naturally isomorphic to the Picard
group of invertible sheaves [H2, p. 144, Remark 6.14.1]. Since much of our work will
entail intersection theory, we will often work from the divisor point of view. Several
times we use the facts that the ample divisors form a cone, that ampleness depends
only on the numerical equivalence class of a divisor, and that ampleness is preserved
under an automorphism. Hence the cone of ample divisors and its closure, the cone of
numerically effective divisors, are invariant under an automorphism. As a reference
for these and related facts we suggest [K|. A short review also appears in [D].

Let us now give more details. Since this material is more standard than that on
twisted homogeneous coordinate rings, we will only prove a few selected results in
order to present the flavor of the theory.

We recall some facts about invertible sheaves on a proper scheme X.

Proposition 2.6.1. ([H2, p. 169, Exercise 7.5]) Let X be a proper scheme with
invertible sheaves L and M.

1. If £ 1s ample and M is generated by global sections, then L @ M is ample.
2. If L is ample and M 1is arbitrary, then M @ L" is very ample for n > 0.

3. If L and M are both ample, then so is L ® M.

4. If L is very ample and M is generated by global sections, then L & M 1is very
ample. [

The following proposition is invaluable for induction arguments on projective
schemes. We use the shorthand F(—H) for F @ Ox(—H).

Proposition 2.6.2. Let X be a projective scheme with coherent sheaf F and invert-
ible sheaf L. Suppose that L is ample and generated by global sections. Then there

exists s € HY(X, L) such that there is an exact sequence

0-FRL ' B F S FoOy—0,
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where H is the Cartier divisor defined by s = 0. Further, dim(Supp F ® Op) <
dim(Supp F).

Proof. One possible proof appears in [Mu, Theorem 2|. However, we wish to demon-
strate the utility of the category equivalence between coh(Proj S) and qgrS.

For any s € H°(X, L) we have an exact sequence
F(-H) B F - Fo Oy —0,

so we need to show that the map given by — ® s is injective for sufficiently general
S.

Let B = B(X,L). Under the category equivalence explained in Theorem [2.3.§]
or [H2, p. 125, Exercise 5.9], we may choose a torsion-free B-module M with M =
®H(X, FQL™) corresponding to F and M|[—1] corresponding to FQL ™. Tensoring
with s € H°(X, £) then corresponds to multiplication by a homogeneous degree one
element x, of B.

Now since L is generated by global sections, there is an exact sequence
0—=Kerf—0Ox®B; — L —0.

Tensoring with £™ and taking global sections, we see the map B, ® By — B, is
surjective for n > 0. So suppose that for all x € By the multiplication m +— mux,
with m € M[—1], is not injective. Then multiplication by any x € B, is not injective
for n > 0.

And so there exists ny such that for all z € Bs,,, multiplication by z is not
injective. But then there exists m € M[—1] with m # 0 such that mB>,, = 0 [B,
p. 266, Proposition 8]. This contradicts the fact that M is torsion-free. So there
must be z, € By with m — max, injective.

To see that dim(Supp F ® Og) < dim(Supp F), consider each irreducible com-
ponent X; of Supp F. The local ring S; at the generic point of X; is a local ring
of dimension zero. Thus any element in the maximal ideal must be nilpotent. So
tensoring with s must correspond to multiplication by an element outside of the
maximal ideal, hence an invertible element. So at the generic points of each X, ten-
soring with s is an isomorphism. Hence the cokernel is 0 in an open subset of each
X; and so Supp(F ® Op) N X; € X;. Thus Supp(F ® Og) has smaller dimension
than Supp(F) on each X; and hence on all of X O

The following proposition can be thought of as a weak version of the Riemann-
Roch Theorem. It is necessary to define the intersection numbers used in this thesis.
We recall that the Fuler characteristic x(F) of a coherent sheaf F is defined as

o0

X(F) =) (-1)dim H(X, F).

q=0
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This formula makes sense when X is proper (so each H? is finite dimensional [H2,
p. 252, Remark 8.8.1]). Further, HY(X,F) = 0 for ¢ > dim(Supp F) [H2, p. 208,
Theorem 2.7]. We also recall that a numerical polynomial is a polynomial with
rational coefficients which is integer valued on integers.

Proposition 2.6.3. ([Kl p. 295, Theorem (Snapper)]) Let X be a proper scheme.
Let F be a coherent sheaf with dim(Supp F) = s. Let Ly, ..., L; be invertible sheaves
on X. Then

X(FRL!®--- LM

1s a numerical polynomial in the n; of total degree < s.

Proof. For simplicity, we will only prove this when X is projective and use the method
of [D], Proposition 4.1]. In this case, any invertible sheaf £L = M®@N ! for some very
ample invertible sheaves M, N by Proposition . We may therefore replace
each L7 by M} ® N; " and assume that each £; is very ample.

We proceed by induction on dim(SuppF) = s. If F = 0, then the result is
obvious. For s > 0, by standard methods we may assume Supp F is a variety. So if
s = 0, we may assume that Supp F is a point. Then the restriction of any invertible
sheaf to Supp F is the trivial invertible sheaf, i.e., Ogyppr, so again the result is
obvious.

For s > 0, write £; = Ox(H) and Fy = F ® Oy. By Proposition [2.6.2] there is

an H so that we have an exact sequence
0 -FRL ' F—Fyg—0
with dim(Supp Fy) < s. Tensoring with the £;" and calculating x we have
XFRL® - QL") —x(FRLM 'R QL") =x(FRRLM®---® LM)

The right hand side is a numerical polynomial of total degree < s. Now by induction
on t, we may assume X (F ® L™ ®---® L") is a polynomial of total degree < s. The
result then follows by taking the telescoping sum over nj;. O]

Definition 2.6.4. Let a be the coefficient of n; ... n; in the polynomial above. Then

a is an integer due to general facts regarding numerical polynomials. The intersection

The following properties of the intersection numbers come from appropriate short
exact sequences. The proofs are in [Kl, p. 296-301].
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Proposition 2.6.5. The number (L;..... Ly F) = 0 if dim(SuppF) < t. Also,

(F) =dim H*(X, F) if dim(Supp F) =t = 0. O
Proposition 2.6.6. The number (L. . ... L. F) =0 is a symmetric t-linear form in

Proposition 2.6.7. If 0 — F' — F — F" — 0 is ezact, then

Proposition 2.6.8. Assume that H is an effective divisor such that £, = O(H) and

that there exists an exact sequence

where Fg = F @ Oy. Then (L;..... Ly F) = (Loe.... Ly Fyg). In particular, if
dim X <t, then (L;..... Ly) = (Ly..... L H). O

If i: W — X is the inclusion of a closed subscheme, we use the notation L|y =
L.

Proposition 2.6.9. If W is a closed subscheme with SuppF C W C X, then
(Ly..... LiF)x = (Lilw-- ... Liw.-F)w. Thus in particular, (Ly..... LW)x =

Corollary 2.6.10. Let V' = Supp F, with wrreducible components Vi,...,V;. Let
Fi=F @ O0Oy,. Then

Corollary 2.6.11. Let X be irreducible with dim X < t. Let x € X be the generic
point. Setl=lengthy, F,. Then (Ly..... L F)=1Ly..... L:.Ox,,). O

Proposition 2.6.12. If f: X' — X is a morphism with t > max{dim X', dim X},
then

(f*£1 ..... f*ﬁt)X’ = deg f(£1 ..... Et)X- ]

Proposition 2.6.13. The intersection form (L. . ... L. F) is uniquely defined by the
results of Propositions 2.6.12. O

We will now look at how these intersection numbers relate to the ampleness of
invertible sheaves. These are the main ideas we use in this thesis. We begin with

the well-known Nakai criterion for ampleness.
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Theorem 2.6.14. ([HI), p. 30, Theorem 5.1]) Let X be a proper scheme with invert-
ible sheaf L. The sheaf L is ample if and only if (L5.V) > 0 for all s and all closed
subvarieties V C X with dimV = s. L]

The following proposition regarding ample invertible sheaves are now easy to see,
given the Nakai criterion. The reader should be warned, however, that the proof
of the Nakai criterion depends on some of these propositions, so our reasoning is
circular. To actually prove this proposition, one must use cohomological methods
[H2 p. 232, Exercise 5.7] or [HI, pp. 23-26].

Proposition 2.6.15. Let X be a proper scheme with invertible sheaf L.
1. If L is ample on X, then Ll|y is ample on V' for any closed subscheme V C X.
2. L is ample on X if and only if L|x,,, is ample on X 4.

3. Let X be reduced. Then L is ample on X if and only if L|x, is ample on X; for
each irreducible component X;. [

Also using the Nakai criterion and Proposition [2.6.12 one can show

Proposition 2.6.16. ([H2, p. 232, Exercise 5.7]) Let f: Y — X be a finite morphism
of proper schemes. If L is ample on X, then f*L is ample on Y. If f is finite and
surjective, and if f*L is ample on'Y, then L is ample on X. In particular, ampleness

18 preserved under automorphisms. [

One should be warned that in the Nakai criterion, it is not sufficient that (£.C') > 0
for all integral curves C' C X [K| p. 326, Example 2|. However, we do have

Proposition 2.6.17. ([HIL, p. 27, Proposition 4.6]) Let X be a proper scheme with
invertible sheaf L. If L is generated by global sections and L|c is ample for all integral

curves C', then L is ample. In other words, if L is generated by global sections and

(L.C) >0 for all curves C, then L is ample. ]

The property of having non-negative intersection with every curve C'is of central

importance to our work. So we define

Definition 2.6.18. An invertible sheaf £ (respectively divisor D) is numerically
effective if (L.C) > 0 (respectively (D.C') > 0) for all integral curves C' C X.

