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CHAPTER 1

Introduction

The interplay between algebra and geometry has been one of the most impor-

tant mathematical ideas of the last century. Through the use of “ample invertible

sheaves,” it is well known that the class of projective schemes over a field k is nearly

equivalent to the class of commutative, finitely generated, graded k-algebras. Many

theorems for projective schemes can be translated into theorems for commutative

graded rings, and vice versa. In the past ten years a study of “noncommutative pro-

jective geometry” has flourished. By using and generalizing techniques of commu-

tative projective geometry, one can study certain noncommutative rings and obtain

results for which no purely algebraic proof is known.

The most basic building block of the theory is the twisted homogeneous coordinate

ring. Let X be a projective scheme over an algebraically closed field k with σ a scheme

automorphism and let L be an invertible sheaf on X. In [ATV] a twisted version

of the homogeneous coordinate ring B = B(X, σ,L) of X was invented with the

grading B = ⊕Bm for

Bm = H0(X,L ⊗ Lσ ⊗ · · · ⊗ Lσm−1

)

where Lσ = σ∗L is the pullback of L. Multiplication on sections is defined by a · b =

ϕ(a⊗ bσm
) where a ∈ Bm, b ∈ Bn and ϕ is the natural map Bm⊗ (σm)∗Bn → Bm+n.

Soon after their seminal paper, Artin and Van den Bergh formalized much of the

theory of these twisted homogeneous coordinate rings in [AV]. In the commutative

case, the most useful homogeneous coordinate rings are associated with an ample

invertible sheaf. A generalization of ampleness was therefore needed and defined as

follows.

An invertible sheaf L is called right σ-ample if for any coherent sheaf F ,

Hq(X,F ⊗ L⊗ Lσ ⊗ · · · ⊗ Lσm−1

) = 0

for q > 0 and m � 0. Similarly, L is called left σ-ample if for any coherent sheaf F ,

Hq(X,L ⊗ Lσ ⊗ · · · ⊗ Lσm−1 ⊗Fσm

) = 0
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for q > 0 and m � 0. A divisor D is called right (respectively left) σ-ample if

OX(D) is right (respectively left) σ-ample. If σ is the identity automorphism, then

these conditions are the same as saying L is ample. Artin and Van den Bergh proved

that if L is right (respectively left) σ-ample, then B is a finitely generated right

(respectively left) noetherian k-algebra [AV].

Twisted homogeneous coordinate rings have been instrumental in the classification

of rings, such as the 3-dimensional Artin-Schelter regular algebras [ATV, St1, St2]

and the 4-dimensional Sklyanin algebras [SS]. Artin and Stafford showed that any

connected (i.e. B0 = k) graded domain of GK-dimension 2 generated by B1 is the

twisted homogeneous coordinate ring (up to a finite dimensional vector space) of

some projective curve X, with automorphism σ and (left and right) σ-ample L [AS].

Therefore any such ring is automatically noetherian!

While the concept of noncommutative schemes has grown to encompass more than

just twisted homogeneous coordinate rings (cf. [AZ]), they remain a guide for how

such a scheme ought to behave. However, fundamental open questions about these

coordinate rings and σ-ample divisors have persisted for the past decade. In [AV],

the authors derived a simple criterion for a divisor to be σ-ample in the case X is

a curve, a smooth surface, or certain other special cases. With this criterion, they

showed that B must have finite GK-dimension. In other words, they showed that B

has polynomial growth. They ask

Questions 1.0.1. [AV, Question 5.19]

1. What is the extension of our simple criterion to higher dimensions?

2. Does the existence of a σ-ample divisor imply that B has polynomial growth?

The second question was asked again after [AS, Theorem 4.1].

One would also like to know if the conditions of right and left σ-ampleness are

related and if B could be right noetherian, but not left noetherian. One might ask

for which (commutative) schemes and automorphisms a σ-ample divisor even exists

and if one can be easily found.

In this thesis, all these questions will be settled very satisfactorily. The main

results are given in Chapter 3 where we prove:

Theorem 1.0.2 (See §3.5, 3.6). The following are true for any projective scheme

X over an algebraically closed field.

1. Right and left σ-ampleness are equivalent. Thus every associated B is (right

and left) noetherian.

2. A projective scheme X has a σ-ample divisor if and only if the action of σ on
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numerical equivalence classes of divisors is quasi-unipotent (cf. §3.3 for defini-

tions). In this case, every ample divisor is σ-ample.

3. GKdim B is an integer if B = B(X, σ,L) and L is σ-ample. Here GKdim B is

the Gel’fand-Kirillov dimension of B in the sense of [KL].

These facts are all consequences of

Theorem 1.0.3 (See Remark 3.5.2). Let X be a projective scheme with auto-

morphism σ. Let D be a Cartier divisor. D is (right) σ-ample if and only if σ is

quasi-unipotent and

D + σD + · · ·+ σm−1D

is ample for some m > 0.

This is the “simple criterion” which was already known if X is a smooth surface

[AV, Theorem 1.7]. We obtain the result mainly by use of Kleiman’s numerical

theory of ampleness [K].

Besides the results above, we derive other corollaries in §3.5 and find bounds

for the GK-dimension in §3.6 via Riemann-Roch theorems. We also examine what

happens in the non-quasi-unipotent case and obtain

Theorem 1.0.4 (See Theorem 3.6.3). Let X be a projective scheme with auto-

morphism σ. Then the following are equivalent:

1. The automorphism σ is quasi-unipotent.

2. For all ample divisors D, B(X, σ,OX(D)) has finite GK-dimension.

3. For all ample divisors D, B(X, σ,OX(D)) is noetherian.

In Chapter 4 we will then generalize our results to the case of multi-homogeneous

coordinate rings in the sense of [C]. These rings will be defined more fully in that

chapter. In part, we obtain

Theorem 1.0.5 (See Corollaries 4.2.4, 4.2.5). Let X be a projective scheme

with automorphism σ and σ-ample invertible sheaf L. Let Y be a projective scheme

with automorphism τ and τ -ample invertible sheaf M. Set B = B(X, σ,L) and

B′ = B(Y, τ,M). Then

1. If B is generated in degree one, then the Rees ring B[It] = ⊕Irtr is noetherian

where I = B>0.

2. The ring B ⊗B′ is noetherian.
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Chapter 2 contains previously known results which are relevant to this thesis. In

particular, it covers the definition of twisted homogeneous coordinate rings in detail

and connects these rings to the more recent category-theoretic work of [AZ]. We

also review well-known results from classical algebraic geometry, mainly related to

intersection theory.

Chapter 3 is then the heart of the thesis, proving new results for twisted homo-

geneous coordinate rings. In particular it covers Theorems 1.0.2–1.0.4. Most of the

material in that chapter has appeared in [Ke1]. The new results of Chapter 4 pertain

to multi-homogeneous coordinate rings and will appear in [Ke2].



CHAPTER 2

Background material

2.1 Introduction

This chapter will cover previously known results pertaining to this thesis. Sec-

tion 2.2 will define twisted homogeneous coordinate rings of a projective scheme. We

save most of the analysis of these rings for §2.5.

Sections 2.3 and 2.4 describe a more general construction of “coordinate rings”

which does not require the presence of a projective scheme, but rather just a nicely

behaved abelian category. This construction greatly simplifies proofs and reveals

more of what is “really going on.” Then in §2.5, we relate twisted homogeneous

coordinate rings to these categorical coordinate rings to deduce noetherian properties

for twisted homogeneous coordinate rings.

Finally, in §2.6 we recall well-known results of classical algebraic geometry which

will be of use, particularly intersection theory and the numerical theory of ampleness.

2.2 Definitions and an example

In this section, we will introduce the twisted homogeneous coordinate ring more

formally and give a simple example. The idea of a twisted homogeneous coordinate

ring relies heavily on commutative geometry, so we must assume familiarity with

the ideas in [H2]. However, we will attempt to point the reader to the appropriate

material in that lucid book.

First, we must fix our terminology and notation for graded rings. A graded ring

is a ring R with an abelian group decomposition

R =
∞⊕
i=0

Ri

such that RiRj ⊆ Ri+j. One can also grade over Z or even other monoids, but in

this thesis, all rings will be N-graded. Usually in noncommutative geometry, these

5
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rings are k-algebras, where k is an algebraically closed field. In this case, each Ri

is a vector space over k and k ⊆ R0. If dimk Ri < ∞ for all i, then R is called

finitely graded. Note that this is automatic if R is finitely generated as a k-algebra

and dimk R0 < ∞. All graded rings in this thesis will be finitely graded. If R0 = k

and R is finitely graded, then R is defined to be connected. A graded right R-module

M is a right R-module with a decomposition

M =
∞⊕

i=−∞

Mi

such that MiRj ⊆ Mi+j. Note that M is Z-graded.

The submodule M≥s is the module

M≥s =
∞⊕
i=s

Mi.

We define M>s similarly. The module M [n] is the shifted module with graded pieces

M [n]i = Mn+i. We call this functor the degree shift.

Now we need to recall some algebraic geometry. Let X be a proper scheme over an

algebraically closed field k and let F be a coherent sheaf on X. The global sections

H0(X,F) form a finite dimensional vector space over k [H2, p. 252, Remark 8.8.1].

If L is an invertible sheaf on X, one can form a finitely graded ring B = B(X,L),

known as a homogeneous coordinate ring. The graded pieces are

Bm = H0(X,Lm),

where Lm = L⊗m. The isomorphisms Lm⊗Ln→̃Lm+n induce a natural multiplication

Bm ⊗Bn → Bm+n.

Now we will look at a twisted homogeneous coordinate ring. Again, let X be a

proper scheme and let L be an invertible sheaf. In addition, let σ be an automorphism

of X and denote the pullback σ∗F by Fσ. For notational convenience we set

(2.2.1) Lm = L ⊗ Lσ ⊗ · · · ⊗ Lσm−1

.

Let B = B(X, σ,L) be the ring with graded pieces

Bm = H0(X,Lm).

We will first briefly sketch the usual presentation of multiplication in B. Then we

will give a more detailed presentation that will show the connection with a category-

theoretic notion of homogeneous coordinate rings defined in §2.3. Recall that for

any coherent F , one has H0(X,F) ∼= Hom(OX ,F) [H2, p. 234, Proposition 6.3(c)].
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For a coherent sheaf F and integer n, we may define a k-vector space isomorphism

Hom(O,F)→̃Hom(O,Fσn
), which we also denote as σn, as follows.

Let f ∈ Hom(O,F). So f is a collection of maps f |U : O(U) → F(U), where f |U is

an O(U)-module map. Now the ring O(U) has an O(σnU)-module structure, defined

via the isomorphism ϕn : O(U)→̃O(σnU), with ϕn induced by the isomorphism

O→̃σn
∗O. The map σn(f)|U should be a map from O(U) to F(σnU)⊗O(σnU) O(U).

So we may define

σn(f)|U = (f |σnU ◦ ϕn)⊗ 1.

The vector space map σn is easily seen to be an isomorphism. We then have a

natural multiplication

(2.2.2) H0(X,Ln)⊗H0(X,Lm)→̃H0(X,Ln)⊗H0(X,Lσn

m ) → H0(X,Ln+m).

Now we will define our multiplication a second time, via composition, so that in

§2.5 we may study B with the methods of §2.3. First, note that canonicallyOX
∼= Oτ

X

for any automorphism τ . To see this, given any open U , the natural isomorphisms,

O(U)→̃O(τU)⊗O(τU) O(U) = Oτ (U),

are given by 1 7→ 1⊗ 1.

Now we also have natural isomorphisms

Lm→̃Lm ⊗Oσm

.

Thus, we may define B with

Bm = Hom(O,Lm ⊗Oσm

).

If b ∈ Bm, there is a unique corresponding map

b′ ∈ Hom(Oσn

,Lσn

m ⊗Oσn+m

)

for any n ∈ Z. We write this b′ as σn(b). If one considers σ∗ as pulling back not only

objects but also homomorphisms, then σn(b) = (σn)∗(b). Also note that this σn(b)

is nearly the same as the σn(b) in our first sketch of multiplication.

Then if a ∈ Bn, b ∈ Bm,

a ∈ Hom(O,Ln ⊗Oσn

),

b′ ≡ 1⊗ σn(b) ∈ Hom(Ln ⊗Oσn

,Ln ⊗ Lσn

m ⊗Oσn+m

).

So there is a composition map (1 ⊗ σn(b)) ◦ a. In order to be consistent with the

earlier definition of the multiplication in B we let automorphisms act on the right,

so that

(1⊗ σn(b)) ◦ a = aσn(b) ∈ Hom(O,Ln+m ⊗Oσn+m

) = Bn+m.
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Finally, we note that using the sheaf isomorphisms O→̃σn
∗O, one can show that

the multiplication (2.2.2) is naturally isomorphic to this new multiplication.

Definition 2.2.3. Let B = ⊕Bm where

Bm = H0(X,Lm ⊗Oσm

)

and define multiplication by

(2.2.4) a · b = aσn(b) ∈ Bm+n

for a ∈ Bn, b ∈ Bm, where the product aσn(b) is the one described above. We denote

B as B(X, σ,L) and call it a twisted homogeneous coordinate ring.

Lemma 2.2.5. Let X be a proper scheme with automorphism σ and invertible sheaf

L. Then B(X, σ−1,L) ∼= B(X, σ,L)op.

Proof. Set B = B(X, σ−1,L) and B′ = B(X, σ,L)op. Let · be multiplication in B and

∗ be multiplication in B′. There is a natural map τ : B → B′ given by τ(a) = σn−1(a)

for a ∈ Bn, where σn−1(a) is the pullback of a via σn−1 as above. Extend τ linearly

so it is a vector space map. It is obviously a vector space isomorphism. Finally, for

a ∈ Bn, b ∈ Bm,

τ(a · b) = τ(aσ−n(b)) = σn+m−1(a)σm−1(b),

τ(a) ∗ τ(b) = σn−1(a) ∗ σm−1(b) = σm−1(b)σn+m−1(a).

Thus τ(a · b) = τ(a) ∗ τ(b), as required.

Example 2.2.6. Let σ be an automorphism of X = P
1. Form the twisted homoge-

neous coordinate ring

B = B(P1, σ,OX(1)) =
∞⊕

m=0

H0(P1,OP1(1)⊗ · · · ⊗ OP1(1)σm−1

).

Note that since Pic(P1) ∼= Z, we have σ∗OP1(1) ∼= OP1(1), so actually Bm
∼=

H0(P1,OP1(m)).

For P
1, any automorphism σ is induced by an automorphism (also written σ)

of the fraction field k(u) of P
1 [H2, p. 46, Exercise 6.6]. Here u = y/x, thinking

of P
1 as Spec k[x/y] ∪ Spec k[y/x]. The sheaves OP1(m) can be embedded in the

sheaf of rational functions K so that H0(P1,OP1(m)) is generated by {1, u, . . . , um}
as a k-vector space. So if x = 1 ∈ B1 and y = u ∈ B1, then in the commutative

multiplication,

x2 = 1⊗ 1 7→ 1,

xy = 1⊗ u 7→ u,

y2 = u⊗ u 7→ u2 ∈ B2.



9

If q ∈ k∗, then σ : u 7→ qu is an automorphism of k(u). We have the multiplication

rules

x · y = 1⊗ σ(u) = 1⊗ qu 7→ qu,

y · x = u⊗ σ(1) = u⊗ 1 7→ u ∈ B2

where · is the new multiplication. So we have the multiplication rule x · y = qy · x.

Thus there is a homomorphism

(2.2.7) Uq
def
= k{x, y}/〈x · y − qy · x〉 ϕ→ B(P1, σ,OP1(1)).

It is easy to see that ϕ is surjective by taking a geometric point of view. Because

OP1(1) is generated by global sections, there is an exact sequence

0 → Ker f → H0(P1,OX(1))⊗OP1
f→ OP1(1) → 0.

Tensoring withOP1(n) and taking global sections, we get part of a long exact sequence

0 → H0(P1, Ker f ⊗OP1(n)) → B1 ⊗Bn → B1+n → H1(P1, Ker f ⊗OP1(n)) → 0.

The sheaves involved are the same whether we are in the commutative or noncom-

mutative case since σ∗OP1(1) ∼= OP1(1). So we have in either case H1(P1, Ker f ⊗
OP1(n)) = 0 (since we know that this particular H1 must be 0 for the commutative

multiplication maps to be surjective). Now ϕ respects the grading, each graded piece

is finite dimensional, and the dimensions match, so ϕ must be an isomorphism.

