This survey is based on notes taken by Luke Serafin, on lectures given by the author on June 4th, 6th, 11th and 13th 2019, at the Workshop on Set Theory, Recursion Theory and their Interaction, held at the Institute for Mathematical Sciences at the University of Singapore. It covers an introductory portion of the classical theory of Woodin’s AD^+. There is significant overlap between the material presented here and in the paper [7]. The lectures were based on parts of the author’s book in preparation [11], drafts of which are available on his website.

1. Determinacy axioms and forms of Choice

Woodin’s axiom AD^+ is a strengthening of the classical Axiom of Determinacy (AD), which is inconsistent with the Axiom of Choice (AC). We define AD below, but refer the reader to [2, 4, 10] for a more thorough introduction, including an account of the history of this axiom. Before giving the definition of AD^+ we will quickly review AD and its strengthening AD_R, and forms of the Axiom of Choice consistent with AD, such as DC and Uniformization. We will also discuss structural consequences of determinacy, such as the Wadge hierarchy and Moschovakis Coding Lemma, and ways of defining subsets of the real line using sets of ordinals, such as Suslin representations and ∞-Borel codes. Collectively these notes present preliminary material toward some of Woodin’s major theorems of the 1990’s (since then significant progress in the study of AD^+ has been made by applying the stationary tower and inner model theory; we do not discuss these results here). Some of these theorems are listed in Section 3.3. For the most part we sketch this material at a high level, giving short proofs when appropriate. Complete proofs of (most of) the theorems discussed here appear in the author’s book.

Our base theory throughout the paper is ZF. Additional axioms will be stated as needed.

1.1. AD and AD_R. Let X be an arbitrary set and $A \subseteq X^\omega$. In the game $G_X(A)$, two players, I and II, alternate playing elements of X. Player I plays a first element $f(0)$, player II a second element $f(1)$, and so on, with a play at each natural number “time”. The entire run of the game produces an $f \in X^\omega$. Player I wins if and only if $f \in A$ (so player II wins if $f \in X^\omega \setminus A$).

\[
\begin{array}{c|c|c|c|c|c|c|c}
I & x(0) & x(2) & x(4) & \ldots \\
\hline
II & & & & & & \\
 & x(1) & x(3) & \ldots \\
\end{array}
\]

The game $G_X(A)$; I wins if and only if x is in A.
A strategy is a function $\sigma : X^{<\omega} \to X$, which we think of as determining a move for a player given the history of the game up to the point where the strategy is applied. Given a strategy σ and an $x \in X^\omega$, $\sigma * x$ is the result a run of $G_X(A)$ where Player I plays according to σ and x lists Player II’s moves. That is, $(\sigma * x)(0) = \sigma(\langle \rangle)$ and, for all $k \in \omega$, $(\sigma * x)(2k + 1) = x(k)$ and $(\sigma * x)(2k + 2) = \sigma((\sigma * x) \upharpoonright 2k + 1)$. The result of a run where x lists Player I’s moves and Player II plays according to σ is defined analogously, and denoted $x * \sigma$. A strategy σ is winning for player I if and only if $\sigma * x \in A$ for all $x \in X^\omega$, and winning for player II if $x * \sigma \notin A$, for all such x. The game $G_X(A)$ is said to be determined if and only if one of the players has a winning strategy.

We list below three forms of determinacy defined in terms of the framework just given. The first two are consistent with ZF, relative to the consistency of certain large cardinal axioms (see Theorems 1.1 and 1.2). The second implies the first, since an integer game can be coded by a game on ω^ω. The third is refuted by ZF, as we discuss at the beginning of Section 3.2.

- AD: $G_\omega(A)$ is determined for all $A \subseteq \omega^\omega$
- AD$_\mathbb{R}$: $G_{\omega^\omega}(A)$ is determined for all $A \subseteq (\omega^\omega)^\omega$
- AD$_{\omega_1}$: $G_{\omega_1}(A)$ is determined for all $A \subseteq (\omega_1)^\omega$

We refer the reader to [2, 4] for discussion of the following standard consequences of AD. The first two of these will be used in these notes, at least implicitly, but not the third.

- All sets of reals have the perfect set property.
- All sets of reals have the property of Baire.
- All sets of reals are Lebesgue measurable.

The assertion that all sets of reals have the perfect set property implies that there are no injections from ω_1 into ω^ω. We will write this latter statement as $\mathfrak{R}_1 \not\leq 2^{\omega_1}$. We will also make use of (generalizations of) Solovay’s theorem that, under AD, ω_1 is a measurable cardinal.