The concept of numerical effectiveness behaves better than ampleness. It is clear
that the statements of Proposition [2.6.15/hold for numerically effective divisors, since
the concept only depends on the integral curves in X. We have an even stronger

version of Proposition [2.6.16]
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Proposition 2.6.19. ([Kl p. 303, Proposition 1)) Let f: Y — X be any morphism
of proper schemes. If L is numerically effective on X, then f*L is numerically
effective on Y. If f is surjective, and if f*L is numerically effective on'Y, then L is
numerically effective on X. In particular, numerical effectiveness is preserved under

automorphisms. [

So we see that any invertible sheaf £ generated by global sections is numerically
effective since £ = ¢*(Opn(1)) for some morphism ¢: X — P™ [H2, p. 150, Theo-
rem 7.1].

One particularly nice fact about numerically effective invertible sheaves, which
make them “better” than ample invertible sheaves, is that having non-negative in-
tersection with curves is enough to force non-negative intersection with all closed

subvarieties.

Proposition 2.6.20. ([K| p. 320, Theorem 1]|) Let X be a proper scheme. Let F
be coherent with dim(Supp F) = t. If Lq,..., Ly are numerically effective invertible
sheaves, then (L. .... Ly F) > 0. So in particular, L is numerically effective if and
only if (L°.V) >0 for all s and all subvarieties V- C X with dimV = s. ]

Recall that Pic(X) is the Picard group of X, the abelian group of isomorphism
classes of invertible sheaves on X, with addition given by the tensor product. In-
tersecting with curves also gives an extremely useful equivalence relation on Pic(X).
This will allow us to reduce many questions to facts about finite dimensional R-vector

spaces and cones in R”.

Definition 2.6.21. Two invertible sheaves L, Lo are called numerically equivalent
if (£,.C) = (L£5.C) for all integral curves C' C X. Numerical equivalence for divisors
is defined similarly. We denote this equivalence relation by = and set A}, (X) =
Pic(X)/ =. We let A} = Ap(X) = Ajy(X) @ R. When speaking of an invertible
sheaf £ € A}, formally we mean the equivalence class of £. We sometimes denote

this equivalence class as [£] for emphasis.

Remark 2.6.22. Clearly, the property of being numerically effective only depends on
the numerical equivalence class. We will see in Theorem that this is true for
ampleness as well. So when speaking of these properties, there is no danger in writing
L = [L]. However, very ampleness is not preserved by numerical equivalence [H2,
p. 368, Exercise 1.12].

Theorem 2.6.23. ([K| p. 305, Remark 3]|) The group Ak,.,(X) is a finitely generated

free abelian group. O

This theorem is known as the Theorem of the Base or the Neron-Severi Theorem.

For a proof when X is a nonsingular projective complex surface, see [H2, p. 367,
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Exercise 1.8]. If X is a nonsingular projective complex variety, another method is
explained in [H2, p. 446-447, Appendix B, §5].
The rank of AL (X) is known as the Picard number of X and is denoted p(X).

Num

So A} is a p(X)-dimensional real vector space.

Definition 2.6.24. Let V' be an n-dimensional vector space over R. A subset kK C V

is a cone if
1. k+ Kk Ck,
2. ak C k for all a € Ry

The cone k is pointed if Kk N —x = {0}. The cone k is closed or open if it is closed
or open as a topological subspace of V' = R". The cone k is solid if the interior

Int(k) # 0.

We recall two well-known facts from cone theory.

Lemma 2.6.25. ([V p. 1209]) Let k be a closed pointed cone in R™. Then v € Int(k)

if and only if, for allu € R™, there exists mg such that mv—u € k for allm > mgy. [

Lemma 2.6.26. ([K| p. 324, Lemma 1 (Caratheodory)]) Let k be a cone in R"
generated by possibly infinitely many elements {v;}. Then any N € k may be written

n
N = E Vi,
J=1

with a; > 0. ]

as

Proposition 2.6.27. ([K| p. 324-325]) Let X be a proper scheme. Let k C A}
be the set of all elements N such that (N.C) > 0 for all curves C. Then k is a
closed pointed cone in Ai,. The lattice points in k correspond to numerically effective
wnvertible sheaves and in fact Kk is the closure of the cone generated by numerically
effective invertible sheaves. The ample invertible sheaves generate an open cone K°
inside Int(k).

Proof. Clearly, k is a cone. It is clear that x° is a subcone of k since every am-
ple invertible sheaf is numerically effective and numerical effectiveness clearly only
depends on numerical equivalence classes. Further, x must be pointed since any
element of kK N —k must have zero intersection with all curves.

To see that x is closed, let N be in the closure of k and let My be an equivalence
class such that (M¢.C) < 0 for a given curve C. Since N is in the closure of &, for
alln >0, (N + (1/n)Mq.C) > 0. Thus

(N.C) > ~(~M¢.C) > 0.

S|
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So taking the limit, (N.C) > 0, so N € k. Since the numerically effective invert-
ible sheaves determine the rational points of x and Q is dense in R, they uniquely
determine k.

To see that x° C Int(k), we may assume X is projective, since otherwise k° = ().
If N € k°, then N = >  a;[£;] for ample invertible sheaves £; and a; > 0. Given
u € Ak, uis of the form u = Y7 b,[M,] for some invertible sheave M;. There
exists mg such that for m > mg, £ ® M; ' is ample for each i. Thus taking
my = p(X)mg/ay we have mN — u € k° for all m > my. Thus N € Int(x) by
Lemma [2.6.25] since mN — u has positive intersection with any curve. Further, since
Al is finite dimensional, this argument shows that x° contains sufficiently small balls
around any [£;] € kK°. So k° is open. O

Corollary 2.6.28. Let X be projective. Given any endomorphism f: X — X, the
natural mapping f*: At — AL maps k to k. Thus f* is represented by a matriz in

GL,(x)(Z) which preserves a closed pointed solid cone.

Proof. We already know f* preserves numerical effectiveness by (2.6.19)). Because f*
preserves the lattice Ay, (X), its action is represented by P € GL,(Z). Since the

map P is continuous, it preserves the closure of the cone generated by numerically
effective invertible sheaves, namely k. Since X is projective, k is solid. O]

We are now ready for the famous Kleiman criterion for ampleness. Briefly, it says
Int(k) = k° given the notation above. However, this is not true for every proper
scheme X. It is only true if X is quasi-divisorial, meaning that for every integral
closed subscheme Y which is not reduced to a point, there is an invertible sheaf
Ly on'Y with Ly = Oy (D) for some non-zero effective Cartier divisor D on Y.
All projective schemes are quasi-divisorial, since one may take the D to be a very
ample divisor. Also any locally factorial scheme X (hence any nonsingular scheme)

is quasi-divisorial [K| p. 326, Example 1].

Theorem 2.6.29. ([K| p. 326, Theorem 2|) Let X be a quasi-divisorial, proper
scheme. Then k° = Int(k).

Proof. We have already seen that x° C Int(k). Since @Q is dense in R and k° is open,
it suffices to prove that the rational points of Int(k) are in k°. So let N € Int(k)
be rational and we may assume N is the equivalence class of an invertible sheaf by
multiplying by a sufficiently large integer. So we wish to show that N satisfies the
Nakai criterion for ampleness .

We proceed by induction on the dimension of a subvariety Y C X. If dimY = 0,
then (N°.Y) = (Y) = (Oy) = 1 by (2.6.5). So suppose that dimY = s > 0 and
that (N©.WW) > 0 for all subvarieties W C Y with dimW =t < s. By and
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(2.6.11)), N has positive intersection with any subscheme of Y of dimension less than
s.

Since X is quasi-divisorial, find a non-zero effective Cartier divisor D on Y. Then
(N*71.D) = (N*"1.D.Y) > 0. Since N € Int(x), for m > 0, mN —[D] is numerically

effective by (12.6.25)). And so by Proposition [2.6.20],
m(N*L.N.Y) — (N*'.D.Y) > 0.

And thus (N®.Y) > 0. O

Corollary 2.6.30. The property of being ample depends only on the numerical equiv-

alence class of an invertible sheaf. O

Corollary 2.6.31. If L is ample and M is numerically effective, then L & M 1is
ample. [



CHAPTER 3

Twisted Homogeneous Coordinate Rings

3.1 Introduction

In this chapter, we will prove our main theorems regarding o-ample invertible
sheaves £ on a projective scheme X and their associated twisted homogeneous co-
ordinate rings B = B(X,0,L). For the convenience of the reader, we reprint some
of the theorems from Chapter [l We show

Theorem 3.1.1. The following are true for any projective scheme X over an alge-

braically closed field.

1. Right and left o-ampleness are equivalent. Thus every associated B is (right

and left) noetherian.

2. A projective scheme X has a o-ample divisor if and only if the action of o on
numerical equivalence classes of divisors is quasi-unipotent (cf. for defini-

tions). In this case, every ample divisor is o-ample.

3. GKdim B is an integer if B = B(X,0,L) and L is o-ample. Here GKdim B is
the Gel’fand-Kirillov dimension of B in the sense of [KL].

These facts are all consequences of

Theorem 3.1.2 (See Remark [3.5.2)). Let X be a projective scheme with auto-
morphism o. Let D be a Cartier divisor. D is (right) o-ample if and only if o is
quasi-unipotent and

D+oD+---+0™'D

1s ample for some m > 0.

In §3.2] we reduce the question of o-ampleness to one about the (classical) am-

pleness of certain sheaves. This allows us to use cone theory to deduce in that

if a o-ample invertible sheaf exists, then the action of ¢ on numerical equivalence

30
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classes must be quasi-unipotent. We then use cone theory again in to prove the
rest of Theorem [3.1.2]

We then examine numerous corollaries of Theorem [3.1.2]in §3.5] The most impor-
tant corollary is that left and right o-ampleness are equivalent and hence the twisted
homogeneous coordinate rings associated to o-ample divisors are noetherian. We
then use Riemann-Roch type theorems in to show that such rings have finite,
integral GK-dimension.