One can repeat the argument with the automorphism u 7→ u + 1. In this case,

one constructs the Jordan quantum plane

(2.2.8) UJ
def
= k{x, y}/〈x · y − y · x− x2〉.

These are the only twisted homogeneous coordinate rings of (P1,OP1(1)) generated

in degree 1, up to isomorphism. We know this because any automorphism acts on

x, y as an element of PGL(1, k) [H2, p. 151, Example 7.1.1], and hence is conjugate

to x 7→ x, y 7→ qy or x 7→ x, y 7→ x + y.

Recall that as a set, X = Proj R is all homogeneous prime ideals of R which do not

contain R>0, where R is a commutative finitely generated, finitely graded k-algebra.

If B = B(X,L) is a commutative homogeneous coordinate ring of X = Proj R,

generated in degree one with L ample, then Proj B ∼= Proj R. We would like to

make such a statement in the noncommutative case also. However, noncommutative

rings do not have many prime ideals in general. For instance consider

UJ/〈y − αx〉 = k{x, y}/〈x · y − y · x− x2, y − αx〉 ∼= k[x]/〈x2〉,
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for any α ∈ k. Thus 〈y − αx〉 is not a prime ideal. Indeed, if char k = 0, then

the only homogeneous prime ideals are 〈0〉, 〈x〉, and 〈x, y〉. By following the usual

definition of Proj as a set, one has Proj UJ = {〈0〉, 〈x〉}. Another tactic is needed.

We will use categories to make a new definition for Proj R in the next section. We

will then return to twisted homogeneous coordinate rings B in §2.5 and discuss how

they are related to this new definition of Proj.

2.3 Category-theoretic proj

As stated above, the goal of this section will be to give a new definition of Proj

which works well for noncommutative rings. Our treatment is only partial; for the

full story, see [AZ, §2–4].

Let R be a right noetherian finitely graded k-algebra. Then gr R will denote the

category of noetherian graded right R-modules. Maps in gr R are graded homomor-

phisms of degree 0. This means that if f : M → N , then f(Mi) ⊆ Ni for all i. Note

that the functor M 7→ M [n] is an autoequivalence of gr R for any n ∈ Z.

A module M is left bounded if Mi = 0 for all i � 0. Similarly, if Mi = 0 for all

i � 0, then M is right bounded. We say that M is bounded if it is both left and right

bounded. Note that any finitely generated graded R-module must be left bounded

since R is N-graded. An element m ∈ M is torsion if there exists an s such that

mR≥s = 0. Let τ(M) be the set of all torsion elements of M . The set τ(M) is easily

seen to be a submodule. If τ(M) = M , then M is called torsion and if τ(M) = 0,

then M is torsion-free.

Lemma 2.3.1. A finitely generated graded module M over a graded ring R is torsion

if and only if it is bounded.

Proof. Suppose that M is torsion and let m1, . . . ,mt be generators of M . Let j =

maxi deg(mi). Then
∑

miR≥s−deg(mi) ⊆ M≥s for s ≥ j. Since M is finitely generated,

we have equality for s � 0. But since M is torsion, the left hand side is 0 for s � 0.

So M is right bounded and since it is finitely generated, it is bounded. The converse

is easily seen to be true even if M is not finitely generated.

Let tors R be the full subcategory of all torsion modules. This is a dense subcat-

egory in the sense that for a short exact sequence

0 → M ′ → M → M ′′ → 0

one has M ∈ tors R if and only if M ′, M ′′ ∈ tors R [P, p. 165]. Thus we can form the

quotient category qgr R = gr R/ tors R. The details of this standard construction are
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in [P, p. 165–173, §4.3]. This category has the same objects as gr R. Let πM denote

the image of M in qgr R. Then we define [AZ, Equation 2.2.1]

(2.3.2) Homqgr R(πM, πN) = lim
s→∞

Homgr R(M≥s, N).

Specifically, given a map f ∈ gr R, the corresponding map f ∈ qgr R is an isomor-

phism if and only if the map f ∈ gr R has bounded kernel and cokernel. Thus, if

there exists s such that M≥s
∼= N≥s, then M ∼= N in qgr R. The converse holds since

M and N are assumed to be noetherian. Because of this, qgr R is sometimes called

tails R. We define proj R to be the pair (qgr R, πR).

Now if R is commutative and finitely generated by R1, then qgr R ∼= coh(Proj R),

where coh(X) is the category of coherent sheaves on X [H2, p. 125, Exercise 5.9].

This is the idea which can be generalized to noncommutative rings. First, we need a

few more definitions. A category C will be called k-linear if it is an abelian category

and its objects and Hom groups are k-vector spaces. For more on abelian categories,

one may consult [Mac, Chapter VIII] or [P]. For our purposes, one can think of

an abelian category as a category of modules over a ring. Of course the module

categories we work with are k-linear. Further, we will assume C is a noetherian

category. That is, for each object M in C, any set of subobjects of M has a maximal

member.

We wish to construct a ring from C, mimicking the construction of a homogeneous

coordinate ring when C = coh(X) for a proper scheme X. As we saw in the last

section, given X and an invertible sheaf L, the coordinate ring B(X,L) has the form

∞⊕
i=0

Hom(OX ,Li).

Also, the functor F 7→ F ⊗L is an autoequivalence of coh(X), so we will include an

autoequivalence in our construction.

In general, for a noetherian k-linear category C, distinguished object O, and

autoequivalence s, we define the homogeneous coordinate ring of (C,O, s) to be

B = Γ(C,O, s)≥0 = Γ(O)≥0 =
∞⊕
i=0

Hom(O, siO).

Given an object M∈ C, there is a corresponding graded right B-module of the form

M = Γ(M) =
∞⊕

i=−∞

Hom(O, siM).

The multiplication on B is given by composition of maps. More specifically, if a ∈
Bm = Hom(O, smO) and b ∈ Bn = Hom(O, snO), then

(2.3.3) a · b = sn(a) ◦ b ∈ Hom(O, sm+nO) = Bm+n.
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The module structure of M is defined similarly. Notice that in gr B, one has a natural

autoequivalence [+1], the degree shift, and

(2.3.4) Γ(M)[+1] = Γ(sM).

We are interested in situations where this induces an equivalence of categories Γ :

C→̃ qgr B, such that O 7→ πB. Since (2.3.4) automatically holds, we say the triples

(C,O, s) and (qgr B, πB, [+1]) are equivalent. More generally, two triples (C,O, s)

and (C ′,O′, s′) are equivalent if there exists an equivalence of categories θ : C→̃C ′

such that θ(O) = O′ and for any M∈ C, we have θ(sM) = s′θ(M).

In the case of C = coh(X), tensoring with an ample invertible sheaf L plays a

special role, since then one has qgr B ∼= coh(X), as mentioned above. Thus we need

a definition for an ample autoequivalence s or more specifically a pair (O, s). In

order to make the analogy clearer, consider the standard definition of ampleness in

the classical case:

Definition 2.3.5. [H2, p. 145, Theorem 7.6, p. 229, Proposition 5.3] An invertible

sheaf L on a proper scheme X is ample if one of the following three equivalent

conditions hold:

1. For all coherent sheaves F , there exists m0 such that for all m ≥ m0 and q > 0,

Hq(X,F ⊗ Lm) = 0.

2. For all coherent sheaves F , there exists m0 such that for all m ≥ m0, F ⊗ Lm

is generated by global sections.

3. There exists m such that Lm is very ample, i.e., Lm ∼= ϕ∗(OPn(1)) for some n

and some closed immersion ϕ.

We now make a definition for ample autoequivalences of C, similar to the one

above. For an autoequivalence s, there is a quasi-inverse s−1. That is, s−1 is an

autoequivalence that is a left and right adjoint of s. Given M ∈ C, we will denote

sdM as M[d] for d ∈ Z.

Definition 2.3.6. Let C be a noetherian, k-linear category with a distinguished

object O. Let s be an autoequivalence of C. The pair (O, s) is ample if both of the

following two conditions hold:

1. For all epimorphisms M � N ∈ C, there exists m0 such that for all m ≥ m0,

the natural maps

Hom(O,M[m]) → Hom(O,N [m])

are surjective.
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2. For all M ∈ C, there exist integers l0, . . . , lt ≥ 1 such that there exists an

epimorphism
t⊕

i=0

O[−li] � M.

Let us emphasize again that ampleness depends both on O and s.

Note that the first condition for ampleness is a weakening of the cohomological

definition of ampleness of an invertible sheaf L (or more formally of (OX ,− ⊗ L)).

The second condition is a weakening of the global sections definition.

Before stating the main theorem of [AZ], we need one more definition. It will be

convenient to have the notation

Hom(N, M) =
∞⊕

i=−∞

Homgr R(N, M [i])

and similarly for Extq. When N and M are finitely generated, we have Hom(N, M) ∼=
HomR(N, M), the group of all R-module homomorphisms, since any homomorphism

can be decomposed into a sum of homomorphisms which preserve the grading, but

may shift degrees. In our arguments, we will use whichever representation is more

convenient.

Definition 2.3.7. Let R be a finitely graded right noetherian k-algebra. The ring

R is said to satisfy χj if for all finitely generated modules M and all l ≤ j,

dimk Extl(R/R>0, M) < ∞.

If R satisfies χj for all j ≥ 0, we say R satisfies χ.

The authors of [AZ] discuss many rings which satisfy χ1. Perhaps most impor-

tantly, any commutative noetherian graded k-algebra satisfies χ1 and, in fact, χ [AZ,

Proposition 3.11(c)].

We now state a specialized version of the main theorem of [AZ].

Theorem 2.3.8. ([AZ, Theorem 4.5]) Let C be a noetherian k-linear category with

distinguished object O and autoequivalence s. Suppose that

1. dimk Hom(O,M) < ∞ for all M∈ C.

2. The pair (O, s) is ample.

Then B = Γ(O)≥0, the homogeneous coordinate ring of (C,O, s), is a right noether-

ian, finitely graded k-algebra satisfying χ1. There is an equivalence of triples

(C,O, s) ∼= (qgr B, πB, [+1]).
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Conversely, suppose that R is a right noetherian, finitely graded k-algebra satis-

fying χ1. Then (qgr R, πR, [+1]) is ample. Also, R and Γ(qgr B, πB, [+1])≥0 differ

only by a finite dimensional vector space.

We will only prove part of this theorem, namely that Γ(C,O, s)≥0 is right noether-

ian. We first need a standard lemma.

Lemma 2.3.9. Let R be a graded ring. The ring R is right noetherian if and only

if every homogeneous right ideal of R is finitely generated.

Proof. The proof is standard and left as an exercise for the reader.

Proposition 2.3.10. Let (C,O, s) be as in the first paragraph of Theorem 2.3.8.

Then B = Γ(C,O, s)≥0 is right noetherian.

Proof. Let N be a homogeneous right ideal of B. Any homogeneous element x ∈
Nr ⊂ Br is an element of Hom(O,O[r]). Thus x induces a map fx ∈ Hom(O[−r],O).

Given any finite set X of homogeneous elements of N , let

PX =
⊕
x∈X

O[−rx],

where rx = deg(x). There is a map fX : PX → O given by the direct sum of the fx

for x ∈ X.

Set NX = Im(fX) ⊂ O. Since O is noetherian, there is a (unique) maximal NX .

Fix a set X corresponding to the maximal NX , writing N = NX and P = PX .

Further, set

N ′′ = Γ(N )≥0, P ′′ =
⊕
x∈X

B[−rx], N ′ =
∑
x∈X

xB.

Note that N ′ = Im(P ′′ → B) where the map is given on each component B[−rx] by

left multiplication by x. Also, N ′ ⊆ N .

Let y ∈ Nr for some r. Since N is maximal, Im(fy) ⊆ N . Thus

y ∈ Hom(O, Im(fy)[r]) ⊆ Hom(O,N [r]) = Γ(N )r = N ′′
r

and so N ⊆ N ′′.

By definition of N , there is an epimorphism P � N . Since the pair (O, s)

is ample, the maps Hom(O,P [n]) → Hom(O,N [n]) are onto for n � 0. Thus

Γ(N )/ Im Γ(P) is right bounded and

N ′′
≥n = Γ(N )≥n = Im Γ(P)≥n

for n � 0.
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Now consider typical summands O[−r] and B[−r] of P and P ′′ respectively. We

have Γ(O[−r])n = Hom(O,O[−r + n]) = B−r+n if n ≥ r. And so for n ≥ maxx rx,

we have Γ(P)n = P ′′
n . Thus Γ(P)/P ′′ is right bounded.

Thus we have a chain

N ′′ ⊇ Im Γ(P)≥0 ⊇ Im P ′′ = N ′

with each factor bounded. So N ′′/N ′ is bounded, hence a finite dimensional k-vector

space, hence a right noetherian B0-module. Thus the submodule N/N ′ is a right

noetherian B0-module. But it is then also a finitely generated right B-module. By

construction, N ′ is finitely generated. So N is finitely generated, which is what we

wished to prove.

We have chosen to work with the category of noetherian modules since it is more

convenient for our purposes. However, the main ideas of this section can be made

in terms of Gr R, the category of all graded R-modules. A class of objects C ′ in a

category C generates C if for any M,N ∈ C and f, g ∈ HomC(M,N ) with f 6= g,

there exists P ∈ C′ and h ∈ HomC(P ,M) such that fh 6= gh [P, p. 4]. The

subcategory gr R generates Gr R. To see this, suppose that f, g : M → N with

f 6= g. Choose m ∈ M with f(m) 6= g(m). The module P = mR is obviously

finitely generated and if h : P → M is the natural injection, we have fh 6= gh.

If Tors R is the full subcategory of torsion modules in Gr R, then tors R generates

Tors R. (We emphasize here that R is assumed to be right noetherian; otherwise,

Tors R must be defined as the category of submodules τ(M) ⊂ M ∈ Gr R such

that τ(M) is the smallest submodule with M/τ(M) torsion-free [AZ, p. 233].) One

can then form the quotient category QGr R = Gr R/ Tors R and qgr R determines

QGr R up to equivalence [AZ, Proposition 2.3]. Thus Theorem 2.3.8 can be expressed

without essential change in terms of a locally noetherian category C (meaning it

has a noetherian generating subcategory) and QGr R. So Proj R is defined to be

(QGr R, πR).

2.4 Comments on χ

Let us say a few words about the importance of the condition χ1. We will present

a special case where it is clear that the condition χ1 is necessary to achieve the results

of Theorem 2.3.8. Consider the exact sequence

0 → R≥1 → R → R/R≥1 → 0.

Choose a torsion-free noetherian right R-module M . Applying Hom(−, M), there is

an exact sequence

0 → Hom(R/R≥1, M) → M → Hom(R≥1, M) → Ext1(R/R≥1, M) → 0.
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Since M is torsion-free, Hom(R/R≥1, M) = 0. For any n > 0, there is a natural

map ϕ : Hom(R≥1, M) → Hom(R≥n, M). Suppose that f ∈ Hom(R≥1, M) goes to

the zero map, i.e., f(R≥n) = 0. If r ∈ Ri, 1 ≤ i < n, then f(r)R≥n−i = 0. Since M

is torsion-free, we must have f(r) = 0, i.e., f is the zero map. Thus ϕ is an injection.

So by (2.3.2), Hom(R≥1, M) injects into Γ(πM).

Now if χ1 does not hold for M , then Ext1(R/R≥1, M) is not bounded. But then

the cokernel of the map M → Γ(πM) cannot be bounded, so we do not get the

desired isomorphism in qgr R. In particular, if R is torsion-free and χ1 fails for

M = R, then R and Γ(πR)≥0 differ by an infinite dimensional vector space.

Example 2.4.1. Unfortunately, not all right noetherian graded k-algebras satisfy

χ1. Let k be a field of characteristic 0 and U = UJ = k{x, y}/〈xy − yx− x2〉, as in

Example 2.2.6, and let R = k + Uy. In [StaZ, §2] it is shown that R does not satisfy

χ1. In addition, R is (left and right) noetherian. However, one still has that the

degree shift [+1] is ample and (qgr R, πR, [+1]) ∼= (coh(P1),OP1 , s) for some s. Thus

the coordinate ring Γ(qgr R, πR, [+1])≥0 has χ1 and in fact this ring is UJ [StaZ,

Proposition 2.7].

It is not the case that the degree shift is ample for any ring. If one takes R = k+Uy

as above and T = R[z] with z a central indeterminate, then T is noetherian by

the Hilbert Basis Theorem. Also, Γ(qgr T, πT, [+1])≥0 = T [StaZ, Corollary 2.11].

However, T does not satisfy χ1 and thus (πT, [+1]) cannot be ample.