Large cardinals imply the existence of inner models of AD and AD$_\mathbb{R}$, as shown by the two following theorems (due to Martin, Steel and Woodin; see [13, 16, 9]).

Theorem 1.1. If there are infinitely-many Woodin cardinals with a measurable cardinal above them all then $L(\mathbb{R}) \models AD$.

Theorem 1.2. If there exists a cardinal κ which is a limit of Woodin cardinals and of strong-to-κ cardinals and there is a measurable cardinal $\lambda > \kappa$, then there is a $\Gamma \subseteq \mathcal{P}(\omega^\omega)$ such that $L(\Gamma, \mathbb{R}) \models AD_\mathbb{R}$.

Since strategies in integer games can be coded by real numbers, AD implies that AD holds in every inner model containing the reals, for instance, in the inner model $L(\mathbb{R})$. Similarly, since strategies in real games can be coded by sets of real numbers, AD$_\mathbb{R}$ implies that AD$_\mathbb{R}$ holds in every inner model containing $\mathcal{P}(\mathbb{R})$. However, a model of the form $L(A, \mathbb{R})$, where A is a subset of $L(\mathbb{R})$, can never satisfy AD$_\mathbb{R}$, since such a model can never satisfy Uniformization and $\mathbb{N}_1 \not\leq 2^{\omega_1}$, which are consequences of AD$_\mathbb{R}$.

1.2. Uniformization. Given a set $A \subseteq \omega^\omega \times \omega^\omega$, and an $x \in \omega^\omega$, we let A_x denote the section of A at x, i.e., $\{ y \in \omega^\omega : (x, y) \in A \}$. Uniformization is the assertion that every subset of the plane contains a function with the same domain:

$$\forall A \subseteq \omega^\omega \times \omega^\omega \exists B \subseteq A \forall x \in \omega^\omega (A_x \neq \emptyset \Rightarrow |B_x| = 1).$$
Uniformization follows from the Axiom of Choice (AC). It also follows from AD$_R$ via a game with one round, where Player I plays $x \in \omega^\omega$, Player II plays $y \in \omega^\omega$, and II wins if and only if $A_x = \emptyset$ or $y \in A_x$. Player I cannot have a winning strategy in this game, and a winning strategy for Player II gives a uniformizing function for A.

A diagonal argument (given in the proof of Theorem 1.3) shows that Uniformization fails in models of the form $L(A, \mathbb{R})$ for any set $A \subseteq L(\mathbb{R})$, assuming $\aleph_1 \nsubseteq 2^{\aleph_0}$. It follows that models of this form cannot satisfy AD$_R$. For any set or class X, we let OD_X denote the class of sets which are definable from an ordinal and a finite subset of X (i.e., which are ordinal definable from a finite subset of X). We write OD for OD_X when $X = \emptyset$. When X is finite (more generally, where there is an OD_X wellordering of X) there is a definable (class-sized) wellordering of OD_X.

Theorem 1.3 (Solovay). If $\aleph_1 \nsubseteq 2^{\aleph_0}$ and A is a set contained in $L(\mathbb{R})$, then $L(A, \mathbb{R}) \models \neg$Uniformization.

Proof. For each set a in $L(A, \mathbb{R})$ there is an $x \in \omega^\omega$ such that a is in $OD_{\{A,x\}}$. Since $\aleph_1 \nsubseteq 2^{\aleph_0}$, each set of the form $\omega^\omega \cap OD_{\{A,x\}}$ is countable. Let B be the set of $(x,y) \in \omega^\omega \times \omega^\omega$ such that y is not in $OD_{\{A,x\}}$. Any uniformizing function f for B would be in $OD_{\{A,x\}}$ for some $x \in \omega^\omega$, which would mean that $f(x)$ also be in $OD_{\{A,x\}}$. \[\square\]

Uniformization is then one difference between AD and AD$_R$, as it is implied by the latter and not the former. There is a sense in which it may be the only difference, as results of Becker, Martin and Woodin show that AD + DC + Uniformization implies AD$_R$ (see Theorem 3.12). We now briefly review DC, which is a weak form of the Axiom of Choice.

1.3. DC and DC$_R$.
For each set X, DC$_X$ is the statement that each tree $T \subseteq X^{<\omega}$ without terminal nodes has an infinite branch. The Axiom of Dependent Choice, DC, is the statement that DC$_X$ holds for every X.