Finally, in §3.7, we show how our results are related to the category-theoretic
coordinate rings of §2.3] We end the chapter in by examining the possibility of
a o-ample invertible sheaf on a proper, non-projective scheme.

3.2 Reductions

Since X is projective, the invertible sheaves on X and the Cartier divisors modulo
linear equivalence are in one-to-one correspondence, as noted in the beginning of §2.6]
So without loss of generality we may use divisors in our arguments, which we do since
it is more customary for intersection theory.

Before deriving our main criterion for o-ampleness, we must prove other equivalent

criteria. We will need

Lemma 3.2.1. ([Fj, p. 520, Theorem 1]) Let F be a coherent sheaf on a projective
scheme X and let H be an ample divisor on X. Then there exists an integer cy such
that for all ¢ > ¢y,

HY (X, F® Ox(cH+ N))=0

for ¢ > 0 and any numerically effective divisor N. O

Proposition 3.2.2. Let X be a projective scheme with o an automorphism. Let D
be a diwvisor on X and A, = D+ 0D+ ---+ 6™ D, as in Remark|2.5.1(. Then

the following are equivalent:

1. For any coherent sheaf F, there exists an mg such that
HY (X, F®Ox(Ay)) =0
for ¢ > 0 and m > mq. That is, D is right o~ '-ample.

2. For any coherent sheaf F, there exists an mg such that FROx(A,,) is generated
by global sections for m > my.

3. For any divisor H, there exists an mq such that A,, — H is very ample for

m > mg.

4. For any divisor H, there exists an mq such that A,, — H is ample for m > my.
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5. For any divisor H, there exists an mqg such that A, — H is numerically effective

for m > my.

Proof. = is Proposition m

= Given any divisor H and a very ample divisor H’, we may choose
mg such that A,, — H — H' is generated by global sections for m > mg. Then
A, —H—H +H =A,, — H is very ample for m > mg by Proposition [2.6.1]{4).

= and = are trivial.

= . For any ample divisor H and any ¢ > 0, one can choose mg so that for
m > mg, we have N = A,,, — cH is a numerically effective divisor. Then follows
immediately from Lemma [3.2.1] O

A similar proposition holds for left ¢~!'-ample divisors, with F and H replaced
by Fo " and ¢™H. One deduces this easily from Lemma .

We note that if o is the identity, then condition says exactly that D is in the
interior k° of the cone of numerically effective divisors, as defined in Thus this
proposition is a generalization of Kleiman’s criterion for ampleness, Theorem [2.6.29]

3.3 The non-quasi-unipotent case

Recall the definition of A}, (X) from (2.6.21)). We let P denote the action of o
on Aj, (X); hence P € GL,(Z) for some ¢ by Theorem

A matrix is called quasi-unipotent if all of its eigenvalues are roots of unity. We
call an automorphism o quasi-unipotent if P is. The main goal of this section is to
show that a non-quasi-unipotent ¢ cannot give a g-ample divisor.

First, we must review an useful fact about integer matrices.

Lemma 3.3.1. Let P € GLy(Z). Then P is quasi-unipotent if and only if all eigen-
values of P have absolute value 1. Thus if P is not quasi-unipotent, then P has an

eigenvalue of absolute value greater than 1.

Proof. The first claim is [AV], Lemma 5.3]. To see this, suppose all eigenvalues \; of
P have absolute value 1. Each ); is an algebraic integer whose conjugate roots all
have absolute value 1. The only such algebraic integers are the roots of unity [L
p. 353, VII, Exercise 5].

For the second claim, the property of P not being quasi-unipotent is reduced to
saying P has an eigenvalue of absolute value not 1. Since P has determinant +1, P

has an eigenvalue of absolute value greater than 1. O

Recall that the spectral radius of a matrix P is the nonnegative real number r =
sr(P) = max{|A|: A an eigenvalue of P}. The following lemma shows a relationship
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between the spectral radius r and the intersection numbers (6™ D.C'), where D is an

ample divisor.

Lemma 3.3.2. Let P be as described above with spectral radius r = sr(P). There
exists an integral curve C' with the following property: If D is an ample divisor, then
there exists ¢ > 0 such that

(e™D.C) > cr™ for allm > 0.

Proof. Let k be the cone generated by numerically effective divisors in A}, (X)®R.
In the terminology of , k is a solid cone since it has a non-empty interior by
Proposition [2.6.27] Since P maps & to k, the spectral radius r is an eigenvalue of P
and r has an eigenvector v € k [V, Theorem 3.1].

Since v € k \ {0}, there exists a curve C' with (v.C') > 0. Given an ample divisor

D, there is a positive £ so that /D — v is in the ample cone by Lemma [2.6.25] Thus
(c™D.C)=L(P"D.C)> (P™.C)=r"(v.C).
Taking ¢ = (v.C') /¢, we have the lemma. O

Now a graded ring B = @,>¢B; is finitely graded if dim B; < oo for all ¢. Such a
ring B has exponential growth (see [SteZ]) if

(3.3.3) lim sup (Z dim Bi) T

n— o0 -
i<n

Theorem 3.3.4. ([SteZl, Theorem 0.1]) Let B be a finitely generated, finitely graded
k-algebra. If B has exponential growth, it is neither right nor left noetherian. [

This fact combined with the intersection numbers above allow us to prove

Theorem 3.3.5. Let X be a projective scheme with automorphism o. If X has a
right o~ t-ample divisor, then o is quasi-unipotent.

Proof. Suppose that D is a right o~ !-ample divisor. Let A,, = D+ocD+---+0™"'D.
By (3.2.2) and (2.5.12)), we may replace D with A,, and ¢ with ¢™ and assume that
D is ample.

Let P be the action of o on Ak,,(X). Suppose that P is non-quasi-unipotent with
spectral radius r > 1 and choose an integral curve C' as in Lemma[3.3.2] Let Z be the
ideal sheaf defining C' in X. Since D is right ¢~ !t-ample, the higher cohomologies of

I(A,) =ZT®0x(A,,) and O¢(A,,) vanish for m > 0. So one has an exact sequence

0— H°(X,Z(A,)) — H(X,O0x(An)) — H(C,0c(A,,)) — 0.
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For m > 0, the Riemann-Roch formula for curves [El, p. 360, Example 18.3.4]
gives
dim H°(C, 0c(A,,)) = (A,,.C) + a constant term.

Thus using the exact sequence and the previous lemma, there exists ¢ > 0 so that
dim H(X, Ox(A,,)) > cr™

for m > 0. Thus the associated twisted homogenous coordinate ring has exponential
growth and hence is not (right or left) noetherian by (3.3.4). So D cannot be right
o~ '-ample, by Theorem [2.5.9] O

Remark 3.3.6. One can give a more elementary proof of Theorem [3.3.5, Indeed,
examining the Jordan form of P gives an upper bound on (¢ D.C'). Further, using

the full strength of [V, Theorem 3.1] and asymptotic estimates, one can improve the
lower bound of Lemma [3.3.2l We then have

(3.3.7) comfr™ > (6™D.C) > emFr™

for m > 0, where k + 1 is the size of the largest Jordan block associated to r. Then
using estimates similar to those in the proof of [AV], Lemma 5.10], one can find an
ample divisor H such that

(A, —H.c™C) <0

for all m > 0. This contradicts the fourth equivalent condition for right o~!-
ampleness in Proposition |3.2.2]

Even when an automorphism o is not quasi-unipotent, one can form associated
twisted homogeneous coordinate rings. As might be expected, some of these rings
have exponential growth.

Proposition 3.3.8. Let X be a projective scheme with non-quasi-unipotent auto-
morphism o. Let D be an ample divisor. Then there exists an integer ng > 0 such
that for all n > ng, the ring B = B(X,0,0x(nD)) has exponential growth and is
neither right nor left noetherian.

Proof. Again choose a curve C' as in Lemma with ideal sheaf 7. By Lemmal3.2.1],
there exists ng such that for all n > ng and ¢ > 0,

HY(X,Z(nD + N)) = H(C, Oc(nD + N)) = 0

for any ample divisor N. In particular, the above cohomologies vanishes for nD+N =
nD + o(nD) + -+ + 0™ (nD) where m > 1. Then repeating the last paragraph of
the proof of Theorem shows that B has exponential growth. O



35

When X is a nonsingular surface, [AV] Corollary 5.17] shows that the above
proposition is true for ny = 1. Their proof makes use of the relatively simple form
of the Riemann-Roch formula and the vanishing of H2(X, Ox(A,,)) when A,, is the
sum of sufficiently many ample divisors. The proof easily generalizes to the singular

surface case, but not to higher dimensions.

Question 3.3.9. Given a non-quasi-unipotent automorphism ¢ and ample divisor D

on a scheme X, must B(X, 0, Ox (D)) have exponential growth?

There do exist varieties with non-quasi-unipotent automorphisms. If the canon-
ical divisor K is ample or minus ample, then any automorphism ¢ must be quasi-
unipotent (cf. Proposition . So intuitively, one expects to find non-quasi-
unipotent automorphisms far away from this case, i.e., when K = 0. Further, there
are strong existence theorems for automorphisms of K3 surfaces (which do have
K =0). Indeed, a K3 surface with non-quasi-unipotent automorphism is studied in

Example 3.3.10. There exists a K3 surface with automorphism o such that X has
no og-ample divisors.

Proof. Wehler [W], Proposition 2.6, Theorem 2.9] constructs a family of K3 surfaces
whose general member X has

Pic(X) = A}

Num

(X)=27%,  Auw(X) X Z/27 % 7/27.

(That is, Aut(X) is the free product of two cyclic groups of order 2.) The ample

1

Num (X)) have intersection numbers

generators H; and Hy of A

(H) = (Hy) =2,  (H.H)=4.