One may wonder what effect the stronger condition χ has on a ring. The authors

of [AZ] show

Theorem 2.4.2. ([AZ, Corollary 7.5]) Let (C,O, s) be as in the first paragraph of

Theorem 2.3.8. Let Hq(M) = Extq(O,M) for q ≥ 0 and M∈ C. Assume that

1. dimk Hq(M) < ∞ for all q ≥ 0 and all M.

2. For each M, there exists m0 such that Hq(M[m]) = 0 for all m ≥ m0 and

q > 0.

Then Γ(C,O, s)≥0 satisfies χ.

Conversely, if R is a right noetherian, finitely graded k-algebra which satisfies χ,

then (qgr R, πR, [+1]) satisfies the conditions (1) and (2) of the first paragraph.

We will see that the twisted homogeneous coordinate rings B(X, σ,L), the main

objects of study in this thesis, do satisfy χ. However, there are right noetherian rings

R which satisfy χ1 but not χ2 [StaZ, Corollary 4.4].
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2.5 Autoequivalences of coh(X)

We now wish to show the connection between the twisted homogeneous coordinate

rings of §2.2 and the category-theoretic coordinate rings of §2.3. To do so, let us

discuss the possible autoequivalences of the category coh(X) where X is a proper

scheme over k, not necessarily projective. Such an X is also called a complete scheme.

Since X is proper, we know dimk Hq(X,F) < ∞ for all q ≥ 0 and any coherent F
[H2, p. 252, Remark 8.8.1]. In §3.2 we will see that non-projective schemes are not

interesting for our purposes, so the reader may wish to think of X as being projective.

The autoequivalences of coh(X) can be given in terms of bimodules in a category,

which for us will mean the following special objects:

Definition 2.5.1. Let X be a proper scheme with automorphism σ and invertible

sheaf L. An invertible bimodule is the symbol Lσ with the following actions on a

coherent sheaf F :

1. Lm
σ ⊗F = L ⊗ Lσ ⊗ · · · ⊗ Lσm−1 ⊗Fσm

,

2. F ⊗ Lm
σ = F ⊗ L⊗ Lσ ⊗ · · · ⊗ Lσm−1

.

The symbol Lσ is called an invertible bimodule because on an open set U ⊆ X,

Lσ acts like an OX(U)-module on the right, but as as OX(σU)-module on the left.

There is a more general theory of OX-bimodules, however to go into this theory

would take us too far afield; see [AV, §2] for the general definition.

Consider the following functor s = Lσ ⊗ − from coh(X) to itself. So for F ∈
coh(X), we set s(F) = L⊗Fσ. If f : F → G, then s(f) is the natural map 1⊗σ(f).

One has

smF = Lm ⊗Fσm

,

where Lm is given by the formula (2.2.1). Recall that canonically, Oσ
X
∼= OX . So,

if t = ((Lσ−1
)−1)σ−1 ⊗ −, then st ∼= ts ∼= 1coh(X) canonically. Therefore s is an

autoequivalence.

We now examine the coordinate ring R = Γ(C,O, s)≥0. One has a multiplication

as in (2.3.3), setting Rn = Hom(OX , snOX). For a ∈ Rn, b ∈ Rm,

a · b = sm(a) ◦ b.

Now

sm(a) = 1⊗ σm(a) ∈ Hom(Lm ⊗Oσm

,Lm ⊗ Lσm

n ⊗Oσn+m

),

b ∈ Hom(O,Lm ⊗Oσm

).
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Thus

(2.5.2) a · b = sm(a) ◦ b ∈ Hom(O,Lm+n ⊗Oσm+n

) = Rm+n.

In the notation of (2.2.4), we write this as σm(a)b.

This multiplication is closely related to the one seen in (2.2.4) for twisted homo-

geneous coordinate rings. First, R = B(X, σ,L) as vector spaces over k. Comparing

(2.5.2) and (2.2.4) one sees that

Proposition 2.5.3. ([AZ, p. 262]) Let X be a proper scheme with automorphism

σ and invertible sheaf L. Let B = B(X, σ,L) and R = Γ(coh(X),OX ,Lσ ⊗ −)≥0.

Then R ∼= Bop.

The reason for our giving more than one presentation for the multiplication is his-

torical; in [AV], the multiplication is defined as in (2.2.2), whereas the multiplication

above is more natural in terms of §2.3, which follows [AZ].

For the most part, we simply need that the left action of Lσ is an autoequivalence,

as explained above, so that we may use Theorem 2.3.8. However, to make some

category-theoretic deductions in §3.7, we will use

Proposition 2.5.4. ([AZ, Corollary 6.9], [AV, Proposition 2.15]) Let X be a proper

scheme. Then any autoequivalence s of coh(X) is naturally isomorphic to Lσ ⊗ −
for some automorphism σ and invertible sheaf L.

Thus, by studying the twisted homogeneous coordinate rings, we are studying all

possible coordinate rings Γ(coh(X),OX , s)≥0.

We now define a concept of ampleness for L and σ. This is the definition given

in [AV]. We will then explain how this implies ampleness of the pair (OX ,Lσ ⊗ −)

in the sense of Definition 2.3.6.

Definition 2.5.5. Let X be a proper scheme with automorphism σ and invertible

sheaf L.

1. We say L is right σ-ample if for all coherent sheaves F , there exists m0 such

that

Hq(X,F ⊗ L⊗ · · · ⊗ Lσm−1

) = 0,

for m ≥ m0 and q > 0.

2. We say L is left σ-ample if for all coherent sheaves F , there exists m0 such that

Hq(X,L ⊗ · · · ⊗ Lσm−1 ⊗Fσm

) = 0,

for m ≥ m0 and q > 0.
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These two conditions are not unrelated. In fact, one of our main goals in this

thesis is to show they are equivalent. But for now, we have

Lemma 2.5.6. ([St3, p. 31]) An invertible sheaf L is right σ−1-ample if and only if

L is left σ-ample.

Proof. Let L be right σ−1-ample. Then for any coherent sheaf F , there exists an m0

such that

Hq(X,Fσ ⊗ L⊗ · · · ⊗ Lσ−m+1

) = 0

for q > 0 and m ≥ m0. Since cohomology is preserved under automorphisms, pulling

back by σm−1, we have

Hq(X,L ⊗ · · · ⊗ Lσm−1 ⊗Fσm

) = 0

for q > 0 and m ≥ m0. So L is left σ-ample. Clearly, the argument can be reversed.

As promised, these concepts of σ-ampleness imply the categorical ampleness. Sup-

pose that s = Lσ⊗− and L is left σ-ample. Let F
ϕ
� G be an epimorphism of coher-

ent sheaves. Then H1(X, sm(Ker ϕ)) = 0 for m � 0, so H0(X, smF) → H0(X, smG)

is an epimorphism for m � 0. Thus (OX , s) satisfies condition (1) of Definition 2.3.6.

For condition (2) we need

Proposition 2.5.7. ([AV, Proposition 3.2]) Let X be a projective scheme with auto-

morphism σ and invertible sheaf L. Suppose that L is left σ-ample. Then for any

coherent sheaf F , there exists an integer m0 such that

L ⊗ · · · ⊗ Lσm−1 ⊗Fσm

is generated by global sections for m ≥ m0.

Note that a similar statement holds for right σ-ample via Lemma 2.5.6, since the

proposition will hold for L left σ−1-ample.

Now given this proposition, we have that smF is generated by global sections for

some large m. Then there is an epimorphism ⊕OX � smF and hence an epimor-

phism ⊕s−mOX � F . So we obtain

Proposition 2.5.8. Let X be a projective scheme with automorphism σ and in-

vertible sheaf L. If L is left σ-ample, then (OX ,Lσ ⊗ −) is ample in the sense of

(2.3.6).

Theorem 2.5.9. ([AV, Theorem 1.4]) Let X be a projective scheme with auto-

morphism σ and invertible sheaf L. Let B = B(X, σ,L). If L is right σ-ample, then

B is a right noetherian, finitely generated k-algebra. If L is left σ-ample, then B is

a left noetherian, finitely generated k-algebra.
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Proof. As noted in Proposition 2.5.3, we have Bop = Γ(coh(X),OX , s)≥0 with s =

Lσ ⊗ −. If L is left σ-ample, then (OX , s) is ample. Thus by Theorem 2.3.8, B is

left noetherian.

If L is right σ-ample, then L is left σ−1-ample by (2.5.6). So B(X, σ−1,L) ∼= Bop

is left noetherian and hence B is right noetherian.

Remark 2.5.10. The main results of this thesis will be proved in terms of Cartier

divisors rather than line bundles. However, the reader should note that, unravelling

the definitions, one has OX(σD) ∼= OX(D)σ−1
. It is therefore notationally more

convenient to work with a right σ−1-ample line bundle L = OX(D), since then D is

right σ−1-ample if and only if

Hq(X,F ⊗OX(D + σD + · · ·+ σm−1D)) = 0

for all q > 0 and m � 0. Obviously, this will have no effect on the final theorems.

Throughout this thesis, we will use the notation ∆m = D + σD + · · ·+ σm−1D.

Before ending this section, let us say a few more words about notation. In Chap-

ter 3, we will deal with only one σ-ample invertible sheaf L. It will be important

to consider the actual invertible sheaves L ⊗ · · · ⊗ Lσm−1
, thus we will not use the

invertible bimodule notation in that chapter. In Chapter 4, however, we must deal

with several pairs of invertible sheaves L and automorphisms σ. Thus it will be more

convenient to use the compact notation Lσ. In that chapter, when we wish to speak

of the invertible sheaf OX ⊗ Lm
σ we will use the following notation.

Notation 2.5.11. Given an invertible bimodule Lσ, the notation |Lσ| will mean the

underlying invertible sheaf OX ⊗ Lσ. For example, given Lσ, one has

|Lm
σ | = L ⊗ Lσ ⊗ · · · ⊗ Lσm−1

.

It is often useful to replace L with |Lm
σ | and σ with σm to assume L and σ have

a desired property. Using standard techniques, one can also show

Lemma 2.5.12. ([AV, Lemma 4.1]) Let L be an invertible sheaf on X. Given a

positive integer m, L is right σ-ample if and only if |Lm
σ | is right σm-ample.

Proof. We follow the method of [H2, p. 154, Proposition 7.5]. If L is right σ-ample,

it is clear that |Lm
σ | is right σm-ample.

Conversely, suppose that |Lm
σ | is right σm-ample. Then by definition, given a

coherent sheaf F , there exists n0 such that the higher cohomology of F ⊗ (Lm
σ )n

vanishes for n ≥ n0. Similarly, for j = 1, . . . ,m − 1, there exists nj such that

the higher cohomology of F ⊗ Lj
σ ⊗ (Lm

σ )n vanishes for n ≥ nj. If we take N =

m · max{nj|j = 0, . . . ,m − 1}, then the higher cohomology of F ⊗ Ln
σ vanishes for

n ≥ N . Thus L is right σ-ample.
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2.6 Intersection theory and ampleness

In this section, we will review commutative algebraic geometry results which are

pertinent to this thesis. Let us briefly summarize for the benefit of the reader already

well-versed in the theory.

Recall that throughout this thesis, we will work in the case of a proper scheme

X over an algebraically closed base field k of arbitrary characteristic. Usually, X

will be projective. A variety will mean a reduced, irreducible scheme. All divisors

will be Cartier divisors unless otherwise stated. For a projective scheme, the group

of Cartier divisors, modulo linear equivalence, is naturally isomorphic to the Picard

group of invertible sheaves [H2, p. 144, Remark 6.14.1]. Since much of our work will

entail intersection theory, we will often work from the divisor point of view. Several

times we use the facts that the ample divisors form a cone, that ampleness depends

only on the numerical equivalence class of a divisor, and that ampleness is preserved

under an automorphism. Hence the cone of ample divisors and its closure, the cone of

numerically effective divisors, are invariant under an automorphism. As a reference

for these and related facts we suggest [K]. A short review also appears in [D].

Let us now give more details. Since this material is more standard than that on

twisted homogeneous coordinate rings, we will only prove a few selected results in

order to present the flavor of the theory.

We recall some facts about invertible sheaves on a proper scheme X.

Proposition 2.6.1. ([H2, p. 169, Exercise 7.5]) Let X be a proper scheme with

invertible sheaves L and M.

1. If L is ample and M is generated by global sections, then L ⊗M is ample.

2. If L is ample and M is arbitrary, then M⊗Ln is very ample for n � 0.

3. If L and M are both ample, then so is L ⊗M.

4. If L is very ample and M is generated by global sections, then L ⊗M is very

ample.

The following proposition is invaluable for induction arguments on projective

schemes. We use the shorthand F(−H) for F ⊗OX(−H).

Proposition 2.6.2. Let X be a projective scheme with coherent sheaf F and invert-

ible sheaf L. Suppose that L is ample and generated by global sections. Then there

exists s ∈ H0(X,L) such that there is an exact sequence

0 → F ⊗L−1 −⊗s→ F → F ⊗OH → 0,
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where H is the Cartier divisor defined by s = 0. Further, dim(SuppF ⊗ OH) <

dim(SuppF).

Proof. One possible proof appears in [Mu, Theorem 2]. However, we wish to demon-

strate the utility of the category equivalence between coh(Proj S) and qgr S.

For any s ∈ H0(X,L) we have an exact sequence

F(−H)
−⊗s→ F → F ⊗OH → 0,

so we need to show that the map given by − ⊗ s is injective for sufficiently general

s.

Let B = B(X,L). Under the category equivalence explained in Theorem 2.3.8

or [H2, p. 125, Exercise 5.9], we may choose a torsion-free B-module M with M =

⊕H0(X,F⊗Lm) corresponding to F and M [−1] corresponding to F⊗L−1. Tensoring

with s ∈ H0(X,L) then corresponds to multiplication by a homogeneous degree one

element xs of B.

Now since L is generated by global sections, there is an exact sequence

0 → Ker f → OX ⊗B1 → L → 0.

Tensoring with Lm and taking global sections, we see the map Bn ⊗ B1 → Bn+1 is

surjective for n � 0. So suppose that for all x ∈ B1 the multiplication m 7→ mx,

with m ∈ M [−1], is not injective. Then multiplication by any x ∈ Bn is not injective

for n � 0.

And so there exists n0 such that for all x ∈ B≥n0 , multiplication by x is not

injective. But then there exists m ∈ M [−1] with m 6= 0 such that mB≥n0 = 0 [B,

p. 266, Proposition 8]. This contradicts the fact that M is torsion-free. So there

must be xs ∈ B1 with m 7→ mxs injective.

To see that dim(SuppF ⊗ OH) < dim(SuppF), consider each irreducible com-

ponent Xi of SuppF . The local ring Si at the generic point of Xi is a local ring

of dimension zero. Thus any element in the maximal ideal must be nilpotent. So

tensoring with s must correspond to multiplication by an element outside of the

maximal ideal, hence an invertible element. So at the generic points of each Xi, ten-

soring with s is an isomorphism. Hence the cokernel is 0 in an open subset of each

Xi and so Supp(F ⊗ OH) ∩ Xi ( Xi. Thus Supp(F ⊗ OH) has smaller dimension

than Supp(F) on each Xi and hence on all of X

The following proposition can be thought of as a weak version of the Riemann-

Roch Theorem. It is necessary to define the intersection numbers used in this thesis.

We recall that the Euler characteristic χ(F) of a coherent sheaf F is defined as

χ(F) =
∞∑

q=0

(−1)q dim Hq(X,F).
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This formula makes sense when X is proper (so each Hq is finite dimensional [H2,

p. 252, Remark 8.8.1]). Further, Hq(X,F) = 0 for q > dim(SuppF) [H2, p. 208,

Theorem 2.7]. We also recall that a numerical polynomial is a polynomial with

rational coefficients which is integer valued on integers.

Proposition 2.6.3. ([K, p. 295, Theorem (Snapper)]) Let X be a proper scheme.

Let F be a coherent sheaf with dim(SuppF) = s. Let L1, . . . ,Lt be invertible sheaves

on X. Then

χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t )

is a numerical polynomial in the ni of total degree ≤ s.

Proof. For simplicity, we will only prove this when X is projective and use the method

of [D, Proposition 4.1]. In this case, any invertible sheaf L = M⊗N−1 for some very

ample invertible sheaves M,N by Proposition 2.6.1(2). We may therefore replace

each Lni
i by Mni

i ⊗N−ni
i and assume that each Li is very ample.