Uniformization implies DC$_R$, since for any such tree $T \subseteq (\omega^\omega)^{<\omega}$ it implies the existence of a function choosing a successor (when there is one) for each node. It follows that AD$_R$ implies DC$_R$. Whether or not AD implies DC$_R$ is an open question. At the end of Section 10 we will review Solovay’s theorem showing that AD$_R$ does not imply that DC holds in $L(P(\mathbb{R}))$.

Since an infinite path through a tree on ω^ω can be coded by a single real, if DC$_R$ holds then it holds in any transitive model M containing \mathbb{R}. In particular, it holds in $L(\mathbb{R})$ if the Axiom of Choice holds in the full universe V.

While our current goal is the formulation of AD$^+$, we digress briefly to review some important structural properties of $\mathcal{P}(\omega^\omega)$ under AD.

2. The Wadge Hierarchy

Given $A, B \subseteq \omega^\omega$, we write $A \leq_W B$ (and say that A is Wadge below B) to mean that there is a continuous function $f : \omega^\omega \to \omega^\omega$ such that $A = f^{-1}[B]$. We write $A \equiv_W B$ for the conjunction $A \leq_W B \wedge B \leq_W A$. The equivalence class $[A]_W$ of A with respect to \equiv_W is the Wadge degree of A. The Wadge order gives an almost linear hierarchy on the set of Wadge degrees, in the following sense.

Theorem 2.1 (Wadge). AD implies that, for all $A, B \subseteq \omega^\omega$, $A \leq_W B$ or $B \leq_W \omega^\omega \setminus A$.

Proof. Consider the game where Players I and II play nonempty finite sequences of integers in each turn, with I building $x \in \omega^\omega$, and II building y. Say that I wins if and only if the statement $x \in B \iff y \in A$ holds. A winning strategy for I induces a witness to the statement $A \leq_W B$. A winning strategy for II witnesses $B \leq_W \omega^\omega \setminus A$. \hfill \Box

Determinacy for the class of games in the proof just given is called Wadge Determinacy. It is an open question whether Wadge Determinacy implies AD.

Martin proved that the Wadge order is wellfounded, assuming Wadge Determinacy, DC$_R$ and the assumption that every set of reals has the Baire property. It is not known if DC$_R$ is needed for this result, or if AD alone implies that the Wadge hierarchy is wellfounded. The wellfoundedness of the Wadge order induces the notion of Wadge-rank, where the Wadge-rank of $A \subseteq \omega^\omega$ is the ordinal rank of $[A]_W$ in the Wadge order.

A Wadge class $[A]_W$ is said to be selfdual if $[A]_W = [\omega^\omega \setminus A]_W$. We mention a few important results from the highly-developed theory of Wadge classes (see, for instance [17]).

First, there is no largest Wadge degree. The proof below uses the fact that there is a closed set $C \subseteq \omega^\omega$ such that each $c \in C$ codes a continuous function $f_c : \omega^\omega \to \omega^\omega$ and every continuous function is f_c for some c.

Theorem 2.2. There is no largest Wadge degree.

Proof. Given $A \subseteq \omega^\omega$, let B be the set of $c \in C$ for which $f_c(c) \notin A$. Then B is not Wadge below A. \hfill \Box

For each pair of complementary non-selfdual degrees there is a minimal selfdual degree above them.

Theorem 2.3. For a non-selfdual class $[A]_W$, there is a minimal Wadge degree above A and $\omega^\omega \setminus A$.

Proof. Let B be the set of $x \in \omega^\omega$ of the form $0^\omega x$ for $x \in A$ or $1^\omega x$ for $x \notin A$. Then $A \leq_W B$ and $(\omega^\omega \setminus A) \leq_W B$ and, for any $C \subseteq \omega^\omega$, if $A \leq_W C$ and $(\omega^\omega \setminus A) \leq_W C$ then $B \leq_W C$. \hfill \Box

The corresponding fact for selfdual degrees follows from the wellfoundedness of the Wadge hierarchy.

Theorem 2.4. If AD + DC$_R$ holds then each self-dual Wadge degree has a non-selfdual successor in the Wadge order.

Theorem 2.5 (whose proof includes contributions from Steel and Van Wesep) says when a Wadge degree of limit rank is selfdual.

Theorem 2.5. Assuming Wadge Determinacy and that all subsets of ω^ω have the property of Baire, limit classes under the Wadge order are self-dual precisely when the Wadge order below them has countable cofinality.