1
Num

Aut(X) has two generators oy, 0y whose actions on Ay,.(X) can be represented

as two quasi-unipotent matrices

1 4 ~1 0
o] = , 09 = .
"o -1 2 41

However, the action of ;05 has eigenvalues 7 +44/3. So X has no oy oo-ample divisor.
Note that by Corollary below, any ample divisor is o1-ample and oo-ample. [

3.4 The quasi-unipotent case

Now let o be a quasi-unipotent automorphism with P its action on Ay, (X). We

will have several uses for a particular invariant of o.
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Definition 3.4.1. Let k+ 1 be the rank of the largest Jordan block of P. We define
J(o) =k.

Note that J(o) = J(c™) for all m € Z \ {0}. It may be that k is greater than 0,
as seen in [AV], Example 5.18]. We will see in the next section that k must be even,
but this is not used here.

To prove Theorem [3.1.2] it remains to show that (for o quasi-unipotent) if D is a
divisor such that A,, is ample for some m, then D is right o~!-ample. So fix such a
D. We may again replace D with A, and o with ¢" via , so that D is ample
and P is unipotent, that is P = [ + N, where N is the nilpotent part of P. In this
case, k = J(o) is the smallest natural number such that N*1 = 0.

We let = denote numerical equivalence and reserve = for linear equivalence. We
then have, for all m > 0,

k
m .
3.4.2 m"D=P"D = N'D
(3.42) 0 > (),
k
m .
4. A, = N'D.

(343 (1)

1

Num (X)) is chosen, one can treat N*D as a divisor. Of course, this

Once a basis for A
representation of N’D is not canonical. However, since ampleness and intersection

numbers only depend on numerical equivalence classes, this is not a problem.

Lemma 3.4.4. Let o be a unipotent automorphism with P =1+ N and k = J(o).
If D is an ample divisor, then N¥D # 0 in A, (X).

Num

Proof. Since N* # 0, there exists a divisor £ and curve C such that (N*E.C') > 0.
Choose ¢ so that £D — E is ample. By Equation [3.4.2] the intersection numbers
(c™(¢{D — E).C) are given by a polynomial in m with leading coefficient (¢{N¥D —
NEE.C)/k!. Since this polynomial must have positive values for all m, we must have
N*D £ 0. O

We now turn towards proving that for any divisor H, there exists mq such that
A, — H is ample, when o is unipotent and D is ample. Then since D is ample,
A,, — H is ample for m > mg. For certain H, this is true even if ¢ is not quasi-
unipotent.

Lemma 3.4.5. Let X be a projective scheme with automorphism o (not necessar-
ily quasi-unipotent). Let D be an ample divisor and H a divisor whose numerical
equivalence class is fixed by o. Then there exists an m such that A,, — H is ample.
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Proof. Choose m such that D' =mD — H is ample. Let
Ay=D'+o0D +---+0''D"
Then Al = mA,, — mH is ample and thus A,, — H is ample. O

Proposition 3.4.6. Let X be a projective scheme with unipotent automorphism o.
Let D be an ample divisor and H any divisor. Then there exists an mg such that

Ay, — H is ample. Hence A, — H is ample for m > my.

Proof. Let W C AL,,(X) ® R be the span of D, ND, ..., N¥D. Then W is a k + 1-
dimensional vector space by Lemma [3.4.4] By Equation [3.4.2] it contains the real
cone k generated by S = {¢'D|i € N}. Using Lemma , any element of xk can
be written as a linear combination of k 4+ 1 elements of S with non-negative real

coeflicients. Thus for all m € N,

k
A, Z fi(m)a%™ D
i=0
where f;: N — Rsg and g;: N — N. Expanding the ¢%(™ D above and comparing
the coefficient of D with Equation [3.4.3] one finds that

Zfz(m) =m.

Since f;(m) > 0, for each m, there must be some j such that f;(m) > m/(k+ 1).
Now choose [ such that [D — H is ample and mg such that, mo/(k+1) > [. Then

fj (mo)o'gj(mo)D — g9i(mo) [y

is in the ample cone for the given j. Set g = g;(mo). The other f;(m) are non-
negative. Then A,,, — ¢H is in the ample cone as it is a sum of elements in the
ample cone. Since it is a divisor, it is ample by Proposition [2.6.27]

We now prove the lemma by induction on ¢, the smallest positive integer such
that N9H = 0. Since N is nilpotent, there is such a ¢ for any H. The case ¢ = 1 is
handled by the previous lemma.

Now as 0 = I+ N, we know 0~ (¢9H — H) is killed by N%~!. So there is an m;
so that

Y=A, +0™(c'H—H)

is ample. Then as o fixes the ample cone
Amo —0'H+o™Y = Amo+m1 - H

is ample. O
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We now immediately have by Propositions [3.2.2] [3.4.6, and Theorem [3.3.5}

Theorem 3.4.7. Let X be a projective scheme with an automorphism o. A divisor
D is right o~ t-ample if and only if o is quasi-unipotent and D + oD + --- 4+ o™ 1D
is ample for some m. ]

3.5 Corollaries

The characterization of (right) o~ !-ampleness has many strong corollaries which

are now easy to prove, but were only conjectured before.

Corollary 3.5.1. Right o-ample and left o-ample are equivalent conditions. Further,
o-ampleness and o~ -ampleness are equivalent.

Proof. Let D be right o~ '-ample. By Theorem [3.4.7, ¢ is quasi-unipotent and A,,

1

is ample for some m. Then ¢~ is quasi-unipotent and

o VA, =D+0'D+ -+ 0" VD

is ample. Applying the theorem again, we have that D is right o-ample. Thus D is
left 0~ t-ample by Lemma [2.5.6, The same lemma gives the second statement of the
corollary. O]

Remark 3.5.2. Combined with (3.4.7), this proves Theorem [3.1.2}

Theorem 3.5.3. Let X be a projective scheme with automorphism o. Let D be a

Cartier divisor. D is (right) o-ample if and only if o is quasi-unipotent and
D+oD+---+0™'D

is ample for some m > 0. [

Thus we may refer to a divisor as being simply “o-ample.”

In [AV], left o-ampleness was shown to imply the associated twisted homogeneous
coordinate ring is left noetherian. However, as noted in the footnote of [AS] p. 258],
the paper says, but does not prove, that B is noetherian. This actually is the case.

Corollary 3.5.4. Let B = B(X,0,0x(D)) be the twisted homogeneous coordinate
ring associated to a o-ample divisor D. Then B is a (left and right) noetherian ring,
finitely generated over the base field. O

Analysis of the GK-dimension of B will be saved for the next section.
From the definition of g-ample, it is not obvious when o-ample divisors even exist.

Theorem [3.4.7| makes the question much easier.
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Corollary 3.5.5. A projective scheme X has a o-ample divisor if and only if o
18 quasi-unipotent. In particular, every ample divisor is a o-ample divisor if o is

quast-unipotent. L]

Thus, it is important to know when an automorphism o is quasi-unipotent. From
the bounds in Equation [3.3.7] we obtain

Proposition 3.5.6. Let D be an ample divisor. Then o is quasi-unipotent if and only
if for all curves C, the intersection numbers (¢ D.C') are bounded by a polynomial

for positive m. O
Proposition 3.5.7. Let X be a projective scheme such that

1. X has a canonical divisor K which is an ample or minus-ample divisor, or

2. the Picard number of X, i.e., the rank of A, (X), is 1.

Then any automorphism o of X s quasi-unipotent. Indeed, some power of o 1is

numerically equivalent to the identity.

Proof. In the first case, for K to be ample or minus-ample, it must be a Cartier
divisor. Thus the intersection numbers (6™ K.C) are defined, where C' is a curve.
Since K must be fixed by o, some power of ¢ must be numerically equivalent to
the identity by Equation [3.3.7 In the second case, the action of o itself must be
numerically equivalent to the identity. O]

Thus for many important projective varieties, such as curves, projective n-space,
Grassmann varieties [El, p. 271], and Fano varieties [Kol, p. 240, Definition 1.1], one
automatically has that any automorphism must be quasi-unipotent.

Returning to corollaries of Theorem [3.4.7, we see that building new o-ample

divisors from old ones is also possible.

Corollary 3.5.8. Let D be a o-ample divisor and let D" be a divisor with one of the

following properties:
1. o-ample,
2. generated by global sections, or
3. numerically effective.

Then D + D' is o-ample.

Proof. Take m such that A,, is ample and A/ = D'+ -+ + ™ 1D’ is respectively
ample, generated by global sections, or numerically effective. Then A,, + Al is
ample by the results of and we again apply the main theorem. O
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The following could be shown directly from the definition, but also using a similar
method to the proof above, one can see

Corollary 3.5.9. Let o0 and T be automorphisms. Then D is o-ample if and only if

1

7D is Tot™ -ample. [

Note that 7 need not be quasi-unipotent.

Finally, as in the case of ampleness, o-ampleness is a numerical condition.

Corollary 3.5.10. Let D, D’ be numerically equivalent divisors and o,c’ be numer-

ically equivalent automorphisms (i.e., their actions on Ak, (X) are equal). Then D

Num

is o-ample if and only if D' is o’-ample.

Proof. As A,, = D' + (¢/)D' + --- + (¢/)""'D’ and ampleness depends only on
the numerical equivalence class of a divisor, the corollary follows from our main

theorem. O

3.6 GK-dimension of B

Recall the definition of GK-dimension for a finitely generated, finitely graded
k-algebra,

Definition 3.6.1. (KL, p. 62]) Let R = @R, be a finitely generated finitely graded
k-algebra. Then

GKdim R = lim sup {logn Z dimy, Rl} )

n—00 -
=0

If R is commutative, then the GK-dimension of R is equal to the classical Krull
dimension of R. Hence the GK-dimension is an integer in this case. We generalize
this to twisted homogeneous coordinate rings.

As mentioned, our main goal of this section is to prove

Theorem 3.6.2. Let B = B(X,0,L) for some projective scheme X and o-ample
invertible sheaf L.