We proceed by induction on dim(SuppF) = s. If F = 0, then the result is

obvious. For s ≥ 0, by standard methods we may assume SuppF is a variety. So if

s = 0, we may assume that SuppF is a point. Then the restriction of any invertible

sheaf to SuppF is the trivial invertible sheaf, i.e., OSuppF , so again the result is

obvious.

For s > 0, write L1 = OX(H) and FH = F ⊗OH . By Proposition 2.6.2, there is

an H so that we have an exact sequence

0 → F ⊗L−1
1 → F → FH → 0

with dim(SuppFH) < s. Tensoring with the Lni
i and calculating χ we have

χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t )− χ(F ⊗ Ln1−1
1 ⊗ · · · ⊗ Lnt

t ) = χ(FH ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t )

The right hand side is a numerical polynomial of total degree < s. Now by induction

on t, we may assume χ(F ⊗Ln2⊗· · ·⊗Lnt) is a polynomial of total degree ≤ s. The

result then follows by taking the telescoping sum over n1.

Definition 2.6.4. Let a be the coefficient of n1 . . . nt in the polynomial above. Then

a is an integer due to general facts regarding numerical polynomials. The intersection

number (L1. . . . .Lt.F) is this number a. If Li
∼= O(Hi), we also write this number as

(H1. . . . .Ht.F). If F = OV for some subscheme V , then we also write this number

as (L1. . . . .Lt.V ) = (L1. . . . .Lt)V , or similarly with the Hi replacing Li. If V = X,

then we write (L1. . . . .Lt)V = (L1. . . . .Lt).

The following properties of the intersection numbers come from appropriate short

exact sequences. The proofs are in [K, p. 296–301].
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Proposition 2.6.5. The number (L1. . . . .Lt.F) = 0 if dim(SuppF) < t. Also,

(F) = dim H0(X,F) if dim(SuppF) = t = 0.

Proposition 2.6.6. The number (L1. . . . .Lt.F) = 0 is a symmetric t-linear form in

the Li.

Proposition 2.6.7. If 0 → F ′ → F → F ′′ → 0 is exact, then

(L1. . . . .Lt.F) = (L1. . . . .Lt.F ′) + (L1. . . . .Lt.F ′′).

Proposition 2.6.8. Assume that H is an effective divisor such that L1
∼= O(H) and

that there exists an exact sequence

0 → F(−H) → F → FH → 0,

where FH = F ⊗ OH . Then (L1. . . . .Lt.F) = (L2. . . . .Lt.FH). In particular, if

dim X ≤ t, then (L1. . . . .Lt) = (L2. . . . .Lt.H).

If i : W ↪→ X is the inclusion of a closed subscheme, we use the notation L|W =

i∗L.

Proposition 2.6.9. If W is a closed subscheme with SuppF ⊆ W ⊆ X, then

(L1. . . . .Lt.F)X = (L1|W . . . . .Lt|W .F)W . Thus in particular, (L1. . . . .Lt.W )X =

(L1|W . . . . .Lt|W )W .

Corollary 2.6.10. Let V = SuppF , with irreducible components V1, . . . , Vj. Let

Fi = F ⊗OVi
. Then

(L1. . . . .Lt.F) =
∑

i

(L1. . . . .Lt.Fi).

Corollary 2.6.11. Let X be irreducible with dim X ≤ t. Let x ∈ X be the generic

point. Set l = lengthOX,x
Fx. Then (L1. . . . .Lt.F) = l(L1. . . . .Lt.OXred

).

Proposition 2.6.12. If f : X ′ → X is a morphism with t ≥ max{dim X ′, dim X},
then

(f ∗L1. . . . .f
∗Lt)X′ = deg f(L1. . . . .Lt)X .

Proposition 2.6.13. The intersection form (L1. . . . .Lt.F) is uniquely defined by the

results of Propositions 2.6.5–2.6.12.

We will now look at how these intersection numbers relate to the ampleness of

invertible sheaves. These are the main ideas we use in this thesis. We begin with

the well-known Nakai criterion for ampleness.
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Theorem 2.6.14. ([H1, p. 30, Theorem 5.1]) Let X be a proper scheme with invert-

ible sheaf L. The sheaf L is ample if and only if (Ls.V ) > 0 for all s and all closed

subvarieties V ⊆ X with dim V = s.

The following proposition regarding ample invertible sheaves are now easy to see,

given the Nakai criterion. The reader should be warned, however, that the proof

of the Nakai criterion depends on some of these propositions, so our reasoning is

circular. To actually prove this proposition, one must use cohomological methods

[H2, p. 232, Exercise 5.7] or [H1, pp. 23–26].

Proposition 2.6.15. Let X be a proper scheme with invertible sheaf L.

1. If L is ample on X, then L|V is ample on V for any closed subscheme V ⊂ X.

2. L is ample on X if and only if L|Xred
is ample on Xred.

3. Let X be reduced. Then L is ample on X if and only if L|Xi
is ample on Xi for

each irreducible component Xi.

Also using the Nakai criterion and Proposition 2.6.12, one can show

Proposition 2.6.16. ([H2, p. 232, Exercise 5.7]) Let f : Y → X be a finite morphism

of proper schemes. If L is ample on X, then f ∗L is ample on Y . If f is finite and

surjective, and if f ∗L is ample on Y , then L is ample on X. In particular, ampleness

is preserved under automorphisms.

One should be warned that in the Nakai criterion, it is not sufficient that (L.C) > 0

for all integral curves C ⊂ X [K, p. 326, Example 2]. However, we do have

Proposition 2.6.17. ([H1, p. 27, Proposition 4.6]) Let X be a proper scheme with

invertible sheaf L. If L is generated by global sections and L|C is ample for all integral

curves C, then L is ample. In other words, if L is generated by global sections and

(L.C) > 0 for all curves C, then L is ample.

The property of having non-negative intersection with every curve C is of central

importance to our work. So we define

Definition 2.6.18. An invertible sheaf L (respectively divisor D) is numerically

effective if (L.C) ≥ 0 (respectively (D.C) ≥ 0) for all integral curves C ⊂ X.

The concept of numerical effectiveness behaves better than ampleness. It is clear

that the statements of Proposition 2.6.15 hold for numerically effective divisors, since

the concept only depends on the integral curves in X. We have an even stronger

version of Proposition 2.6.16.
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Proposition 2.6.19. ([K, p. 303, Proposition 1]) Let f : Y → X be any morphism

of proper schemes. If L is numerically effective on X, then f ∗L is numerically

effective on Y . If f is surjective, and if f ∗L is numerically effective on Y , then L is

numerically effective on X. In particular, numerical effectiveness is preserved under

automorphisms.

So we see that any invertible sheaf L generated by global sections is numerically

effective since L = ϕ∗(OPn(1)) for some morphism ϕ : X → P
n [H2, p. 150, Theo-

rem 7.1].

One particularly nice fact about numerically effective invertible sheaves, which

make them “better” than ample invertible sheaves, is that having non-negative in-

tersection with curves is enough to force non-negative intersection with all closed

subvarieties.

Proposition 2.6.20. ([K, p. 320, Theorem 1]) Let X be a proper scheme. Let F
be coherent with dim(SuppF) = t. If L1, . . . ,Lt are numerically effective invertible

sheaves, then (L1. . . . .Lt.F) ≥ 0. So in particular, L is numerically effective if and

only if (Ls.V ) ≥ 0 for all s and all subvarieties V ⊂ X with dim V = s.

Recall that Pic(X) is the Picard group of X, the abelian group of isomorphism

classes of invertible sheaves on X, with addition given by the tensor product. In-

tersecting with curves also gives an extremely useful equivalence relation on Pic(X).

This will allow us to reduce many questions to facts about finite dimensional R-vector

spaces and cones in R
n.

Definition 2.6.21. Two invertible sheaves L1,L2 are called numerically equivalent

if (L1.C) = (L2.C) for all integral curves C ⊂ X. Numerical equivalence for divisors

is defined similarly. We denote this equivalence relation by ≡ and set A1
Num(X) =

Pic(X)/ ≡. We let A1
R

= A1
R
(X) = A1

Num(X) ⊗ R. When speaking of an invertible

sheaf L ∈ A1
R
, formally we mean the equivalence class of L. We sometimes denote

this equivalence class as [L] for emphasis.

Remark 2.6.22. Clearly, the property of being numerically effective only depends on

the numerical equivalence class. We will see in Theorem 2.6.29 that this is true for

ampleness as well. So when speaking of these properties, there is no danger in writing

L = [L]. However, very ampleness is not preserved by numerical equivalence [H2,

p. 368, Exercise 1.12].

Theorem 2.6.23. ([K, p. 305, Remark 3]) The group A1
Num(X) is a finitely generated

free abelian group.

This theorem is known as the Theorem of the Base or the Neron-Severi Theorem.

For a proof when X is a nonsingular projective complex surface, see [H2, p. 367,
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Exercise 1.8]. If X is a nonsingular projective complex variety, another method is

explained in [H2, p. 446–447, Appendix B, §5].

The rank of A1
Num(X) is known as the Picard number of X and is denoted ρ(X).

So A1
R

is a ρ(X)-dimensional real vector space.

Definition 2.6.24. Let V be an n-dimensional vector space over R. A subset κ ⊂ V

is a cone if

1. κ + κ ⊂ κ,

2. aκ ⊂ κ for all a ∈ R>0.

The cone κ is pointed if κ ∩ −κ = {0}. The cone κ is closed or open if it is closed

or open as a topological subspace of V ∼= R
n. The cone κ is solid if the interior

Int(κ) 6= ∅.

We recall two well-known facts from cone theory.

Lemma 2.6.25. ([V, p. 1209]) Let κ be a closed pointed cone in R
n. Then v ∈ Int(κ)

if and only if, for all u ∈ R
n, there exists m0 such that mv−u ∈ κ for all m ≥ m0.

Lemma 2.6.26. ([K, p. 324, Lemma 1 (Caratheodory)]) Let κ be a cone in R
n

generated by possibly infinitely many elements {vi}. Then any N ∈ κ may be written

as

N =
n∑

j=1

ajvij ,

with aj ≥ 0.

Proposition 2.6.27. ([K, p. 324–325]) Let X be a proper scheme. Let κ ⊂ A1
R

be the set of all elements N such that (N.C) ≥ 0 for all curves C. Then κ is a

closed pointed cone in A1
R
. The lattice points in κ correspond to numerically effective

invertible sheaves and in fact κ is the closure of the cone generated by numerically

effective invertible sheaves. The ample invertible sheaves generate an open cone κ◦

inside Int(κ).

Proof. Clearly, κ is a cone. It is clear that κ◦ is a subcone of κ since every am-

ple invertible sheaf is numerically effective and numerical effectiveness clearly only

depends on numerical equivalence classes. Further, κ must be pointed since any

element of κ ∩ −κ must have zero intersection with all curves.

To see that κ is closed, let N be in the closure of κ and let MC be an equivalence

class such that (MC .C) < 0 for a given curve C. Since N is in the closure of κ, for

all n � 0, (N + (1/n)MC .C) ≥ 0. Thus

(N.C) ≥ 1

n
(−MC .C) > 0.
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So taking the limit, (N.C) ≥ 0, so N ∈ κ. Since the numerically effective invert-

ible sheaves determine the rational points of κ and Q is dense in R, they uniquely

determine κ.

To see that κ◦ ⊂ Int(κ), we may assume X is projective, since otherwise κ◦ = ∅.
If N ∈ κ◦, then N =

∑
ai[Li] for ample invertible sheaves Li and ai > 0. Given

u ∈ A1
R
, u is of the form u =

∑ρ(X)
i=1 bi[Mi] for some invertible sheave Mi. There

exists m0 such that for m ≥ m0, Lm
1 ⊗ M−1

i is ample for each i. Thus taking

m1 = ρ(X)m0/a1 we have mN − u ∈ κ◦ for all m ≥ m1. Thus N ∈ Int(κ) by

Lemma 2.6.25 since mN − u has positive intersection with any curve. Further, since

A1
R

is finite dimensional, this argument shows that κ◦ contains sufficiently small balls

around any [Li] ∈ κ◦. So κ◦ is open.

Corollary 2.6.28. Let X be projective. Given any endomorphism f : X → X, the

natural mapping f ∗ : A1
R
→ A1

R
maps κ to κ. Thus f ∗ is represented by a matrix in

GLρ(X)(Z) which preserves a closed pointed solid cone.

Proof. We already know f ∗ preserves numerical effectiveness by (2.6.19). Because f ∗

preserves the lattice A1
Num(X), its action is represented by P ∈ GLρ(Z). Since the

map P is continuous, it preserves the closure of the cone generated by numerically

effective invertible sheaves, namely κ. Since X is projective, κ is solid.

We are now ready for the famous Kleiman criterion for ampleness. Briefly, it says

Int(κ) = κ◦ given the notation above. However, this is not true for every proper

scheme X. It is only true if X is quasi-divisorial, meaning that for every integral

closed subscheme Y which is not reduced to a point, there is an invertible sheaf

LY on Y with LY
∼= OY (D) for some non-zero effective Cartier divisor D on Y .

All projective schemes are quasi-divisorial, since one may take the D to be a very

ample divisor. Also any locally factorial scheme X (hence any nonsingular scheme)

is quasi-divisorial [K, p. 326, Example 1].

Theorem 2.6.29. ([K, p. 326, Theorem 2]) Let X be a quasi-divisorial, proper

scheme. Then κ◦ = Int(κ).

Proof. We have already seen that κ◦ ⊆ Int(κ). Since Q is dense in R and κ◦ is open,

it suffices to prove that the rational points of Int(κ) are in κ◦. So let N ∈ Int(κ)

be rational and we may assume N is the equivalence class of an invertible sheaf by

multiplying by a sufficiently large integer. So we wish to show that N satisfies the

Nakai criterion for ampleness (2.6.14).

We proceed by induction on the dimension of a subvariety Y ⊆ X. If dim Y = 0,

then (N0.Y ) = (Y ) = (OY ) = 1 by (2.6.5). So suppose that dim Y = s > 0 and

that (N t.W ) > 0 for all subvarieties W ( Y with dim W = t < s. By (2.6.10) and
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(2.6.11), N has positive intersection with any subscheme of Y of dimension less than

s.

Since X is quasi-divisorial, find a non-zero effective Cartier divisor D on Y . Then

(N s−1.D) = (N s−1.D.Y ) > 0. Since N ∈ Int(κ), for m � 0, mN− [D] is numerically

effective by (2.6.25). And so by Proposition 2.6.20,

m(N s−1.N.Y )− (N s−1.D.Y ) ≥ 0.

And thus (N s.Y ) > 0.

Corollary 2.6.30. The property of being ample depends only on the numerical equiv-

alence class of an invertible sheaf.

Corollary 2.6.31. If L is ample and M is numerically effective, then L ⊗M is

ample.



CHAPTER 3

Twisted Homogeneous Coordinate Rings

3.1 Introduction

In this chapter, we will prove our main theorems regarding σ-ample invertible

sheaves L on a projective scheme X and their associated twisted homogeneous co-

ordinate rings B = B(X, σ,L). For the convenience of the reader, we reprint some

of the theorems from Chapter 1. We show

Theorem 3.1.1. The following are true for any projective scheme X over an alge-

braically closed field.

1. Right and left σ-ampleness are equivalent. Thus every associated B is (right

and left) noetherian.

2. A projective scheme X has a σ-ample divisor if and only if the action of σ on

numerical equivalence classes of divisors is quasi-unipotent (cf. §3.3 for defini-

tions). In this case, every ample divisor is σ-ample.

3. GKdim B is an integer if B = B(X, σ,L) and L is σ-ample. Here GKdim B is

the Gel’fand-Kirillov dimension of B in the sense of [KL].

These facts are all consequences of

Theorem 3.1.2 (See Remark 3.5.2). Let X be a projective scheme with auto-

morphism σ. Let D be a Cartier divisor. D is (right) σ-ample if and only if σ is

quasi-unipotent and

D + σD + · · ·+ σm−1D

is ample for some m > 0.

In §3.2, we reduce the question of σ-ampleness to one about the (classical) am-

pleness of certain sheaves. This allows us to use cone theory to deduce in §3.3 that

if a σ-ample invertible sheaf exists, then the action of σ on numerical equivalence

30



31

classes must be quasi-unipotent. We then use cone theory again in §3.4 to prove the

rest of Theorem 3.1.2.

We then examine numerous corollaries of Theorem 3.1.2 in §3.5. The most impor-

tant corollary is that left and right σ-ampleness are equivalent and hence the twisted

homogeneous coordinate rings associated to σ-ample divisors are noetherian. We

then use Riemann-Roch type theorems in §3.6 to show that such rings have finite,

integral GK-dimension.