2.1. Θ. The ordinal Θ is defined to be the least ordinal which is not a surjective image of ω^ω. Clearly, Θ is a cardinal; the Moschovakis Coding Lemma (see Section 4) implies that it is a limit cardinal. Assuming that $A \subseteq \omega^\omega$ has Wadge rank α (greater than 0), there is a surjection from ω^ω to $\alpha + 1$, assigning each code c for a continuous function f_c to the Wadge rank of $f_c^{-1}[A]$. Thus, assuming AD + DC$_R$,
Theorem 3.3. If Uniformization will not satisfy the assertion that all sets of reals are Suslin as they don’t satisfy $= p[T]$ each A the Suslin property and Uniformization

Theorem 3.2. dently. results of Becker and Woodin. The second is due to Martin and Woodin independently.

Definition 3.1. Given an ordinal γ and a set X, a set $A \subseteq X^\omega$ is γ-Suslin if $A = p[T]$ for some tree $T \subseteq (X \times Y)^{<\omega}$, the projection $p[T]$ is defined to be the set of $x \in X^\omega$ for which there exists an $f \in Y^\omega$ such that $(x, f) \in [T]$.

Definition 3.1. Given an ordinal γ and a set X, a set $A \subseteq X^\omega$ is γ-Suslin if $A = p[T]$ for some tree $T \subseteq (X \times Y)^{<\omega}$. The set A is Suslin if it is γ-Suslin for some ordinal γ, and co-Suslin if its complement in X^ω is Suslin.

Continuous preimages of γ-Suslin sets are γ-Suslin, so the Suslin sets form an initial segment of the Wadge hierarchy.

If $A \subseteq \omega^\omega \times \omega^\omega$ (identified with the corresponding subset of $(\omega \times \omega)\omega$) is Suslin then it can be uniformized. To see this, suppose that $A = p[T]$, where $T \subseteq (\omega \times \omega \times \gamma)^{\leq \omega}$. For each $x \in A$ one can recursively find the lexicographically least $y \in (\omega \times \gamma)^{\leq \omega}$ such that $(x, y) \in [T]$. Models of the form $L(A, \mathbb{R})$ for $A \subseteq L(\mathbb{R})$ will not satisfy the assertion that all sets of reals are Suslin as they don’t satisfy Uniformization.

The following theorems, whose proofs are beyond the scope of these notes, relate the Suslin property and Uniformization with $\text{AD}_\mathbb{R}$. The first is a combination of results of Becker and Woodin. The second is due to Martin and Woodin independently.

Theorem 3.2. $\text{AD} + \text{DC} + \text{Uniformization}$ implies all subsets of ω^ω are Suslin.

Theorem 3.3. If AD holds and all subsets of ω^ω are Suslin, then $\text{AD}_\mathbb{R}$ holds.

We say that a tree T is wellfounded if it does not have an infinite path, i.e., if $[T]$ is the emptyset. Wellfoundedness of a tree is witnessed by a ranking function ρ from T to the ordinals, where $\rho(s) > \rho(t)$ whenever t extends s. If T is wellfounded, then a ranking function witnessing this can be constructed recursively in the model $L[T]$. It follows that, given an ordinal γ, a tree T on $\omega \times \gamma$, and an $x \in \omega^\omega$, $x \in p[T]$ if and only if $L[T, x] \models x \in p[T]$. This property is generalized in the following definition (in Section 6.1 we discuss an equivalent definition which is more closely related to the usual notion of Borel set).

Definition 3.4. A set $A \subseteq \omega^\omega$ is ∞-Borel if and only if there exist a formula ϕ and a set $S \subseteq \text{Ord}$ such that $A = \{x \in \omega^\omega : L[S, x] \models \varphi(S, x)\}$. We call the pair (S, ϕ) an ∞-Borel code for A.

Again, Suslin sets are ∞-Borel. As with the Suslin sets, the ∞-Borel sets form an initial segment of the Wadge hierarchy, which can be seen as follows. If (S, ϕ) is an ∞-Borel code for A, and c is a code for a continuous function f_c, then there is
measurability, it is still unknown whether AD satisfies the Ramsey property. Unlike the cases of the Baire property and Lebesgue
the same, using random forcing instead of Cohen forcing. One can use the
is the Ramsey property.
L which are not Cohen-generic over L.

A measurable. To see this for the property of Baire, let φ be the canonical P-name for the generic Cohen real. Suppose that (S, φ) is an
∞-Borel code for A. Since every element of L(∞, T, R) is definable in L(∞, T, R) from T, an ordinal and an element of ωω, such a submodel can be built assuming only ZF.