1. GKdim B s an integer. Hence B is of polynomial growth. Also, GKdim B is
independent of the o-ample L chosen.

2. If 0™ =1 for some m, then GKdim B = dim X + 1.
3. If X 1s an equidimensional scheme,
k4+dimX +1 < GKdim B < k(dimX — 1)+ dim X + 1

where k = J(o) (cf. Definition is an even natural number depending only

on o.
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We now have all the necessary pieces of Theorem [1.0.4] which we reprint for the

reader.

Theorem 3.6.3. Let X be a projective scheme with automorphism o. Then the

following are equivalent:
1. The automorphism o 1s quasi-unipotent.
2. For all ample divisors D, B(X,0,0x(D)) has finite GK-dimension.
3. For all ample divisors D, B(X,0,Ox (D)) is noetherian.

Proof. — is the theorem above. = ({3) is from Corollaries and

3.5.50 And finally = and = both follow from Proposition [3.3.8]
[l

Theorem [3.6.2] generalizes [AV], Proposition 1.5, Theorem 1.7]. The authors of
[AV] further show that if X is a smooth surface, then £ = 0,2 and thus the only
possible GK-dimensions are 3 and 5. The proof that k£ < 2 in the surface case uses
the Hodge Index Theorem and thus far we have been unable to find a similar bound
in higher dimensions. Note that if X is a curve or X = P, then rank Ay, (X) =1
and hence by Proposition [3.5.7] some power of ¢ is numerically equivalent to the
identity (in fact, P = I). So the theorem implies that GKdim B = dim X + 1.

In studying the GK-dimension of B = B(X,0,Ox(D)) with D o-ample, [AV]
p. 263] proves that

(3.6.4) GKdim B(X, 0, Ox(D)) = GKdim B(X, 0™, Ox(A))

for any positive m. This comes from

Lemma 3.6.5. Let R be a finitely generated, finitely graded k-algebra. Suppose that
there exists an integer iy such that for all i > iy there exists j; so that for j > j;,

RjRZ' - Ri+j.
Let R be any Veronese subring R = &Ry, Then GKdim R = GKdim R@ .

Proof. Since R is a subring of R, certainly GKdim R¥ < GKdim R. On the other
hand, R is a R@-module. We claim R is a finite R@-module. It suffices to prove
this for d > 0, since the finite generation of R over R“4 for some ¢ implies finite
generation over R,

Let d be such that d > iy. Find fd > j; and let R’ be the R(¥-module generated
by Ri, Ry, ..., R41)a—1- Let N € N and assume by induction that R, C R’ for all
n < N. Now if N —d < jg, then N < ({+1)d, so Ry is trivially generated by the set
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above. If N —d > j4, then RyRy_4 = Ry and Ry_4 C R’ by induction, so Ry C R’
and hence R = R'. Therefore, R is finitely generated over R@ by a vector space
basis of Ry, ..., Rp41)a—1. So the claim is proven and thus GKdim R@ > GKdim R
KL p. 52, Proposition 5.1(d)]. O

Lemma 3.6.6. (cf. [AV] Theorem 3.14]) The ring B = B(X,0,L) satisfies the

hypotheses of the previous lemma.

Proof. Choose myg so that for m > myg, the sheaf £ ® --- @ £ ' is generated by

global sections for m > mg. Then we have an exact sequence
0—>Kerfm—>(9X®Bmfii£<§§>---®L°’m’1 — 0.

Now choose ng such that the higher cohomology of Ker f,,®L®- - .@L""" vanishes for
n > ng. Then from the above exact sequence we have the surjection B,®B,,, — By,in

as required. O]

So by replacing D with A,, and ¢ with ¢, in order to prove Theorem [3.6.2 we
may again assume P is unipotent, D is ample, and HY(X,Ox(A,,)) = 0 for ¢ > 0
and all m > 0. Then

dim B,, = dim H*(X, Ox(A,)) = x(Ox(A))

where x is the Euler characteristic on X. Recall that as in §2.6] a polynomial with
rational coefficients, integer valued on integers, is called a numerical polynomial. We
will soon see that x(Ox(A,,)) is a numerical polynomial in m with positive leading
coefficient. Any such polynomial of degree d is of the form

m m
ad(d) +ad_1(d_1) ‘|‘"‘+(1()

with a; € Q. Then using standard combinatorial identities, we have that

m—1
Z dim B;
1=0

is a numerical polynomial of degree d+ 1. By the definition of GK-dimension (j3.6.1)),

we immediately have
(3.6.7) GKdim B = deg(dim B,,) + 1 = deg(x(Ox(A))) + 1.

Thus far, we have only used the intersection numbers (D.C'), where D is a divisor
and C'is a curve. In studying the growth of A,, in terms of m, we will need to examine
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the intersection of divisors on higher dimensional subvarieties. More precisely, for an

n-dimensional variety V', we use the symmetric n-linear form

defined in §2.6]
We prove

Lemma 3.6.8. Let X be a projective scheme with unipotent automorphism o and
ample divisors D and D' with Al, = D'+ --- 4+ ¢™ D', Further let V be a closed
subvariety of X of dimension n. Then for 0 <i <n,

1. (DV.A™M%)y, is a numerical polynomial in m with positive leading coefficient.
2. deg(D". A"y = deg((D")".(A! ")y

3. deg(D"LA™ )y, < deg(DU A"y, where W C V is a closed subvariety with
dimW =dimV — 1.

4. deg(D".A"M)y < deg(D' =L ALTH)

5. deg(AJ) )y < deg(A")y where W C V is a closed subvariety and dim W = j <
n.

Proof. Since o is unipotent and intersection numbers only depend on numerical equiv-
alence classes, we may replace A,, by the divisor on the right hand side of Equa-
tion . As noted below that equation, it is not a problem to treat the N‘D as
divisors. Since the intersection form is multilinear and integer valued on divisors,
(D*.A™%)y, must be a numerical polynomial. By the Nakai criterion for ampleness
the function is positive for all positive m (since A,, is ample) and hence has
a positive leading coefficient. Thus part is proven.
Now for some fixed ¢, we know that /D’ — D is ample. Hence

(D' .D"LAMYy — (DNAYY)y = (0D — D.D7LAM Ty >0
for all m > 0. Thus
deg(D'.D'"'. A"y > deg(D". Ay,

and by symmetry the two degrees are equal. We can continue this argument, replac-
ing each D with D’ so deg(D*.A™~%) = deg((D’)".A"~"). By also noting that

(A — A, =D — D)+ 4" ({D' — D)

is ample, one can similarly replace each A,, with A/ . Thus the second claim is

proven.
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Now let W C V be a closed subvariety with dim W = dim V' — 1. One has
(D'LA™ Yy = (DTLIWARTYy,

by . We claim that for some fixed ¢, the intersection number of /D — W with
any collection of n — 1 ample divisors is positive. This is well-known if V' is normal
so W is a Weil divisor, so for some ¢, the Weil divisor ¢D — W is effective [R] p. 282].
The general case can be seen by pulling back to the normalization of V. Since
normalization is a finite, birational morphism, ampleness and intersection
numbers are both preserved under pull-back. Thus the claim is proven. An
argument similar to the proof of part proves the third claim of the lemma.

For part (), Equation [3.4.3)shows that the leading coefficient of (D*~*.D".A%)y,
is a sum of terms

ao(D"'.D' . N“D.....N*~D)y

where a,((k + 1)1)” is an integer. So any leading coefficient times ((k + 1)!)" is a
positive integer. Thus given any set of ample divisors {D’}, there is a D’ in that set
such that (D*"1.D’.A™%);, has the smallest leading coefficient.

Now let j be a natural number such that (D“"'.67D.A" ")y has the smallest

leading coefficient of all (D*"1.a'D.A™"%)y,. Then for any [ > 0,

(D10 D. A=),
(Di~'.0iD.An=1)y,

is a rational function with limit, as m — oo, greater than or equal to 1. So given
any natural number M,
lim (Di_l.Am.A%_i)V

. . — > M.
m—00 (Dl_l.O'JD.A%_Z)V -

Since this is true for any M, the limit must be +00. So
deg(D" 1A, . Ay > deg(D .o! DAYy

Examining the proof of part , we see the right hand side equals deg(D*.A™ ")y,

proving part .
Finally, for part , find a chain of subvarieties W =V, C --- C V,,_; = V. Then
part combined with part proves the claim for each part of the chain. O]

By a version of the Riemann-Roch Theorem for an n-dimensional complete scheme
X and coherent sheaf F [Fl, p. 361, Example 18.3.6]:

(3.69) FB) = 35 [ (@) Ny (P
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The 7x ;(F) is a j-cycle, a linear combination of j-dimensional closed subvarieties of
Supp F. In other words,

(3.6.10) Txj(F) =Y _ay[V]

where V' is a subvariety of X, | ] denotes rational equivalence, and ay is a rational

number. The terms of (3.6.9), for F = Ox can then be interpreted as

[ (80 17(0x) = S avlaiy.
X v

If X; is an irreducible component of X of dimension j, then [X;] = n[(X;)rdq] is
a term in 7x ;(Ox), where n is the degree of the natural map (X;),eqa — X;. To see
this, first note that (A4mX:)y /(dim X;)! must be the dim X; term of x(Ox,(An))
[E], ibid.]. Also a(x;),., = n by (2.6.11]). The short exact sequence

0—-7Z;,—- 0Ox —-0Ox, —0

gives x(Ox(An)) = x(Ox,(An)) + xX(Zi(A)). The support of Z; does not contain
X; and an irreducible component is rationally equivalent only to itself [EL p. 11,
Example 1.3.2]. So there is no [X;] term in x(Z;(A,,)) which could cancel out the
[X;] term in the first summand.