Finally, in §3.7, we show how our results are related to the category-theoretic

coordinate rings of §2.3. We end the chapter in §3.8 by examining the possibility of

a σ-ample invertible sheaf on a proper, non-projective scheme.

3.2 Reductions

Since X is projective, the invertible sheaves on X and the Cartier divisors modulo

linear equivalence are in one-to-one correspondence, as noted in the beginning of §2.6.

So without loss of generality we may use divisors in our arguments, which we do since

it is more customary for intersection theory.

Before deriving our main criterion for σ-ampleness, we must prove other equivalent

criteria. We will need

Lemma 3.2.1. ([Fj, p. 520, Theorem 1]) Let F be a coherent sheaf on a projective

scheme X and let H be an ample divisor on X. Then there exists an integer c0 such

that for all c ≥ c0,

Hq(X,F ⊗OX(cH + N)) = 0

for q > 0 and any numerically effective divisor N .

Proposition 3.2.2. Let X be a projective scheme with σ an automorphism. Let D

be a divisor on X and ∆m = D + σD + · · · + σm−1D, as in Remark 2.5.10. Then

the following are equivalent:

1. For any coherent sheaf F , there exists an m0 such that

Hq(X,F ⊗OX(∆m)) = 0

for q > 0 and m ≥ m0. That is, D is right σ−1-ample.

2. For any coherent sheaf F , there exists an m0 such that F⊗OX(∆m) is generated

by global sections for m ≥ m0.

3. For any divisor H, there exists an m0 such that ∆m − H is very ample for

m ≥ m0.

4. For any divisor H, there exists an m0 such that ∆m −H is ample for m ≥ m0.
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5. For any divisor H, there exists an m0 such that ∆m−H is numerically effective

for m ≥ m0.

Proof. (1) ⇒ (2) is Proposition 2.5.7.

(2) ⇒ (3) Given any divisor H and a very ample divisor H ′, we may choose

m0 such that ∆m − H − H ′ is generated by global sections for m ≥ m0. Then

∆m −H −H ′ + H ′ = ∆m −H is very ample for m ≥ m0 by Proposition 2.6.1(4).

(3) ⇒ (4) and (4) ⇒ (5) are trivial.

(5) ⇒ (1). For any ample divisor H and any c ≥ 0, one can choose m0 so that for

m ≥ m0, we have N = ∆m − cH is a numerically effective divisor. Then (1) follows

immediately from Lemma 3.2.1.

A similar proposition holds for left σ−1-ample divisors, with F and H replaced

by Fσ−m
and σmH. One deduces this easily from Lemma 2.5.6.

We note that if σ is the identity, then condition (5) says exactly that D is in the

interior κ◦ of the cone of numerically effective divisors, as defined in §2.6. Thus this

proposition is a generalization of Kleiman’s criterion for ampleness, Theorem 2.6.29.

3.3 The non-quasi-unipotent case

Recall the definition of A1
Num(X) from (2.6.21). We let P denote the action of σ

on A1
Num(X); hence P ∈ GL`(Z) for some ` by Theorem 2.6.23.

A matrix is called quasi-unipotent if all of its eigenvalues are roots of unity. We

call an automorphism σ quasi-unipotent if P is. The main goal of this section is to

show that a non-quasi-unipotent σ cannot give a σ-ample divisor.

First, we must review an useful fact about integer matrices.

Lemma 3.3.1. Let P ∈ GL`(Z). Then P is quasi-unipotent if and only if all eigen-

values of P have absolute value 1. Thus if P is not quasi-unipotent, then P has an

eigenvalue of absolute value greater than 1.

Proof. The first claim is [AV, Lemma 5.3]. To see this, suppose all eigenvalues λi of

P have absolute value 1. Each λi is an algebraic integer whose conjugate roots all

have absolute value 1. The only such algebraic integers are the roots of unity [L,

p. 353, VII, Exercise 5].

For the second claim, the property of P not being quasi-unipotent is reduced to

saying P has an eigenvalue of absolute value not 1. Since P has determinant ±1, P

has an eigenvalue of absolute value greater than 1.

Recall that the spectral radius of a matrix P is the nonnegative real number r =

sr(P ) = max{|λ| : λ an eigenvalue of P}. The following lemma shows a relationship
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between the spectral radius r and the intersection numbers (σmD.C), where D is an

ample divisor.

Lemma 3.3.2. Let P be as described above with spectral radius r = sr(P ). There

exists an integral curve C with the following property: If D is an ample divisor, then

there exists c > 0 such that

(σmD.C) ≥ crm for all m ≥ 0.

Proof. Let κ be the cone generated by numerically effective divisors in A1
Num(X)⊗R.

In the terminology of (2.6.24), κ is a solid cone since it has a non-empty interior by

Proposition 2.6.27. Since P maps κ to κ, the spectral radius r is an eigenvalue of P

and r has an eigenvector v ∈ κ [V, Theorem 3.1].

Since v ∈ κ \ {0}, there exists a curve C with (v.C) > 0. Given an ample divisor

D, there is a positive ` so that `D − v is in the ample cone by Lemma 2.6.25. Thus

`(σmD.C) = `(PmD.C) > (Pmv.C) = rm(v.C).

Taking c = (v.C)/`, we have the lemma.

Now a graded ring B = ⊕i≥0Bi is finitely graded if dim Bi < ∞ for all i. Such a

ring B has exponential growth (see [SteZ]) if

(3.3.3) lim sup
n→∞

(∑
i≤n

dim Bi

) 1
n

> 1.

Theorem 3.3.4. ([SteZ, Theorem 0.1]) Let B be a finitely generated, finitely graded

k-algebra. If B has exponential growth, it is neither right nor left noetherian.

This fact combined with the intersection numbers above allow us to prove

Theorem 3.3.5. Let X be a projective scheme with automorphism σ. If X has a

right σ−1-ample divisor, then σ is quasi-unipotent.

Proof. Suppose that D is a right σ−1-ample divisor. Let ∆m = D+σD+· · ·+σm−1D.

By (3.2.2) and (2.5.12), we may replace D with ∆m and σ with σm and assume that

D is ample.

Let P be the action of σ on A1
Num(X). Suppose that P is non-quasi-unipotent with

spectral radius r > 1 and choose an integral curve C as in Lemma 3.3.2. Let I be the

ideal sheaf defining C in X. Since D is right σ−1-ample, the higher cohomologies of

I(∆m) = I⊗OX(∆m) and OC(∆m) vanish for m � 0. So one has an exact sequence

0 → H0(X, I(∆m)) → H0(X,OX(∆m)) → H0(C,OC(∆m)) → 0.
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For m � 0, the Riemann-Roch formula for curves [Fl, p. 360, Example 18.3.4]

gives

dim H0(C,OC(∆m)) = (∆m.C) + a constant term.

Thus using the exact sequence and the previous lemma, there exists c > 0 so that

dim H0(X,OX(∆m)) > crm

for m � 0. Thus the associated twisted homogenous coordinate ring has exponential

growth and hence is not (right or left) noetherian by (3.3.4). So D cannot be right

σ−1-ample, by Theorem 2.5.9.

Remark 3.3.6. One can give a more elementary proof of Theorem 3.3.5. Indeed,

examining the Jordan form of P gives an upper bound on (σmD.C). Further, using

the full strength of [V, Theorem 3.1] and asymptotic estimates, one can improve the

lower bound of Lemma 3.3.2. We then have

(3.3.7) c1m
krm > (σmD.C) > cmkrm

for m > 0, where k + 1 is the size of the largest Jordan block associated to r. Then

using estimates similar to those in the proof of [AV, Lemma 5.10], one can find an

ample divisor H such that

(∆m −H.σmC) < 0

for all m � 0. This contradicts the fourth equivalent condition for right σ−1-

ampleness in Proposition 3.2.2.

Even when an automorphism σ is not quasi-unipotent, one can form associated

twisted homogeneous coordinate rings. As might be expected, some of these rings

have exponential growth.

Proposition 3.3.8. Let X be a projective scheme with non-quasi-unipotent auto-

morphism σ. Let D be an ample divisor. Then there exists an integer n0 > 0 such

that for all n ≥ n0, the ring B = B(X, σ,OX(nD)) has exponential growth and is

neither right nor left noetherian.

Proof. Again choose a curve C as in Lemma 3.3.2 with ideal sheaf I. By Lemma 3.2.1,

there exists n0 such that for all n ≥ n0 and q > 0,

Hq(X, I(nD + N)) = Hq(C,OC(nD + N)) = 0

for any ample divisor N . In particular, the above cohomologies vanishes for nD+N =

nD + σ(nD) + · · ·+ σm−1(nD) where m > 1. Then repeating the last paragraph of

the proof of Theorem 3.3.5 shows that B has exponential growth.
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When X is a nonsingular surface, [AV, Corollary 5.17] shows that the above

proposition is true for n0 = 1. Their proof makes use of the relatively simple form

of the Riemann-Roch formula and the vanishing of H2(X,OX(∆m)) when ∆m is the

sum of sufficiently many ample divisors. The proof easily generalizes to the singular

surface case, but not to higher dimensions.

Question 3.3.9. Given a non-quasi-unipotent automorphism σ and ample divisor D

on a scheme X, must B(X, σ,OX(D)) have exponential growth?

There do exist varieties with non-quasi-unipotent automorphisms. If the canon-

ical divisor K is ample or minus ample, then any automorphism σ must be quasi-

unipotent (cf. Proposition 3.5.7). So intuitively, one expects to find non-quasi-

unipotent automorphisms far away from this case, i.e., when K = 0. Further, there

are strong existence theorems for automorphisms of K3 surfaces (which do have

K = 0). Indeed, a K3 surface with non-quasi-unipotent automorphism is studied in

[W].

Example 3.3.10. There exists a K3 surface with automorphism σ such that X has

no σ-ample divisors.

Proof. Wehler [W, Proposition 2.6, Theorem 2.9] constructs a family of K3 surfaces

whose general member X has

Pic(X) ∼= A1
Num(X) ∼= Z

2, Aut(X) ∼= Z/2Z ∗ Z/2Z.

(That is, Aut(X) is the free product of two cyclic groups of order 2.) The ample

generators H1 and H2 of A1
Num(X) have intersection numbers

(H2
1 ) = (H2

2 ) = 2, (H1.H2) = 4.

Aut(X) has two generators σ1, σ2 whose actions on A1
Num(X) can be represented

as two quasi-unipotent matrices

σ1 =

(
1 4

0 −1

)
, σ2 =

(
−1 0

4 1

)
.

However, the action of σ1σ2 has eigenvalues 7±4
√

3. So X has no σ1σ2-ample divisor.

Note that by Corollary 3.5.5 below, any ample divisor is σ1-ample and σ2-ample.

3.4 The quasi-unipotent case

Now let σ be a quasi-unipotent automorphism with P its action on A1
Num(X). We

will have several uses for a particular invariant of σ.
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Definition 3.4.1. Let k +1 be the rank of the largest Jordan block of P . We define

J(σ) = k.

Note that J(σ) = J(σm) for all m ∈ Z \ {0}. It may be that k is greater than 0,

as seen in [AV, Example 5.18]. We will see in the next section that k must be even,

but this is not used here.

To prove Theorem 3.1.2, it remains to show that (for σ quasi-unipotent) if D is a

divisor such that ∆m is ample for some m, then D is right σ−1-ample. So fix such a

D. We may again replace D with ∆n and σ with σn via (2.5.12), so that D is ample

and P is unipotent, that is P = I + N , where N is the nilpotent part of P . In this

case, k = J(σ) is the smallest natural number such that Nk+1 = 0.

We let ≡ denote numerical equivalence and reserve = for linear equivalence. We

then have, for all m ≥ 0,

σmD ≡ PmD =
k∑

i=0

(
m

i

)
N iD,(3.4.2)

∆m ≡
k∑

i=0

(
m

i + 1

)
N iD.(3.4.3)

Once a basis for A1
Num(X) is chosen, one can treat N iD as a divisor. Of course, this

representation of N iD is not canonical. However, since ampleness and intersection

numbers only depend on numerical equivalence classes, this is not a problem.

Lemma 3.4.4. Let σ be a unipotent automorphism with P = I + N and k = J(σ).

If D is an ample divisor, then NkD 6≡ 0 in A1
Num(X).

Proof. Since Nk 6= 0, there exists a divisor E and curve C such that (NkE.C) > 0.

Choose ` so that `D − E is ample. By Equation 3.4.2, the intersection numbers

(σm(`D − E).C) are given by a polynomial in m with leading coefficient (`NkD −
NkE.C)/k!. Since this polynomial must have positive values for all m, we must have

NkD 6≡ 0.

We now turn towards proving that for any divisor H, there exists m0 such that

∆m0 − H is ample, when σ is unipotent and D is ample. Then since D is ample,

∆m − H is ample for m ≥ m0. For certain H, this is true even if σ is not quasi-

unipotent.

Lemma 3.4.5. Let X be a projective scheme with automorphism σ (not necessar-

ily quasi-unipotent). Let D be an ample divisor and H a divisor whose numerical

equivalence class is fixed by σ. Then there exists an m such that ∆m −H is ample.
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Proof. Choose m such that D′ = mD −H is ample. Let

∆′
j = D′ + σD′ + · · ·+ σj−1D′.

Then ∆′
m ≡ m∆m −mH is ample and thus ∆m −H is ample.

Proposition 3.4.6. Let X be a projective scheme with unipotent automorphism σ.

Let D be an ample divisor and H any divisor. Then there exists an m0 such that

∆m0 −H is ample. Hence ∆m −H is ample for m ≥ m0.

Proof. Let W ⊂ A1
Num(X)⊗R be the span of D, ND, . . . , NkD. Then W is a k + 1-

dimensional vector space by Lemma 3.4.4. By Equation 3.4.2, it contains the real

cone κ generated by S = {σiD|i ∈ N}. Using Lemma 2.6.26, any element of κ can

be written as a linear combination of k + 1 elements of S with non-negative real

coefficients. Thus for all m ∈ N,

∆m ≡
k∑

i=0

fi(m)σgi(m)D

where fi : N → R≥0 and gi : N → N. Expanding the σgi(m)D above and comparing

the coefficient of D with Equation 3.4.3, one finds that

k∑
i=0

fi(m) = m.

Since fi(m) ≥ 0, for each m, there must be some j such that fj(m) ≥ m/(k + 1).

Now choose l such that lD−H is ample and m0 such that, m0/(k +1) ≥ l. Then

fj(m0)σ
gj(m0)D − σgj(m0)H

is in the ample cone for the given j. Set g = gj(m0). The other fi(m0) are non-

negative. Then ∆m0 − σgH is in the ample cone as it is a sum of elements in the

ample cone. Since it is a divisor, it is ample by Proposition 2.6.27.

We now prove the lemma by induction on q, the smallest positive integer such

that N qH ≡ 0. Since N is nilpotent, there is such a q for any H. The case q = 1 is

handled by the previous lemma.

Now as σ ≡ I + N , we know σ−m0(σgH −H) is killed by N q−1. So there is an m1

so that

Y = ∆m1 + σ−m0(σgH −H)

is ample. Then as σ fixes the ample cone

∆m0 − σgH + σm0Y = ∆m0+m1 −H

is ample.
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We now immediately have by Propositions 3.2.2, 3.4.6, and Theorem 3.3.5:

Theorem 3.4.7. Let X be a projective scheme with an automorphism σ. A divisor

D is right σ−1-ample if and only if σ is quasi-unipotent and D + σD + · · ·+ σm−1D

is ample for some m.

3.5 Corollaries

The characterization of (right) σ−1-ampleness has many strong corollaries which

are now easy to prove, but were only conjectured before.

Corollary 3.5.1. Right σ-ample and left σ-ample are equivalent conditions. Further,

σ-ampleness and σ−1-ampleness are equivalent.

Proof. Let D be right σ−1-ample. By Theorem 3.4.7, σ is quasi-unipotent and ∆m

is ample for some m. Then σ−1 is quasi-unipotent and

σ−(m−1)∆m = D + σ−1D + · · ·+ σ−(m−1)D

is ample. Applying the theorem again, we have that D is right σ-ample. Thus D is

left σ−1-ample by Lemma 2.5.6. The same lemma gives the second statement of the

corollary.

Remark 3.5.2. Combined with (3.4.7), this proves Theorem 3.1.2:

Theorem 3.5.3. Let X be a projective scheme with automorphism σ. Let D be a

Cartier divisor. D is (right) σ-ample if and only if σ is quasi-unipotent and

D + σD + · · ·+ σm−1D

is ample for some m > 0.