Lemma 3.6.11. Let X be a projective scheme with unipotent automorphism o and

wrreductble components X;. Then

deg x(Ox(A)) = max deg(AR™ ) x

(3

I

Proof. If the left hand side is larger than the right hand side, then by the discussion

before the lemma, there is a subvariety V' with

deg x(Ox(An)) = deg(AI™Y )y > deg(AD™ %)y,

J

where X; is an irreducible component properly containing V. This cannot happen

by Lemma .

On the other hand, if the right hand side is larger, then there exists a subvariety
V with ay < 0 in the notation of Equation [3.6.10] and

deg(AR™Y)y = max deg(A™ ) x..

3

The earlier discussion shows that ax, > 0 for each . Hence V' is properly contained in
some irreducible component. But again this cannot happen by Lemma [3.6.8(5). O
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Lemma 3.6.12. Let X be a projective scheme with unipotent automorphism o. Let
V' C X be a closed subscheme which does not contain (the reduction of ) an irreducible
component of X. Then deg x(Ov(A,,)) < deg x(Ox(An)).

Proof. By Lemma [3.6.11| we may pick an irreducible component V of V' with
deg x(Ov(An)) = deg(AL™ )y,

Then X has an irreducible component X, with V5 € X,. The claim is then proven

by combining Lemmata and [3.6.11] O

Proposition 3.6.13. Let X be a projective scheme with unipotent automorphism o
and ample divisor D. Then x(Ox(Ay,)) is a numerical polynomial in m. The degree
of this polynomial is independent of the ample divisor D chosen. Further, if o s

numerically equivalent to the identity, this polynomial has degree dim X.

Proof. The first claim is obvious since the intersection numbers in Equation [3.6.9 are
numerical polynomials, as noted in Lemma [3.6.8 The independence of the degree
comes from Lemma .

If o is numerically equivalent to the identity, then & = 0. So x(Ox(A,,)) =
X(Ox(mD)) has degree dim X. O

Combined with Equations and [3.6.7], this proposition implies the first two
parts of Theorem |3.6.2]
Considering Lemma [3.6.11| and Equation [3.6.7, we immediately have

Proposition 3.6.14. Let X be a scheme with unipotent automorphism o, ample
divisor D, and irreducible components X;. Let B = B(X,0,L). Then

it

GKdim B — 1 = deg x(Ox (An)) = maxdeg(A7" ) x

(3

In particular, if X is equidimensional, then
GKdim B — 1 = deg(AY™X) . O

Remark 3.6.15. Note that by replacing ¢ by a power, we may assume o fixes each
irreducible component. That is, ¢ is an automorphism of each component. Thus the
soon to be proven bounds of Theorem for equidimensional schemes can be used
to find bounds in the general case.

Lemma 3.6.16. Let o be a unipotent automorphism with numerical action P =
I+ N, with k = J(o) (cf. Definition[3.4.1). Then k is even and deg x(Ox(An,)) >
k + dim X.
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Proof. Given an ample divisor D, one has N*D # 0 by Lemma . So there
exists a curve C such that (N*D.C) # 0. Since (¢™D.C) > 0 for all m € Z and in
particular for m > 0, (N*D.C) > 0. However, if k is odd, implies that the
leading term of (=™ D.C) is — (') (N*D.C) where m > 0. Then (¢7™D.C) < 0 for
large m, which cannot occur.

For the lower bound, note deg x(Oc(A,,)) = deg(A,,.C) = k + 1. Constructing a
chain of subvarieties between C' and X, Lemma shows that deg x(Ox(An,)) >
dim X + k. O

Lemma 3.6.17. Let n = dim X. Then (A")x has degree at most k(n — 1) + n.

Proof. 1f k = 0 the lemma is trivial. So assume that £ > 0. Let P =1+ N.
Expanding (A”)) gives terms of the form

f(m)(N'D.ND.....N""D)
where i; <iy <--- <4, and deg,, f =n+)_1;. We will show that if Y i; > k(n—1)

then (N D.N2D.....N"D) = 0,
Order (i1, ...,4,) in the following way: (i1,...,4,) > (i},...,4,) if the right-most

’r'n

non-zero entry of (iy,...,i,) — (4],...,4,) is positive. We proceed by descending

induction on this ordering.

The largest n-tuple in this ordering is (k, k,...,k). Since k > 0, N*~1D exists
(taking N = 1) so

(N*'D.(N*D)"') = (PN*'D.(PN*D)" )
— (NFID(NEDYY + (VD))

and hence ((N¥D)") = 0.

Now suppose that (iy,...,4,) is such that Y i; > k(n — 1) and we have proven
our claim for all larger (¢7,...,1,). Since > i; > k(n—1), we have i; > 0 so examine

(N“"'D.N2D.....N"D) = (PN"'D.PN“D..... PN"D).

where §; = 0,1. The terms with 6; = 1 where j > 1 are all higher in the ordering
than (i1, ...,4,) and hence are zero. This only leaves

(N"'D.N“D.....N"D) =
(N“"'D.N2D.....N"D)+ (N“D.N2D.....N"D)

and so (N"D.N2D..... N»D) = 0. O
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Using Equation [3.6.4] and Proposition [3.6.14] these lemmata complete the proof
of Theorem [3.6.2

Even more restrictions can give sharper results.

Example 3.6.18. Let X be a smooth 3-fold and k¥ = J(o) = 2. Then for any
co-ample D, GKdim B =k +dim X + 1 = 6.

Assume again that HY(X,A,,) = 0,¢ > 0,m > 0, D is very ample and P is
unipotent. Lemma shows deg(c™™D.D?) = deg(D.(c™D)?) < 2. Expanding
(D.(6™D)?) one writes

(D®) + 2m(D?.ND) + 2 (”;) (D2.N2D) + m*(D.(ND)?)

2

+om (7;) (D.ND.N*D) + (7721) (D.(N*D)?)

So the terms in the second line are both zero.
Now expand (D?3) = ((6™D)3) =

(D%) + 3m(D®.ND) + 3 (ZL) (D2.N2D) + 3m*(D.(ND)?)
+mP((ND)?) + 3m? (”;) ((ND)%.N2D)
+6m (7;) (D.ND.N?D) +3 (?) 2(D.(N?D)Z)

+3m (?)Q(ND.(WD)?) + (?)3((N2D)3)

Each term in the last line is zero by the proof of . The terms in the third
line are zero by the comments above. Since (D?) is constant, the coefficients of each
m! must also be zero. Since 2((ND)?.N2D) is the coefficient of m*, it is zero. Then
the coefficient of m? is ((ND)?) which is also zero. So only the top line has non-zero
terms.

So now expanding out (A2)) one sees the degree can be at most 5 and by (3.6.16))
it must be dim X + k = 5.

3.7 Categorical results

Now using the theorems of [AZ] as described in , we get the following result
for rings which are close to commutative in the sense of the following theorem. Recall

from that proj R = (qgr R, TR).

Theorem 3.7.1. Let R be a finitely graded ring over an algebraically closed field k.
Suppose that R is right noetherian and satisfies x. Further suppose that proj R =
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(coh(X), Ox), for some (classical) projective scheme X. Then R is left noetherian
and has finite, integer GK-dimension.

Proof. Since R is right noetherian and satisfies xi, the degree shift (7R, [+1]) is
ample by Theorem [2.3.8] Thus (7R, [+1]) corresponds to some ample autoequiva-
lence (Oyx,s) of coh(X). Any autoequivalence of coh(X) has the form £, ® — by
Proposition for some automorphism ¢ and invertible sheaf £. Thus R = B =
B(X,07!, L) up to a finite dimensional vector space, by Theorem m, Proposi-
tion [2.5.3] and Lemma [2.2.5]

Further, since R satisfies y, for any coherent sheaf F we have the vanishing of
the higher cohomology of H?(X,s™F) and sufficiently large m by Theorem [2.4.2]
Thus £ is right o~ !-ample and hence left o~ '-ample. Then by Theorem , B
is noetherian and has finite, integer GK-dimension. Thus R has these properties as
well. O

One can also find bounds on the GK-dimension of such R which only depend on
qgr R, as D. Eisenbud pointed out to the author.

Corollary 3.7.2. Let R satisfy the hypotheses of the above theorem, with proj R =
(coh(X),Ox) for some projective scheme X . Let p = p(X) be the Picard number of
X. Then

1
dimX +1 < GKdim R < 2 VTJ (dim X — 1) + dim X + 1.

Proof. For any o used in the previous theorem, the number ¢ = J(o) is even by
Lemma [3.6.16, Also ¢ < p — 1 since any matrix acting on AL, (X) has rank less

Num
than p. Then by Theorem we have the corollary for equidimensional schemes.
This bound can also be used in the non-equidimensional case by using the observation

of Remark 3.6.15] O

3.8 A curious question

Let X be a proper, non-projective scheme X with automorphism X. We do not
know if there could exist an invertible sheaf £ such that £ is o-ample. This seems
unlikely, since no such £ can exist when o is the identity by Definition .

We will now give further evidence that a non-projective proper scheme probably
cannot have a g-ample invertible sheaf.

Proposition 3.8.1. Let X be a proper scheme with automorphism o and invertible

sheaf L. Then the following two statements are equivalent:

m—1

1. For any coherent sheaf F, there exists an mg such that F @ LR --- @ L 1

generated by global sections for m > my.



50

2. For any invertible sheaf H, there exists an mqg such that H ' QL& -+ @ LT

is ample for m > my.

Thus, if either condition holds, X must be projective because it has an ample invertible
sheaf.

Proof. Suppose that holds. Let C be any integral curve on X. Since C' is a
proper curve, it is projective [H2, p. 232, Exercise 5.8]. Thus there is an invertible
sheaf M on C' which has negative degree, and hence cannot be generated by global
sections. But by the hypothesis , there exists n such that

MC®£®...®£U"_1

is generated by global sections. So in particular, there is an invertible sheaf on X
which restricts to a sheaf of non-zero degree on C.

Let A' = AL,.(X). Then A® is a finitely generated free abelian group by Theo-
rem . Let H1,..., Hyx) be a Z-basis for A'. Choose my large enough so that

fori=1,...,p(X) and m > myg, the invertible sheaves £ ® --- ® L7 and
He'@Lw oL

are generated by global sections.

Since the H; are a Z-basis for A', there is some j with (H;.C') # 0. Without loss of
generality, we may assume H; has negative degree on C'. But since H;QL&- - QL
is generated by global sections for m > my, that sheaf is numerically effective. Hence
for m > my, the sheaf £ ® --- @ £ has positive degree on C. Notice that mg
does not depend on j and hence does not depend on C. So by Proposition [2.6.17]
the sheaf £® ---® £L7" " is ample for m > my. Hence X is projective.

Now let H be an arbitrary invertible sheaf and let N be an ample invertible sheaf.
Choose m; so that

NieH' oL 0L

is generated by global sections for m > m;. Tensoring with A/ and using Proposi-
tion , we have .

Now suppose that we have . Since an ample sheaf exists, the scheme X is
projective by Definition . Then - of the current proposition is the

same as — in Proposition m ]

Unfortunately, the current proof of Proposition [2.5.7 requires X to be projective,
so the previous proposition does not give that the existence of a o-ample invertible
sheaf implies that X is projective. The difficulty lies in showing that for some m,
the sheaf £L® -+ ® L7 " is generated by global sections; Proposition uses a
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Koszul resolution to do this. Assuming that £ ® ---® £ is generated by global
sections for some m, one can proceed as in [H2, p. 229, Proposition 5.3] and show

that Proposition [2.5.7]is true when X is proper. We then have

Proposition 3.8.2. Let X be a proper, non-projective scheme with automorphism o
and invertible sheaf L. Suppose that L& --- @ L7 is generated by global sections

for some m. Then L is not o-ample. 0



CHAPTER 4

Twisted Multi-homogeneous Coordinate Rings

4.1 A new generalization

Recently, Chan introduced twisted multi-homogeneous coordinate rings in [C].
Given a projective scheme X, one studies the “ampleness” of a finite collection of
invertible sheaves and automorphisms {(£;,0;)}. Via these methods, Chan studies
rings associated to twisted homogeneous coordinate rings, like the tensor product
of two such rings. In this chapter, we will generalize our previous results to the
multi-homogeneous case and thereby strengthen his findings.

Because of the notational difficulties associated with handling arbitrarily many
pairs (L;, 0;), we remind the reader that we defined a concept of invertible bimodule
L, in Definition 2.5.1} In this chapter it will be important to know how more than
one invertible bimodule acts on a coherent sheaf. Let ¢ and 7 be automorphisms
and let £ and M be invertible sheaves. Then for a coherent sheaf F,

L, (M, @F)=LsR(M@T*F)
=LRTMQc"T"F
=LRIM® (t0)"F
=(L®c*M)., 2 F.

Given two invertible bimodules £, and M., one then defines the tensor product to

be
(4.1.1) Lo@M:= (LR M),

where the second tensor product is the usual product on quasi-coherent sheaves. We
will sometimes denote the product of invertible bimodules by juxtaposition if the
meaning is clear.

We now sketch the construction of a twisted multi-homogeneous coordinate ring.

Let {(Li),,} be a collection of s invertible bimodules. For notational convenience,
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we will write L(; ;) = (£;)s,. Given these s invertible bimodules, one wishes to form
an associated twisted multi-homogeneous coordinate ring B = B(X;{L(;,}). For

an s-tuple m = (nq,...,ns) we define the multi-graded piece By as
_ 0 n N
(4.1.2) Br = H (X, L(f’gl) .. .E(S’US))

where the cohomology of an invertible bimodule is just cohomology of the underlying
sheaf. Multiplication should be given by

(4.1.3) a-b=ac™(b)

when a € By and b € By. Here 0™ (b) = 07" 0y ...0(b), as we defined the action

of automorphisms on global sections in our discussion before Equation (2.2.2]).
However, for this multiplication to be defined, the invertible bimodules must com-

mute with each other. To see this, consider the bigraded case, with bimodules

Ly, M,. Then
B(LO) = HO(X7 ‘60’)7 B(O,l) = HO<X7 ‘CO’)7 B(l,l) == HO(X7 £0M7‘>~

Given the multiplication above, we have B 0B, C Bu,) and Bi)Bao C
H°(X,M.L,). To guarantee that B = H°(X, M,L,), so that we have a bi-
graded ring, we demand L, M, = M, L,.

Examining , we see two bimodules £,, M, commute when

(4.1.4) LOoMEMTL and o1 =T0.

Thus we need sheaf isomorphisms ¢;; : L o) L(i,0) = Li0)Ljo;) for each 1 < <
j < s. It is further noted in [C] that when there are three or more bimodules, these
isomorphisms must be compatible on “overlaps” in the sense of Bergman’s Diamond

Lemma. In terms of the isomorphism ¢;; this means [C, p. 444]

(415) (i ®1z,,,)) 0 (e, , ® pi) o (0 © 1z,
- (1E(iv"i> ® Spjk) o (90@]6 ® 1[:(]»’(,],)) o (1[:(;6,(%) ® 901])

in Hom(L (k,0)L(j,0)Li00)s Llio) L o) Lkoy))- We will always assume that we have
this compatibility when forming the ring B. Summarizing, we have

Proposition 4.1.6. Let {L(;.,)} be a set of commuting invertible bimodules. As-

sume these bimodules have compatible pairwise commutation relations in the sense
of (4.1.5). Then there is a multi-graded ring B with multi-graded pieces given by

(4.1.2) and multiplication given by (4.1.3)). O
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To study these rings, a multi-graded version of g-ampleness is introduced. Since
we will again be interested in both this version of ampleness and the usual one, we
will call this (right) NC-ampleness, whereas [C] uses the terminology (right) ample-

ness. We define the ordering on s-tuples to be the standard one, i.e., (n},...,n.) >
(n1,...,ns) if nf > n; for all 7. For simplicity we write L' = Loy Ly

Definition 4.1.7. Let X be a projective scheme with s commuting invertible bi-
modules {L; s, }-

1. If for any coherent sheaf F, there exists an my such that
HI(X,FoL])=0
for ¢ > 0 and m > Mg, then the set {L(;,,)} is called right NC-ample.

2. If for any coherent sheaf F, there exists an my such that
HYX, LT @ F) =0
for ¢ > 0 and m > g, then the set {L(;,)} is called left NC-ample.

As in the case of one invertible bimodule, right and left NC-ampleness are related.

Lemma 4.1.8 (See Lemma [2.5.6)). Let X be a projective scheme with s commuting
-1
invertible bimodules {(L;),,}. Then the set {(L]" ),-1} commutes pairwise. Also,

the set {(L;)s,} is right NC-ample if and only if the set {(E;T;l)afl} is left NC-ample.

Proof. Let L,, M, be two commuting invertible bimodules. Then (4.1.4) holds.

Obviously o~ t771 = 77 167!, Now since L ® 0*M = M ® 7*L, pulling back by

(71771 we have

(7'_1)*(0'_1)*,6 ® (T—l)*M ~ (0_—1)*(7_—1>*M ® (0_—1>*£‘

So L7 = ((671)* L)1 and M7, = ((171)*M),-1 commute.
Now suppose that the set {(L;),, } is right NC-ample. Then the higher cohomology

of
Z=|F@ L)y .. (Ls)g
vanishes for all (my, ..., m;) sufficiently large. We may write
Z=FOM®- 1N,
where

N; = (L))o
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Writing out the expression in the sense of (2.5.1]), we see that each N is the tensor
product

mj_l myp _m2 l
H £0'1 0'2 Uj
j
1=0
of invertible sheaves. Now pulling back by 7 = o, ™0, ™ ... 0™ we have that N
is the tensor product
mj—l l—m.; m]‘—l
o. J“‘O.;ms ot l=—m;+1 —ms
J — i \O; ..o
T | (G
1=0 1=0

Thus we have
NT®- @NT@F = (LT )™, (L7 )™, © F).

These are the sheaves whose higher cohomology should vanish for (my, ..., ms) suf-

—1
ficient large so that {(£;’ ) -1} is left NC-ample. Clearly the argument can be
reversed. O

Notice that the commutation relation between the invertible bimodules forces the
consideration of Egj instead of just L,-1 as in the “right vs. left” proofs of
and §2.5] This is similar to the situation in Lemma [2.5.6] where one pulled back by

o™ 1 rather than o™.

We also have an analogue of Lemma [2.2.5]

Lemma 4.1.9. Let X be a projective scheme with s commuting mvgftible bimodules

{(Li)s;}. Assume the commutation relations of {(L;)s,} and of {(L;* ),-1} are com-
‘ —1

patible in the sense of (A.1F). If B' = B(X;{(L)s,}) and B = B(X;{(L]" ),-1}),

then B = (B')°P.

Proof. Proceed as in the proof of Lemma [2.2.5] with 7: B — B’ given by 7(a) =

o' ..oy (a) for a € B, n,)- -

As in §3.2] we have simpler equivalent conditions for a set of bimodules to be right
NC-ample.

Proposition 4.1.10. Let X be a projective scheme with s commuting invertible
bimodules {L; s, }. Then the following are equivalent:

1. The set {L o)} is right NC-ample.

2. For any coherent sheaf F, there exists an g such that F @ LT is generated by

global sections for m > my.
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3. For any invertible sheaf H, there exists an Mg such that |H™' @ LT| is very

ample for m > my.

4. For any invertible sheaf H, there exists an Mg such that |H™' ® LZ] is ample

form > my.
A similar statement holds for left NC-ample.

Proof. Each step of the proof of Proposition does not depend on the structure
of the grading monoid N, only that we have a partial order such that any finite set
of elements of the monoid has an upper bound. There is a concept of m > 0 in any
partial order. So the proof goes through exactly as in Proposition |3.2.2 [

We can now give a connection between right NC-ampleness and the concept of
o-ampleness for one invertible sheaf L.