Thus we may refer to a divisor as being simply “σ-ample.”

In [AV], left σ-ampleness was shown to imply the associated twisted homogeneous

coordinate ring is left noetherian. However, as noted in the footnote of [AS, p. 258],

the paper says, but does not prove, that B is noetherian. This actually is the case.

Corollary 3.5.4. Let B = B(X, σ,OX(D)) be the twisted homogeneous coordinate

ring associated to a σ-ample divisor D. Then B is a (left and right) noetherian ring,

finitely generated over the base field.

Analysis of the GK-dimension of B will be saved for the next section.

From the definition of σ-ample, it is not obvious when σ-ample divisors even exist.

Theorem 3.4.7 makes the question much easier.
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Corollary 3.5.5. A projective scheme X has a σ-ample divisor if and only if σ

is quasi-unipotent. In particular, every ample divisor is a σ-ample divisor if σ is

quasi-unipotent.

Thus, it is important to know when an automorphism σ is quasi-unipotent. From

the bounds in Equation 3.3.7, we obtain

Proposition 3.5.6. Let D be an ample divisor. Then σ is quasi-unipotent if and only

if for all curves C, the intersection numbers (σmD.C) are bounded by a polynomial

for positive m.

Proposition 3.5.7. Let X be a projective scheme such that

1. X has a canonical divisor K which is an ample or minus-ample divisor, or

2. the Picard number of X, i.e., the rank of A1
Num(X), is 1.

Then any automorphism σ of X is quasi-unipotent. Indeed, some power of σ is

numerically equivalent to the identity.

Proof. In the first case, for K to be ample or minus-ample, it must be a Cartier

divisor. Thus the intersection numbers (σmK.C) are defined, where C is a curve.

Since K must be fixed by σ, some power of σ must be numerically equivalent to

the identity by Equation 3.3.7. In the second case, the action of σ itself must be

numerically equivalent to the identity.

Thus for many important projective varieties, such as curves, projective n-space,

Grassmann varieties [Fl, p. 271], and Fano varieties [Ko, p. 240, Definition 1.1], one

automatically has that any automorphism must be quasi-unipotent.

Returning to corollaries of Theorem 3.4.7, we see that building new σ-ample

divisors from old ones is also possible.

Corollary 3.5.8. Let D be a σ-ample divisor and let D′ be a divisor with one of the

following properties:

1. σ-ample,

2. generated by global sections, or

3. numerically effective.

Then D + D′ is σ-ample.

Proof. Take m such that ∆m is ample and ∆′
m = D′ + · · · + σm−1D′ is respectively

ample, generated by global sections, or numerically effective. Then ∆m + ∆′
m is

ample by the results of §2.6 and we again apply the main theorem.
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The following could be shown directly from the definition, but also using a similar

method to the proof above, one can see

Corollary 3.5.9. Let σ and τ be automorphisms. Then D is σ-ample if and only if

τD is τστ−1-ample.

Note that τ need not be quasi-unipotent.

Finally, as in the case of ampleness, σ-ampleness is a numerical condition.

Corollary 3.5.10. Let D, D′ be numerically equivalent divisors and σ, σ′ be numer-

ically equivalent automorphisms (i.e., their actions on A1
Num(X) are equal). Then D

is σ-ample if and only if D′ is σ′-ample.

Proof. As ∆m ≡ D′ + (σ′)D′ + · · · + (σ′)m−1D′ and ampleness depends only on

the numerical equivalence class of a divisor, the corollary follows from our main

theorem.

3.6 GK-dimension of B

Recall the definition of GK-dimension for a finitely generated, finitely graded

k-algebra,

Definition 3.6.1. ([KL, p. 62]) Let R = ⊕Ri be a finitely generated finitely graded

k-algebra. Then

GKdim R = lim sup
n→∞

{
logn

n∑
i=0

dimk Ri

}
.

If R is commutative, then the GK-dimension of R is equal to the classical Krull

dimension of R. Hence the GK-dimension is an integer in this case. We generalize

this to twisted homogeneous coordinate rings.

As mentioned, our main goal of this section is to prove

Theorem 3.6.2. Let B = B(X, σ,L) for some projective scheme X and σ-ample

invertible sheaf L.

1. GKdim B is an integer. Hence B is of polynomial growth. Also, GKdim B is

independent of the σ-ample L chosen.

2. If σm ≡ I for some m, then GKdim B = dim X + 1.

3. If X is an equidimensional scheme,

k + dim X + 1 ≤ GKdim B ≤ k(dim X − 1) + dim X + 1

where k = J(σ) (cf. Definition 3.4.1) is an even natural number depending only

on σ.
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We now have all the necessary pieces of Theorem 1.0.4, which we reprint for the

reader.

Theorem 3.6.3. Let X be a projective scheme with automorphism σ. Then the

following are equivalent:

1. The automorphism σ is quasi-unipotent.

2. For all ample divisors D, B(X, σ,OX(D)) has finite GK-dimension.

3. For all ample divisors D, B(X, σ,OX(D)) is noetherian.

Proof. (1) =⇒ (2) is the theorem above. (1) =⇒ (3) is from Corollaries 3.5.4 and

3.5.5. And finally (2) =⇒ (1) and (3) =⇒ (1) both follow from Proposition 3.3.8.

Theorem 3.6.2 generalizes [AV, Proposition 1.5, Theorem 1.7]. The authors of

[AV] further show that if X is a smooth surface, then k = 0, 2 and thus the only

possible GK-dimensions are 3 and 5. The proof that k ≤ 2 in the surface case uses

the Hodge Index Theorem and thus far we have been unable to find a similar bound

in higher dimensions. Note that if X is a curve or X = P
n, then rank A1

Num(X) = 1

and hence by Proposition 3.5.7, some power of σ is numerically equivalent to the

identity (in fact, P = I). So the theorem implies that GKdim B = dim X + 1.

In studying the GK-dimension of B = B(X, σ,OX(D)) with D σ-ample, [AV,

p. 263] proves that

(3.6.4) GKdim B(X, σ,OX(D)) = GKdim B(X, σm,OX(∆m))

for any positive m. This comes from

Lemma 3.6.5. Let R be a finitely generated, finitely graded k-algebra. Suppose that

there exists an integer i0 such that for all i ≥ i0 there exists ji so that for j ≥ ji,

RjRi = Ri+j.

Let R(d) be any Veronese subring R(d) = ⊕Rdi. Then GKdim R = GKdim R(d).

Proof. Since R(d) is a subring of R, certainly GKdim R(d) ≤ GKdim R. On the other

hand, R is a R(d)-module. We claim R is a finite R(d)-module. It suffices to prove

this for d � 0, since the finite generation of R over R(`d) for some ` implies finite

generation over R(d).

Let d be such that d ≥ i0. Find `d ≥ jd and let R′ be the R(d)-module generated

by R1, R2, . . . , R(`+1)d−1. Let N ∈ N and assume by induction that Rn ⊂ R′ for all

n < N . Now if N −d < jd, then N < (`+1)d, so RN is trivially generated by the set
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above. If N − d ≥ jd, then RdRN−d = RN and RN−d ⊂ R′ by induction, so RN ⊂ R′

and hence R = R′. Therefore, R is finitely generated over R(d) by a vector space

basis of R1, . . . , R(`+1)d−1. So the claim is proven and thus GKdim R(d) ≥ GKdim R

[KL, p. 52, Proposition 5.1(d)].

Lemma 3.6.6. (cf. [AV, Theorem 3.14]) The ring B = B(X, σ,L) satisfies the

hypotheses of the previous lemma.

Proof. Choose m0 so that for m ≥ m0, the sheaf L ⊗ · · · ⊗ Lσm−1
is generated by

global sections for m ≥ m0. Then we have an exact sequence

0 → Ker fm → OX ⊗Bm
fm→ L⊗ · · · ⊗ Lσm−1 → 0.

Now choose n0 such that the higher cohomology of Ker fm⊗L⊗· · ·⊗Lσn−1
vanishes for

n ≥ n0. Then from the above exact sequence we have the surjection Bn⊗Bm → Bm+n

as required.

So by replacing D with ∆m and σ with σm, in order to prove Theorem 3.6.2 we

may again assume P is unipotent, D is ample, and Hq(X,OX(∆m)) = 0 for q > 0

and all m > 0. Then

dim Bm = dim H0(X,OX(∆m)) = χ(OX(∆m))

where χ is the Euler characteristic on X. Recall that as in §2.6, a polynomial with

rational coefficients, integer valued on integers, is called a numerical polynomial. We

will soon see that χ(OX(∆m)) is a numerical polynomial in m with positive leading

coefficient. Any such polynomial of degree d is of the form

ad

(
m

d

)
+ ad−1

(
m

d− 1

)
+ · · ·+ a0

with ai ∈ Q. Then using standard combinatorial identities, we have that

m−1∑
i=0

dim Bi

is a numerical polynomial of degree d+1. By the definition of GK-dimension (3.6.1),

we immediately have

(3.6.7) GKdim B = deg(dim Bm) + 1 = deg(χ(OX(∆m))) + 1.

Thus far, we have only used the intersection numbers (D.C), where D is a divisor

and C is a curve. In studying the growth of ∆m in terms of m, we will need to examine
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the intersection of divisors on higher dimensional subvarieties. More precisely, for an

n-dimensional variety V , we use the symmetric n-linear form

(D1. . . . .Dn)V = (OX(D1). . . . .OX(Dn).OV )

defined in §2.6.

We prove

Lemma 3.6.8. Let X be a projective scheme with unipotent automorphism σ and

ample divisors D and D′ with ∆′
m = D′ + · · · + σm−1D′. Further let V be a closed

subvariety of X of dimension n. Then for 0 ≤ i ≤ n,

1. (Di.∆n−i
m )V is a numerical polynomial in m with positive leading coefficient.

2. deg(Di.∆n−i
m )V = deg((D′)i.(∆′

m)n−i)V .

3. deg(Di−1.∆n−i
m )W ≤ deg(Di.∆n−i

m )V where W ⊂ V is a closed subvariety with

dim W = dim V − 1.

4. deg(Di.∆n−i
m )V < deg(Di−1.∆n−i+1

m )V .

5. deg(∆j
m)W < deg(∆n

m)V where W ⊂ V is a closed subvariety and dim W = j <

n.

Proof. Since σ is unipotent and intersection numbers only depend on numerical equiv-

alence classes, we may replace ∆m by the divisor on the right hand side of Equa-

tion 3.4.3. As noted below that equation, it is not a problem to treat the N iD as

divisors. Since the intersection form is multilinear and integer valued on divisors,

(Di.∆n−i
m )V must be a numerical polynomial. By the Nakai criterion for ampleness

(2.6.14) the function is positive for all positive m (since ∆m is ample) and hence has

a positive leading coefficient. Thus part (1) is proven.

Now for some fixed `, we know that `D′ −D is ample. Hence

`(D′.Di−1.∆n−i
m )V − (Di.∆n−i

m )V = (`D′ −D.Di−1.∆n−i
m )V > 0

for all m > 0. Thus

deg(D′.Di−1.∆n−i
m )V ≥ deg(Di.∆n−i

m )V

and by symmetry the two degrees are equal. We can continue this argument, replac-

ing each D with D′, so deg(Di.∆n−i
m ) = deg((D′)i.∆n−i

m ). By also noting that

`∆′
m −∆m = (`D′ −D) + · · ·+ σm−1(`D′ −D)

is ample, one can similarly replace each ∆m with ∆′
m. Thus the second claim is

proven.
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Now let W ⊂ V be a closed subvariety with dim W = dim V − 1. One has

(Di−1.∆n−i
m )W = (Di−1.W.∆n−i

m )V

by (2.6.9). We claim that for some fixed `, the intersection number of `D−W with

any collection of n− 1 ample divisors is positive. This is well-known if V is normal

so W is a Weil divisor, so for some `, the Weil divisor `D−W is effective [R, p. 282].

The general case can be seen by pulling back to the normalization of V . Since

normalization is a finite, birational morphism, ampleness (2.6.16) and intersection

numbers (2.6.12) are both preserved under pull-back. Thus the claim is proven. An

argument similar to the proof of part (2) proves the third claim of the lemma.

For part (4), Equation 3.4.3 shows that the leading coefficient of (Di−1.D′.∆n−i
m )V

is a sum of terms

aα(Di−1.D′.Nα1D. . . . .Nαn−iD)V

where aα((k + 1)!)n is an integer. So any leading coefficient times ((k + 1)!)n is a

positive integer. Thus given any set of ample divisors {D′}, there is a D′ in that set

such that (Di−1.D′.∆n−i
m )V has the smallest leading coefficient.

Now let j be a natural number such that (Di−1.σjD.∆n−i
m )V has the smallest

leading coefficient of all (Di−1.σlD.∆n−i
m )V . Then for any l ≥ 0,

(Di−1.σlD.∆n−i
m )V

(Di−1.σjD.∆n−i
m )V

is a rational function with limit, as m → ∞, greater than or equal to 1. So given

any natural number M ,

lim
m→∞

(Di−1.∆m.∆n−i
m )V

(Di−1.σjD.∆n−i
m )V

≥ M.

Since this is true for any M , the limit must be +∞. So

deg(Di−1.∆m.∆n−i
m )V > deg(Di−1.σjD.∆n−i

m )V .

Examining the proof of part (2), we see the right hand side equals deg(Di.∆n−i
m )V ,

proving part (4).

Finally, for part (5), find a chain of subvarieties W = V0 ( · · · ( Vn−j = V . Then

part (3) combined with part (4) proves the claim for each part of the chain.

By a version of the Riemann-Roch Theorem for an n-dimensional complete scheme

X and coherent sheaf F [Fl, p. 361, Example 18.3.6]:

(3.6.9) χ(F(∆m)) =
n∑

j=0

1

j!

∫
X

(∆j
m) ∩ τX,j(F).
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The τX,j(F) is a j-cycle, a linear combination of j-dimensional closed subvarieties of

SuppF . In other words,

(3.6.10) τX,j(F) =
∑
V

aV [V ]

where V is a subvariety of X, [ ] denotes rational equivalence, and aV is a rational

number. The terms of (3.6.9), for F = OX can then be interpreted as∫
X

(∆j
m) ∩ τX,j(OX) =

∑
V

aV (∆j
m)V .

If Xi is an irreducible component of X of dimension j, then [Xi] = n[(Xi)red] is

a term in τX,j(OX), where n is the degree of the natural map (Xi)red → Xi. To see

this, first note that (∆dim Xi
m )Xi

/(dim Xi)! must be the dim Xi term of χ(OXi
(∆m))

[Fl, ibid.]. Also a(Xi)red = n by (2.6.11). The short exact sequence

0 → Ii → OX → OXi
→ 0

gives χ(OX(∆m)) = χ(OXi
(∆m)) + χ(Ii(∆m)). The support of Ii does not contain

Xi and an irreducible component is rationally equivalent only to itself [Fl, p. 11,

Example 1.3.2]. So there is no [Xi] term in χ(Ii(∆m)) which could cancel out the

[Xi] term in the first summand.

Lemma 3.6.11. Let X be a projective scheme with unipotent automorphism σ and

irreducible components Xi. Then

deg χ(OX(∆m)) = max
Xi

deg(∆dim Xi
m )Xi

.

Proof. If the left hand side is larger than the right hand side, then by the discussion

before the lemma, there is a subvariety V with

deg χ(OX(∆m)) = deg(∆dim V
m )V > deg(∆dim Xj

m )Xj
,

where Xj is an irreducible component properly containing V . This cannot happen

by Lemma 3.6.8(5).

On the other hand, if the right hand side is larger, then there exists a subvariety

V with aV < 0 in the notation of Equation 3.6.10 and

deg(∆dim V
m )V = max

Xi

deg(∆dim Xi
m )Xi

.

The earlier discussion shows that aXi
> 0 for each i. Hence V is properly contained in

some irreducible component. But again this cannot happen by Lemma 3.6.8(5).
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Lemma 3.6.12. Let X be a projective scheme with unipotent automorphism σ. Let

V ⊂ X be a closed subscheme which does not contain (the reduction of) an irreducible

component of X. Then deg χ(OV (∆m)) < deg χ(OX(∆m)).

Proof. By Lemma 3.6.11 we may pick an irreducible component V0 of V with

deg χ(OV (∆m)) = deg(∆dim V0
m )V0 .

Then X has an irreducible component X0 with V0 ( X0. The claim is then proven

by combining Lemmata 3.6.8(5) and 3.6.11.