Lemma 4.1.11. Let X be a projective scheme with s commuting invertible bimodules
{Liion}. Suppose that m = (nq,...,n,) € (NT)* and set 7 = o} ... o0, If the set of

bimodules is right NC-ample, then | L7}

Loy - Loyl s T-ample.

Proof. Let 'H be an invertible sheaf and let mg be such that for all m > myg, the sheaf

'H™* @ L7| is ample by Proposition [4.1.10|{).

Now there exists an integer [y such that for all [ > [y, we have In > mg. So

|'H™t @ (£Z)!] is ample. Thus by Proposition [3.2.2(f), |£Z| is T-ample. O
We then have a new version of Theorem [3.1.2]

Theorem 4.1.12. Let X be a projective scheme with s commuting invertible bi-
modules {L;5,)}. The set {Lyq} is (right) NC-ample if and only if every o; is
quasi-unipotent and there exists g € N* such that |LZ| is ample for all m > Tyg.

Proof. Suppose that {L; )} is right NC-ample. Then by Proposition 4.1.10, there
exists My € N° such that |£Z| is ample for all m > mg. Further, by the previous
L

(45, 1s T-ample when 7 = 07" ...0J* and each n; > 0. Now

lemma, L7} i

(17‘71)
recall that all the automorphisms commute and hence their actions on Ak, (X) are

Mg

7= are products

commuting matrices. Thus the eigenvalues of the product o*...co
of eigenvalues from each o;. So if o7 were not quasi-unipotent, then either 7 =
0109 ...0, OF Ty = 0205 ...0, would not be quasi-unipotent. But 7; and 75 must be
quasi-unipotent by Theorem m since the corresponding sheaves E%LU'I) e [,%S’US)
and 5(21701) . .5%&%) are Ti-ample and 7p-ample respectively. Thus each ¢; must be
quasi-unipotent.

Now suppose that every o; is quasi-unipotent and there exists mg € N° such that

|£7] is ample for all m > mg. As the o; commute, 7 = 07 ... 0, is quasi-unipotent.
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Then by Theorem [3.1.2] the invertible bimodule L 4,) ... L(s0,) is T-ample. So given
any invertible sheaf H, there exists ng € N such that

H' @ (Laoy) - Lison)' | = IH @ LY 4y - L]

(s,0)

is ample for n > ng by Proposition [3.2.2J[4]). Then for all m > (ng,ng, ...,ny) + Mg

the invertible sheaf

LY

|H ®£m|_‘H ®£1U1 . (SU)|®|£ml ’I’LO Ems TLO

101 sas

is the tensor product of two ample invertible sheaves. Hence it is ample and so the
set of invertible bimodules is right NC-ample by Proposition 4.1.10. ]

Corollary 4.1.13. Let X be a projective scheme with s commuting invertible bimod-
ules { Lo} Then {Lioy} is right NC-ample if and only if it is left NC-ample.

Proof. Suppose that {L; ,,)} is right NC-ample. Then each o; is quasi-unipotent and
there exists Mg such that [£(1 ... L7 | is ample for (mq,...,ms) > Mg. Pulling

1 _
back by o;™ .. o™, we have that [(£]' )™, ... (£ )™, | is ample. Thus by
o] o5

S

Theorem [4.1.12, the set {(£]" ),—1} is right NC-ample. So the original set {L;+,)}
is left NC-ample by Lemma [£.1.8] The argument is clearly reversible. O

Thus we may now refer to a set of bimodules as being simply NC-ample.

Note the difference between Theorems and [£.1.12] The former requires
only that |£7| is ample for one value of m, while the latter requires the product of
bimodules to be “eventually” ample. To see this stronger requirement is necessary,
let X be any projective scheme with £ any ample invertible sheaf. We need to rule
out the pair £, £~ where the bimodule action is the usual commutative one. In this
particular case, of course £! @ (£71)? is ample. But £™ ® (£L71)™2 is not ample for
all (mq, ms) sufficiently large; just fix m; and let ms go to infinity.

It is not even necessary for one of the L(;,,) to eventually be ample, since on
P! x P!, the pair O(1,0),O(0, 1) is NC-ample, where again these bimodules act only

as commutative invertible sheaves.

4.2 Ring theoretic consequences

Unlike the case of only one bimodule, the multi-graded ring B may not be noether-
ian when {L£,,} is NC-ample. In fact, [C, Example 5.1] gives a simple commutative
(and hence not finitely generated) counterexample.

Example 4.2.1. Let C' be a smooth integral curve of genus g > 0. Let £ be an
invertible sheaf of degree 0 such that no power of £ is isomorphic to O¢ and let M
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be an invertible sheaf with deg M > g — 1. The pair £, M is certainly NC-ample.
The ring B = B(X; L, M) has B(; g = 0 for i > 0 by [H2, p. 295, Lemma 1.2]. By
Riemann-Roch for curves, all other graded pieces are non-zero. Let I = B~ >0y be
the augmentation ideal. Then I/I? contains a copy of ®i>0Bi,1), which is infinite

dimensional. So B cannot be finitely generated.

However, Chan introduces an additional property for an invertible bimodule L,
on X to guarantee the noetherian condition.

(%) There exists a projective scheme Y with automorphism o and a o-equivariant
morphism f: X — Y. That is oy o f = foox. There also exists an invertible sheaf
L' onY such that L = f*L" and such that L, is o-ample.

This property is saying that for m > 0, |£| is generated by global sec-
tions, since it is a pullback of |(£’)”|, which is eventually very ample by Proposi-
tion . Note in particular that if £ is already o-ample, then L, satisfies
trivially. Using this property, one determines

Theorem 4.2.2. ([C, Theorem 5.2]) Let X be a projective scheme with commuting
wnwertible bimodules L,, M.,. Suppose that the pair is NC-ample and each bimodule
satisfies (%)), possibly for different’Y. Then B(X;L,, M) is right noetherian. [

Then combining Corollary [4.1.13| and the theorem above, we have

Theorem 4.2.3. Let X be a projective scheme with commuting invertible bimodules
Ly, M. Suppose that the pair is NC-ample and each bimodule satisfies , possibly
for different Y. Then B(X; L,, M) is noetherian. O

Now we can prove that two particularly interesting twisted multi-homogeneous
coordinate rings, a Rees ring and a tensor product, are noetherian, strengthening
the results of [C, Corollaries 5.7, 5.8]. In the latter case, we may replace his proof,
based on spectral sequences, by an easier one since our criterion simplifies
testing the NC-ampleness of the relevant pair of bimodules.

Corollary 4.2.4. Let L, be a o-ample invertible bimodule on a projective scheme
X. Let B = B(X,0,L) be generated in degree one. Then the Rees algebra B[It] =
@2 ,I"t" of B is noetherian, where I = Bsq is the augmentation ideal.

Proof. If B is generated in degree one, then B[It] has bigraded pieces
Bijy = H(X, L L)Y

since [V = @2, B1 when B is generated in degree one. The pair £,, L, is obviously
NC-ample and satisfies (). Thus Theorem applies. O
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Corollary 4.2.5. Let L, be o-ample on a projective scheme X and let M, be 7-
ample on a projective scheme Y. Then B(X,0,L)® B(Y, T, M) is noetherian.

Proof. Tt is argued in [C, Example 4.3] that
B(X,0,L)® B(Y,7, M) = B(X X Y; (77 L)ox1, (msM)1x+),

where the 7; are the natural projections. These two invertible bimodules on X x Y
obviously satisfy .

Since L, is o-ample and M. is T-ample, there is an mq such that |[£”| and | M|
is ample for all m > mg. Note that (o x 1)*77L = n7o*L and a similar formula holds
for M. Then

(71 L) (ma M),
is ample for all (my, ma) > (mg, mo) by [H2, p. 125, Exercise 5.11].

Now ¢ is quasi-unipotent and we wish to show o x 1 is as well. It is tempting to

think that as a matrix acting on A} (X X Y) one has 0 x 1 = o @ 1. However, this

Num

may not be the case, since in general Ay, (X x Y) has larger rank than Ay, (X) &
Al (Y) [H2, p. 367, Exercise 1.6]. But let Hy and Hy be ample invertible sheaves
on X and Y respectively. If o x 1 is not quasi-unipotent, then by Lemma|3.3.2] there

exists r > 1, ¢ > 0, and an integral curve C' on X X Y such that
(4.2.6) (e x )" )"(rTHx ® m3Hy).C) > er™ for all m > 0.

But

((0’ X 1)*)m(7TTHX X W;Hy) = WT(O*)mHX X W;Hy.
Since ¢ is quasi-unipotent, the intersection numbers of the right hand side with any
curve C' must be bounded by a polynomial. This contradicts (4.2.6]). So o x 1 must

be quasi-unipotent. Similarly, 1 x 7 is quasi-unipotent. Thus by Theorem 4.1.12} the
pair (77 L), 1, (m3 M), is NC-ample and thus the ring of interest is noetherian. [
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ABSTRACT
Noncommutative ample divisors

by
Dennis Shawn Keeler

Chair: J.T. Stafford

In the noncommutative geometry of Artin, Van den Bergh, and others, the twisted
homogeneous coordinate ring is one of the basic constructions. Such a ring is defined
by a g-ample divisor, where ¢ is an automorphism of a projective scheme X. Many
open questions regarding o-ample divisors have remained.

We derive a relatively simple necessary and sufficient condition for a divisor on
X to be g-ample. As a consequence, we show right and left o-ampleness are equiv-
alent and any associated noncommutative homogeneous coordinate ring must be
noetherian and have finite, integral GK-dimension. We also characterize which au-
tomorphisms o yield a g-ample divisor. We also generalize our results to the multi-
homogeneous case. Through this we see that certain related rings, like the tensor
product of twisted homogeneous coordinate rings, are noetherian.
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