Proposition 3.6.13. Let X be a projective scheme with unipotent automorphism σ

and ample divisor D. Then χ(OX(∆m)) is a numerical polynomial in m. The degree

of this polynomial is independent of the ample divisor D chosen. Further, if σ is

numerically equivalent to the identity, this polynomial has degree dim X.

Proof. The first claim is obvious since the intersection numbers in Equation 3.6.9 are

numerical polynomials, as noted in Lemma 3.6.8. The independence of the degree

comes from Lemma 3.6.8(2).

If σ is numerically equivalent to the identity, then k = 0. So χ(OX(∆m)) =

χ(OX(mD)) has degree dim X.

Combined with Equations 3.6.4 and 3.6.7, this proposition implies the first two

parts of Theorem 3.6.2.

Considering Lemma 3.6.11 and Equation 3.6.7, we immediately have

Proposition 3.6.14. Let X be a scheme with unipotent automorphism σ, ample

divisor D, and irreducible components Xi. Let B = B(X, σ,L). Then

GKdim B − 1 = deg χ(OX(∆m)) = max
Xi

deg(∆dim Xi
m )Xi

.

In particular, if X is equidimensional, then

GKdim B − 1 = deg(∆dim X
m )X .

Remark 3.6.15. Note that by replacing σ by a power, we may assume σ fixes each

irreducible component. That is, σ is an automorphism of each component. Thus the

soon to be proven bounds of Theorem 3.6.2 for equidimensional schemes can be used

to find bounds in the general case.

Lemma 3.6.16. Let σ be a unipotent automorphism with numerical action P =

I + N , with k = J(σ) (cf. Definition 3.4.1). Then k is even and deg χ(OX(∆m)) ≥
k + dim X.
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Proof. Given an ample divisor D, one has NkD 6= 0 by Lemma 3.4.4. So there

exists a curve C such that (NkD.C) 6= 0. Since (σmD.C) > 0 for all m ∈ Z and in

particular for m > 0, (NkD.C) > 0. However, if k is odd, (3.4.3) implies that the

leading term of (σ−mD.C) is −
(

m
k

)
(NkD.C) where m > 0. Then (σ−mD.C) < 0 for

large m, which cannot occur.

For the lower bound, note deg χ(OC(∆m)) = deg(∆m.C) = k + 1. Constructing a

chain of subvarieties between C and X, Lemma 3.6.12 shows that deg χ(OX(∆m)) ≥
dim X + k.

Lemma 3.6.17. Let n = dim X. Then (∆n
m)X has degree at most k(n− 1) + n.

Proof. If k = 0 the lemma is trivial. So assume that k > 0. Let P = I + N .

Expanding (∆n
m) gives terms of the form

f(m)(N i1D.N i2D. . . . .N inD)

where i1 ≤ i2 ≤ · · · ≤ in and degm f = n+
∑

ij. We will show that if
∑

ij > k(n−1)

then (N i1D.N i2D. . . . .N inD) = 0.

Order (i1, . . . , in) in the following way: (i1, . . . , in) > (i′1, . . . , i
′
n) if the right-most

non-zero entry of (i1, . . . , in) − (i′1, . . . , i
′
n) is positive. We proceed by descending

induction on this ordering.

The largest n-tuple in this ordering is (k, k, . . . , k). Since k > 0, Nk−1D exists

(taking N0 = I) so

(Nk−1D.(NkD)n−1) = (PNk−1D.(PNkD)n−1)

= (Nk−1D.(NkD)n−1) + ((NkD)n)

and hence ((NkD)n) = 0.

Now suppose that (i1, . . . , in) is such that
∑

ij > k(n − 1) and we have proven

our claim for all larger (i′1, . . . , i
′
n). Since

∑
ij > k(n−1), we have i1 > 0 so examine

(N i1−1D.N i2D. . . . .N inD) = (PN i1−1D.PN i2D. . . . .PN inD).

A typical term in the right-hand side is of the form

(N i1−1+δ1D.N i2+δ2D. . . . .N in+δnD)

where δj = 0, 1. The terms with δj = 1 where j > 1 are all higher in the ordering

than (i1, . . . , in) and hence are zero. This only leaves

(N i1−1D.N i2D. . . . .N inD) =

(N i1−1D.N i2D. . . . .N inD) + (N i1D.N i2D. . . . .N inD)

and so (N i1D.N i2D. . . . .N inD) = 0.



48

Using Equation 3.6.4 and Proposition 3.6.14, these lemmata complete the proof

of Theorem 3.6.2.

Even more restrictions can give sharper results.

Example 3.6.18. Let X be a smooth 3-fold and k = J(σ) = 2. Then for any

σ-ample D, GKdim B = k + dim X + 1 = 6.

Assume again that Hq(X, ∆m) = 0, q > 0, m > 0, D is very ample and P is

unipotent. Lemma 3.3.2 shows deg(σ−mD.D2) = deg(D.(σmD)2) ≤ 2. Expanding

(D.(σmD)2) one writes

(D3) + 2m(D2.ND) + 2

(
m

2

)
(D2.N2D) + m2(D.(ND)2)

+2m

(
m

2

)
(D.ND.N2D) +

(
m

2

)2

(D.(N2D)2)

So the terms in the second line are both zero.

Now expand (D3) = ((σmD)3) =

(D3) + 3m(D2.ND) + 3

(
m

2

)
(D2.N2D) + 3m2(D.(ND)2)

+m3((ND)3) + 3m2

(
m

2

)
((ND)2.N2D)

+6m

(
m

2

)
(D.ND.N2D) + 3

(
m

2

)2

(D.(N2D)2)

+3m

(
m

2

)2

(ND.(N2D)2) +

(
m

2

)3

((N2D)3)

Each term in the last line is zero by the proof of (3.6.17). The terms in the third

line are zero by the comments above. Since (D3) is constant, the coefficients of each

ml must also be zero. Since 3
2
((ND)2.N2D) is the coefficient of m4, it is zero. Then

the coefficient of m3 is ((ND)3) which is also zero. So only the top line has non-zero

terms.

So now expanding out (∆3
m) one sees the degree can be at most 5 and by (3.6.16)

it must be dim X + k = 5.

3.7 Categorical results

Now using the theorems of [AZ] as described in §2.3, we get the following result

for rings which are close to commutative in the sense of the following theorem. Recall

from §2.3 that proj R = (qgr R, πR).

Theorem 3.7.1. Let R be a finitely graded ring over an algebraically closed field k.

Suppose that R is right noetherian and satisfies χ. Further suppose that proj R ∼=
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(coh(X),OX), for some (classical) projective scheme X. Then R is left noetherian

and has finite, integer GK-dimension.

Proof. Since R is right noetherian and satisfies χ1, the degree shift (πR, [+1]) is

ample by Theorem 2.3.8. Thus (πR, [+1]) corresponds to some ample autoequiva-

lence (OX , s) of coh(X). Any autoequivalence of coh(X) has the form Lσ ⊗ − by

Proposition 2.5.4 for some automorphism σ and invertible sheaf L. Thus R ∼= B =

B(X, σ−1,L) up to a finite dimensional vector space, by Theorem 2.3.8, Proposi-

tion 2.5.3, and Lemma 2.2.5.

Further, since R satisfies χ, for any coherent sheaf F we have the vanishing of

the higher cohomology of Hq(X, smF) and sufficiently large m by Theorem 2.4.2.

Thus L is right σ−1-ample and hence left σ−1-ample. Then by Theorem 3.1.1, B

is noetherian and has finite, integer GK-dimension. Thus R has these properties as

well.

One can also find bounds on the GK-dimension of such R which only depend on

qgr R, as D. Eisenbud pointed out to the author.

Corollary 3.7.2. Let R satisfy the hypotheses of the above theorem, with proj R ∼=
(coh(X),OX) for some projective scheme X. Let ρ = ρ(X) be the Picard number of

X. Then

dim X + 1 ≤ GKdim R ≤ 2

⌊
ρ− 1

2

⌋
(dim X − 1) + dim X + 1.

Proof. For any σ used in the previous theorem, the number ` = J(σ) is even by

Lemma 3.6.16. Also ` ≤ ρ − 1 since any matrix acting on A1
Num(X) has rank less

than ρ. Then by Theorem 3.6.2(3) we have the corollary for equidimensional schemes.

This bound can also be used in the non-equidimensional case by using the observation

of Remark 3.6.15.

3.8 A curious question

Let X be a proper, non-projective scheme X with automorphism X. We do not

know if there could exist an invertible sheaf L such that L is σ-ample. This seems

unlikely, since no such L can exist when σ is the identity by Definition 2.3.5(3).

We will now give further evidence that a non-projective proper scheme probably

cannot have a σ-ample invertible sheaf.

Proposition 3.8.1. Let X be a proper scheme with automorphism σ and invertible

sheaf L. Then the following two statements are equivalent:

1. For any coherent sheaf F , there exists an m0 such that F ⊗ L⊗ · · · ⊗ Lσm−1
is

generated by global sections for m ≥ m0.
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2. For any invertible sheaf H, there exists an m0 such that H−1⊗L⊗ · · · ⊗Lσm−1

is ample for m ≥ m0.

Thus, if either condition holds, X must be projective because it has an ample invertible

sheaf.

Proof. Suppose that (1) holds. Let C be any integral curve on X. Since C is a

proper curve, it is projective [H2, p. 232, Exercise 5.8]. Thus there is an invertible

sheaf MC on C which has negative degree, and hence cannot be generated by global

sections. But by the hypothesis (1), there exists n such that

MC ⊗ L⊗ · · · ⊗ Lσn−1

is generated by global sections. So in particular, there is an invertible sheaf on X

which restricts to a sheaf of non-zero degree on C.

Let A1 = A1
Num(X). Then A1 is a finitely generated free abelian group by Theo-

rem 2.6.23. Let H1, . . . ,Hρ(X) be a Z-basis for A1. Choose m0 large enough so that

for i = 1, . . . , ρ(X) and m ≥ m0, the invertible sheaves L ⊗ · · · ⊗ Lσm−1
and

H±1
i ⊗ L⊗ · · · ⊗ Lσm−1

are generated by global sections.

Since theHi are a Z-basis for A1, there is some j with (Hj.C) 6= 0. Without loss of

generality, we may assumeHj has negative degree on C. But sinceHj⊗L⊗· · ·⊗Lσm−1

is generated by global sections for m ≥ m0, that sheaf is numerically effective. Hence

for m ≥ m0, the sheaf L ⊗ · · · ⊗ Lσm−1
has positive degree on C. Notice that m0

does not depend on j and hence does not depend on C. So by Proposition 2.6.17,

the sheaf L ⊗ · · · ⊗ Lσm−1
is ample for m ≥ m0. Hence X is projective.

Now let H be an arbitrary invertible sheaf and let N be an ample invertible sheaf.

Choose m1 so that

N−1 ⊗H−1 ⊗ L⊗ · · · ⊗ Lσm−1

is generated by global sections for m ≥ m1. Tensoring with N and using Proposi-

tion 2.6.1(1), we have (2).

Now suppose that we have (2). Since an ample sheaf exists, the scheme X is

projective by Definition 2.3.5(3). Then (2) =⇒ (1) of the current proposition is the

same as (4) =⇒ (2) in Proposition 3.2.2.

Unfortunately, the current proof of Proposition 2.5.7 requires X to be projective,

so the previous proposition does not give that the existence of a σ-ample invertible

sheaf implies that X is projective. The difficulty lies in showing that for some m,

the sheaf L ⊗ · · · ⊗ Lσm−1
is generated by global sections; Proposition 2.5.7 uses a
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Koszul resolution to do this. Assuming that L ⊗ · · · ⊗ Lσm−1
is generated by global

sections for some m, one can proceed as in [H2, p. 229, Proposition 5.3] and show

that Proposition 2.5.7 is true when X is proper. We then have

Proposition 3.8.2. Let X be a proper, non-projective scheme with automorphism σ

and invertible sheaf L. Suppose that L ⊗ · · · ⊗ Lσm−1
is generated by global sections

for some m. Then L is not σ-ample.



CHAPTER 4

Twisted Multi-homogeneous Coordinate Rings

4.1 A new generalization

Recently, Chan introduced twisted multi-homogeneous coordinate rings in [C].

Given a projective scheme X, one studies the “ampleness” of a finite collection of

invertible sheaves and automorphisms {(Li, σi)}. Via these methods, Chan studies

rings associated to twisted homogeneous coordinate rings, like the tensor product

of two such rings. In this chapter, we will generalize our previous results to the

multi-homogeneous case and thereby strengthen his findings.

Because of the notational difficulties associated with handling arbitrarily many

pairs (Li, σi), we remind the reader that we defined a concept of invertible bimodule

Lσ in Definition 2.5.1. In this chapter it will be important to know how more than

one invertible bimodule acts on a coherent sheaf. Let σ and τ be automorphisms

and let L and M be invertible sheaves. Then for a coherent sheaf F ,

Lσ ⊗ (Mτ ⊗F) = Lσ ⊗ (M⊗ τ ∗F)

= L ⊗ σ∗M⊗ σ∗τ ∗F
= L ⊗ σ∗M⊗ (τσ)∗F
= (L ⊗ σ∗M)τσ ⊗F .

Given two invertible bimodules Lσ and Mτ , one then defines the tensor product to

be

(4.1.1) Lσ ⊗Mτ = (L ⊗ σ∗M)τσ,

where the second tensor product is the usual product on quasi-coherent sheaves. We

will sometimes denote the product of invertible bimodules by juxtaposition if the

meaning is clear.

We now sketch the construction of a twisted multi-homogeneous coordinate ring.

Let {(Li)σi
} be a collection of s invertible bimodules. For notational convenience,

52
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we will write L(i,σi) = (Li)σi
. Given these s invertible bimodules, one wishes to form

an associated twisted multi-homogeneous coordinate ring B = B(X; {L(i,σi)}). For

an s-tuple n = (n1, . . . , ns) we define the multi-graded piece Bn as

(4.1.2) Bn = H0(X,Ln1

(1,σ1) . . .Lns

(s,σs)
)

where the cohomology of an invertible bimodule is just cohomology of the underlying

sheaf. Multiplication should be given by

(4.1.3) a · b = aσm(b)

when a ∈ Bm and b ∈ Bn. Here σm(b) = σm1
1 σm2

2 . . . σms
s (b), as we defined the action

of automorphisms on global sections in our discussion before Equation (2.2.2).

However, for this multiplication to be defined, the invertible bimodules must com-

mute with each other. To see this, consider the bigraded case, with bimodules

Lσ,Mτ . Then

B(1,0) = H0(X,Lσ), B(0,1) = H0(X,Lσ), B(1,1) = H0(X,LσMτ ).

Given the multiplication above, we have B(1,0)B(0,1) ⊂ B(1,1) and B(0,1)B(1,0) ⊂
H0(X,MτLσ). To guarantee that B(1,1) = H0(X,MτLσ), so that we have a bi-

graded ring, we demand LσMτ = MτLσ.

Examining (4.1.1), we see two bimodules Lσ,Mτ commute when

(4.1.4) L ⊗ σ∗M∼= M⊗ τ ∗L and στ = τσ.

Thus we need sheaf isomorphisms ϕij : L(j,σj)L(i,σi) → L(i,σi)L(j,σj) for each 1 ≤ i <

j ≤ s. It is further noted in [C] that when there are three or more bimodules, these

isomorphisms must be compatible on “overlaps” in the sense of Bergman’s Diamond

Lemma. In terms of the isomorphism ϕij this means [C, p. 444]

(4.1.5) (ϕij ⊗ 1L(k,σk)
) ◦ (1L(j,σj)

⊗ ϕik) ◦ (ϕjk ⊗ 1L(i,σi)
)

= (1L(i,σi)
⊗ ϕjk) ◦ (ϕik ⊗ 1L(j,σj)

) ◦ (1L(k,σk)
⊗ ϕij)

in Hom(L(k,σk)L(j,σj)L(i,σi),L(i,σi)L(j,σj)L(k,σk)). We will always assume that we have

this compatibility when forming the ring B. Summarizing, we have

Proposition 4.1.6. Let {L(i,σi)} be a set of commuting invertible bimodules. As-

sume these bimodules have compatible pairwise commutation relations in the sense

of (4.1.5). Then there is a multi-graded ring B with multi-graded pieces given by

(4.1.2) and multiplication given by (4.1.3).
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To study these rings, a multi-graded version of σ-ampleness is introduced. Since

we will again be interested in both this version of ampleness and the usual one, we

will call this (right) NC-ampleness, whereas [C] uses the terminology (right) ample-

ness. We define the ordering on s-tuples to be the standard one, i.e., (n′1, . . . , n
′
s) ≥

(n1, . . . , ns) if n′i ≥ ni for all i. For simplicity we write Lm
σ = Lm1

(1,σ1) . . .Lms

(s,σs)
.

Definition 4.1.7. Let X be a projective scheme with s commuting invertible bi-

modules {L(i,σi)}.

1. If for any coherent sheaf F , there exists an m0 such that

Hq(X,F ⊗ Lm
σ ) = 0

for q > 0 and m ≥ m0, then the set {L(i,σi)} is called right NC-ample.

2. If for any coherent sheaf F , there exists an m0 such that

Hq(X,Lm
σ ⊗F) = 0

for q > 0 and m ≥ m0, then the set {L(i,σi)} is called left NC-ample.

As in the case of one invertible bimodule, right and left NC-ampleness are related.

Lemma 4.1.8 (See Lemma 2.5.6). Let X be a projective scheme with s commuting

invertible bimodules {(Li)σi
}. Then the set {(Lσ−1

i
i )σ−1

i
} commutes pairwise. Also,

the set {(Li)σi
} is right NC-ample if and only if the set {(Lσ−1

i
i )σ−1

i
} is left NC-ample.

Proof. Let Lσ,Mτ be two commuting invertible bimodules. Then (4.1.4) holds.

Obviously σ−1τ−1 = τ−1σ−1. Now since L ⊗ σ∗M ∼= M⊗ τ ∗L, pulling back by

(σ−1τ−1) we have

(τ−1)∗(σ−1)∗L ⊗ (τ−1)∗M∼= (σ−1)∗(τ−1)∗M⊗ (σ−1)∗L.

So Lσ−1

σ−1 = ((σ−1)∗L)σ−1 and Mτ−1

τ−1 = ((τ−1)∗M)τ−1 commute.

Now suppose that the set {(Li)σi
} is right NC-ample. Then the higher cohomology

of

Z = |F ⊗ (L1)
m1
σ1

. . . (Ls)
ms
σs
|

vanishes for all (m1, . . . ,ms) sufficiently large. We may write

Z = F ⊗N1 ⊗ · · · ⊗ Ns

where

Nj = |((Lj)
mj
σj

)σ1σ2...σj−1|.
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Writing out the expression in the sense of (2.5.1), we see that each Nj is the tensor

product
mj−1∏
l=0

Lσ
m1
1 σ

m2
2 ...σl

j

j

of invertible sheaves. Now pulling back by τ = σ−m1
1 σ−m2

2 . . . σ−ms
s we have that N τ

j

is the tensor product

mj−1∏
l=0

Lσ
l−mj
j ...σ−ms

s

j =

mj−1∏
l=0

(Lσ−1
j

j )σ
l−mj+1

j ...σ−ms
s .

Thus we have

N τ
1 ⊗ · · · ⊗ N τ

s ⊗F τ = |(Lσ−1
1

1 )m1

σ−1
1

. . . (Lσ−1
s

s )ms

σ−1
s
⊗F|.

These are the sheaves whose higher cohomology should vanish for (m1, . . . ,ms) suf-

ficient large so that {(Lσ−1
i

i )σ−1
i
} is left NC-ample. Clearly the argument can be

reversed.

Notice that the commutation relation between the invertible bimodules forces the

consideration of Lσ−1

σ−1 instead of just Lσ−1 as in the “right vs. left” proofs of §2.2

and §2.5. This is similar to the situation in Lemma 2.5.6, where one pulled back by

σm−1 rather than σm.

We also have an analogue of Lemma 2.2.5.

Lemma 4.1.9. Let X be a projective scheme with s commuting invertible bimodules

{(Li)σi
}. Assume the commutation relations of {(Li)σi

} and of {(Lσ−1
i

i )σ−1
i
} are com-

patible in the sense of (4.1.5). If B′ = B(X; {(Li)σi
}) and B = B(X; {(Lσ−1

i
i )σ−1

i
}),

then B ∼= (B′)op.

Proof. Proceed as in the proof of Lemma 2.2.5, with τ : B → B′ given by τ(a) =

σn1
1 . . . σns

s (a) for a ∈ B(n1,...,ns).

As in §3.2, we have simpler equivalent conditions for a set of bimodules to be right

NC-ample.

Proposition 4.1.10. Let X be a projective scheme with s commuting invertible

bimodules {L(i,σi)}. Then the following are equivalent:

1. The set {L(i,σi)} is right NC-ample.

2. For any coherent sheaf F , there exists an m0 such that F ⊗Lm
σ is generated by

global sections for m ≥ m0.
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3. For any invertible sheaf H, there exists an m0 such that |H−1 ⊗ Lm
σ | is very

ample for m ≥ m0.

4. For any invertible sheaf H, there exists an m0 such that |H−1 ⊗ Lm
σ | is ample

for m ≥ m0.

A similar statement holds for left NC-ample.

Proof. Each step of the proof of Proposition 3.2.2 does not depend on the structure

of the grading monoid N, only that we have a partial order such that any finite set

of elements of the monoid has an upper bound. There is a concept of m � 0 in any

partial order. So the proof goes through exactly as in Proposition 3.2.2.

We can now give a connection between right NC-ampleness and the concept of

σ-ampleness for one invertible sheaf L.

Lemma 4.1.11. Let X be a projective scheme with s commuting invertible bimodules

{L(i,σi)}. Suppose that n = (n1, . . . , ns) ∈ (N+)s and set τ = σn1
1 . . . σns

s . If the set of

bimodules is right NC-ample, then |Ln1

(1,σ1) . . .Lns

(s,σs)
| is τ -ample.

Proof. Let H be an invertible sheaf and let m0 be such that for all m ≥ m0, the sheaf

|H−1 ⊗ Lm
σ | is ample by Proposition 4.1.10(4).

Now there exists an integer l0 such that for all l ≥ l0, we have ln ≥ m0. So

|H−1 ⊗ (Ln
σ)l| is ample. Thus by Proposition 3.2.2(4), |Ln

σ| is τ -ample.

We then have a new version of Theorem 3.1.2.

Theorem 4.1.12. Let X be a projective scheme with s commuting invertible bi-

modules {L(i,σi)}. The set {L(i,σi)} is (right) NC-ample if and only if every σi is

quasi-unipotent and there exists m0 ∈ N
s such that |Lm

σ | is ample for all m ≥ m0.

Proof. Suppose that {L(i,σi)} is right NC-ample. Then by Proposition 4.1.10(4), there

exists m0 ∈ N
s such that |Lm

σ | is ample for all m ≥ m0. Further, by the previous

lemma, Ln1

(1,σ1) . . .Lns

(s,σs)
is τ -ample when τ = σn1

1 . . . σns
s and each ni > 0. Now

recall that all the automorphisms commute and hence their actions on A1
Num(X) are

commuting matrices. Thus the eigenvalues of the product σn1
1 . . . σns

s are products

of eigenvalues from each σi. So if σ1 were not quasi-unipotent, then either τ1 =

σ1σ2 . . . σs or τ2 = σ2
1σ2 . . . σs would not be quasi-unipotent. But τ1 and τ2 must be

quasi-unipotent by Theorem 3.1.2 since the corresponding sheaves L1
(1,σ1) . . .L1

(s,σs)

and L2
(1,σ1) . . .L1

(s,σs)
are τ1-ample and τ2-ample respectively. Thus each σi must be

quasi-unipotent.

Now suppose that every σi is quasi-unipotent and there exists m0 ∈ N
s such that

|Lm
σ | is ample for all m ≥ m0. As the σi commute, τ = σ1 . . . σs is quasi-unipotent.
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Then by Theorem 3.1.2, the invertible bimodule L(1,σ1) . . .L(s,σs) is τ -ample. So given

any invertible sheaf H, there exists n0 ∈ N such that

|H−1 ⊗ (L(1,σ1) . . .L(s,σs))
n| = |H−1 ⊗ Ln

(1,σ1) . . .Ln
(s,σs)|

is ample for n ≥ n0 by Proposition 3.2.2(4). Then for all m ≥ (n0, n0, . . . , n0) + m0

the invertible sheaf

|H−1 ⊗ Lm
σ | = |H−1 ⊗ Ln0

(1,σ1) . . .Ln0

(s,σs)
| ⊗ |Lm1−n0

(1,σ1) . . .Lms−n0

(s,σs)
|

is the tensor product of two ample invertible sheaves. Hence it is ample and so the

set of invertible bimodules is right NC-ample by Proposition 4.1.10(4).

Corollary 4.1.13. Let X be a projective scheme with s commuting invertible bimod-

ules {L(i,σi)}. Then {L(i,σi)} is right NC-ample if and only if it is left NC-ample.

Proof. Suppose that {L(i,σi)} is right NC-ample. Then each σi is quasi-unipotent and

there exists m0 such that |Lm1

(1,σ1) . . .Lms

(s,σs)
| is ample for (m1, . . . ,ms) ≥ m0. Pulling

back by σ−m1
1 . . . σ−ms

s , we have that |(Lσ−1
1

1 )m1

σ−1
1

. . . (Lσ−1
s

s )ms

σ−1
s
| is ample. Thus by

Theorem 4.1.12, the set {(Lσ−1
i

i )σ−1
i
} is right NC-ample. So the original set {L(i,σi)}

is left NC-ample by Lemma 4.1.8. The argument is clearly reversible.

Thus we may now refer to a set of bimodules as being simply NC-ample.

Note the difference between Theorems 3.1.2 and 4.1.12. The former requires

only that |Lm
σ | is ample for one value of m, while the latter requires the product of

bimodules to be “eventually” ample. To see this stronger requirement is necessary,

let X be any projective scheme with L any ample invertible sheaf. We need to rule

out the pair L,L−1 where the bimodule action is the usual commutative one. In this

particular case, of course L1 ⊗ (L−1)0 is ample. But Lm1 ⊗ (L−1)m2 is not ample for

all (m1, m2) sufficiently large; just fix m1 and let m2 go to infinity.

It is not even necessary for one of the L(i,σi) to eventually be ample, since on

P
1×P

1, the pair O(1, 0),O(0, 1) is NC-ample, where again these bimodules act only

as commutative invertible sheaves.

4.2 Ring theoretic consequences

Unlike the case of only one bimodule, the multi-graded ring B may not be noether-

ian when {Lσi
} is NC-ample. In fact, [C, Example 5.1] gives a simple commutative

(and hence not finitely generated) counterexample.

Example 4.2.1. Let C be a smooth integral curve of genus g > 0. Let L be an

invertible sheaf of degree 0 such that no power of L is isomorphic to OC and let M
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be an invertible sheaf with degM > g − 1. The pair L,M is certainly NC-ample.

The ring B = B(X;L,M) has B(i,0) = 0 for i > 0 by [H2, p. 295, Lemma 1.2]. By

Riemann-Roch for curves, all other graded pieces are non-zero. Let I = B(>0,>0) be

the augmentation ideal. Then I/I2 contains a copy of ⊕i>0B(i,1), which is infinite

dimensional. So B cannot be finitely generated.

However, Chan introduces an additional property for an invertible bimodule Lσ

on X to guarantee the noetherian condition.

(∗) There exists a projective scheme Y with automorphism σ and a σ-equivariant

morphism f : X → Y . That is σY ◦ f = f ◦ σX . There also exists an invertible sheaf

L′ on Y such that L = f ∗L′ and such that L′σ is σ-ample.

This property (∗) is saying that for m � 0, |Lm
σ | is generated by global sec-

tions, since it is a pullback of |(L′)m
σ |, which is eventually very ample by Proposi-

tion 3.2.2(3). Note in particular that if L is already σ-ample, then Lσ satisfies (∗)
trivially. Using this property, one determines

Theorem 4.2.2. ([C, Theorem 5.2]) Let X be a projective scheme with commuting

invertible bimodules Lσ,Mτ . Suppose that the pair is NC-ample and each bimodule

satisfies (∗), possibly for different Y . Then B(X;Lσ,Mτ ) is right noetherian.

Then combining Corollary 4.1.13 and the theorem above, we have

Theorem 4.2.3. Let X be a projective scheme with commuting invertible bimodules

Lσ,Mτ . Suppose that the pair is NC-ample and each bimodule satisfies (∗), possibly

for different Y . Then B(X;Lσ,Mτ ) is noetherian.

Now we can prove that two particularly interesting twisted multi-homogeneous

coordinate rings, a Rees ring and a tensor product, are noetherian, strengthening

the results of [C, Corollaries 5.7, 5.8]. In the latter case, we may replace his proof,

based on spectral sequences, by an easier one since our criterion (4.1.12) simplifies

testing the NC-ampleness of the relevant pair of bimodules.

Corollary 4.2.4. Let Lσ be a σ-ample invertible bimodule on a projective scheme

X. Let B = B(X, σ,L) be generated in degree one. Then the Rees algebra B[It] =

⊕∞r=0I
rtr of B is noetherian, where I = B>0 is the augmentation ideal.

Proof. If B is generated in degree one, then B[It] has bigraded pieces

B(i,j) = H0(X,Li
σLj

σ)tj

since Ij = ⊕∞l=jBl when B is generated in degree one. The pair Lσ,Lσ is obviously

NC-ample and satisfies (∗). Thus Theorem 4.2.3 applies.
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Corollary 4.2.5. Let Lσ be σ-ample on a projective scheme X and let Mτ be τ -

ample on a projective scheme Y . Then B(X, σ,L)⊗B(Y, τ,M) is noetherian.

Proof. It is argued in [C, Example 4.3] that

B(X, σ,L)⊗B(Y, τ,M) ∼= B(X × Y ; (π∗1L)σ×1, (π
∗
2M)1×τ ),

where the πi are the natural projections. These two invertible bimodules on X × Y

obviously satisfy (∗).
Since Lσ is σ-ample and Mτ is τ -ample, there is an m0 such that |Lm

σ | and |Mm
τ |

is ample for all m ≥ m0. Note that (σ×1)∗π∗1L = π∗1σ
∗L and a similar formula holds

for Mτ . Then

|(π∗1L)m1
σ×1(π

∗
2M)m2

1×τ |

is ample for all (m1, m2) ≥ (m0, m0) by [H2, p. 125, Exercise 5.11].

Now σ is quasi-unipotent and we wish to show σ × 1 is as well. It is tempting to

think that as a matrix acting on A1
Num(X ×Y ) one has σ× 1 = σ⊕ 1. However, this

may not be the case, since in general A1
Num(X ×Y ) has larger rank than A1

Num(X)⊕
A1

Num(Y ) [H2, p. 367, Exercise 1.6]. But let HX and HY be ample invertible sheaves

on X and Y respectively. If σ×1 is not quasi-unipotent, then by Lemma 3.3.2, there

exists r > 1, c > 0, and an integral curve C on X × Y such that

(4.2.6) (((σ × 1)∗)m(π∗1HX ⊗ π∗2HY ).C) ≥ crm for all m ≥ 0.

But

((σ × 1)∗)m(π∗1HX ⊗ π∗2HY ) = π∗1(σ
∗)mHX ⊗ π∗2HY .

Since σ is quasi-unipotent, the intersection numbers of the right hand side with any

curve C must be bounded by a polynomial. This contradicts (4.2.6). So σ × 1 must

be quasi-unipotent. Similarly, 1×τ is quasi-unipotent. Thus by Theorem 4.1.12, the

pair (π∗1L)σ×1, (π
∗
2M)1×τ is NC-ample and thus the ring of interest is noetherian.



BIBLIOGRAPHY

60



61

BIBLIOGRAPHY

[AS] M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic

growth, Invent. Math. 122 (1995), no. 2, 231–276.

[ATV] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to auto-

morphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Birkhäuser
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ABSTRACT

Noncommutative ample divisors

by

Dennis Shawn Keeler

Chair: J.T. Stafford

In the noncommutative geometry of Artin, Van den Bergh, and others, the twisted

homogeneous coordinate ring is one of the basic constructions. Such a ring is defined

by a σ-ample divisor, where σ is an automorphism of a projective scheme X. Many

open questions regarding σ-ample divisors have remained.

We derive a relatively simple necessary and sufficient condition for a divisor on

X to be σ-ample. As a consequence, we show right and left σ-ampleness are equiv-

alent and any associated noncommutative homogeneous coordinate ring must be

noetherian and have finite, integral GK-dimension. We also characterize which au-

tomorphisms σ yield a σ-ample divisor. We also generalize our results to the multi-

homogeneous case. Through this we see that certain related rings, like the tensor

product of twisted homogeneous coordinate rings, are noetherian.
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