If A is ∞-Borel and 81 ∉ 2^80 then A has the property of Baire and is Lebesgue measurable. To see this for the property of Baire, let P be Cohen forcing and let ˆc be the canonical P-name for the generic Cohen real. Suppose that (S, φ) is an
∞-Borel code for A. Since 81 ∉ 2^80 and L[S] |= AC, ωω ∩ L[S] is countable, so the set of reals which are Cohen-generic over L[S] is comeager. For each such real x, let g_x be the filter for which ˆc_{g_x} = x. Let A’ be the set of x which are Cohen-generic over L[S] for which there is a condition p ∈ g_x forcing that L[S, ˆc] |= φ(S, ˆc). Then A’ is Borel, and the symmetric difference A ∆ A’ is contained in the set of reals which are not Cohen-generic over L[S]. For Lebesgue measurability the argument is the same, using random forcing instead of Cohen forcing. One can use the

Theorem 3.5. AD + V = L(ℝ) implies that all subsets of ωω are ∞-Borel.

Theorem 3.6. If AD + DC_R holds and A is ∞-Borel then it is ∞-Borel in L(A, ℝ).

We list three theorems of Woodin from the 1990’s on ∞-Borel sets, whose proofs are too involved to include in these notes. Since DC_R implies that DC holds in models of the form L(S, ℝ) whenever S is a set of ordinals, Theorem 3.9 implies Theorem 3.8.

Theorem 3.7. AD + Uniformization implies that all subsets of ωω are ∞-Borel.

Theorem 3.8. Assuming AD + DC_R, for A ⊆ ωω, A is ∞-Borel if and only if there is an S ⊆ Ord with A ∈ L(S, ℝ).

Theorem 3.9. Assuming AD + DC, for every ordinal λ < Θ, all subsets of ωω in L(P(λ)) are ∞-Borel.

There is still one part of AD^+ left to be defined, concerning the determinacy of games on the ordinals.

3.2. γ-Determinacy. Let γ be an ordinal, and f: γω → ωω be a continuous function, where γω is given the product topology induced by the discrete topology on γ. Given A ⊆ ωω, we let G(f, A) be the game where players I and II alternately choose the values of some x ∈ γω, with Player I winning if and only if f(x) ∈ A. We let γ-Determinacy be the statement that each such game G(f, A) is determined. For all γ ≥ 2, γ-Determinacy implies AD.
AN INTRODUCTION TO AD⁺

I

x(0)	x(2)	x(4)	...
	x(1)	x(3)	...

The game \(G(f, A); I \) wins if and only if \(f(x) \) is in \(A \).

Although we call this statement \(\gamma \)-Determinacy, we do not consider arbitrary subsets of \(\gamma^n \) as payoff sets. The reason for this is that \(ZF \) implies the existence of a nondetermined game on \(\omega_1^n \) (ie., that \(AD_{\omega_1} \) is false, as mentioned above). To see this, consider the game where Player \(I \) plays a countable ordinal \(\alpha \) in round 1 and makes no subsequent plays, and Player \(II \) in her turns plays natural numbers \(x_i (i \in \omega) \) collectively forming \(x \in \omega^n \), with Player \(I \) wins if \(x \) codes a wellordering of \(\omega \) in ordertype \(\alpha \). Since Player \(I \) cannot have a winning strategy, determinacy of this game implies the existence of an injection from \(\omega_1 \) to \(\omega^n \), which contradicts \(AD \). One interesting aspect of this argument is that it does not produce a single game on \(\omega_1 \) which is provably undetermined (in particular, Player \(II \) has a winning strategy in the game just described if \(AC \) holds). Woodin has shown that in fact determinacy can hold for all definable games on \(\omega_1 \).

A typical game of the type considered in the statement of \(\gamma \)-Determinacy is when \(A \) is a subset of \(\omega^n \), \(\tau \) is a Col(\(\omega, \gamma \))-name for an element of \(\omega^n \), and players \(I \) and \(II \) play a descending sequence of (codes for) conditions in Col(\(\omega, \gamma \)) collectively realizing \(\tau \), with player \(I \) winning if and only if the given realization of \(\tau \) is in the set \(A \).

We let \(<\Theta \)-Determinacy be the statement that \(\gamma \)-Determinacy holds for every ordinal \(\gamma < \Theta \). We have now defined all the parts of the axiom \(AD^+ \).

3.3. \(AD^+ \).

Definition 3.10. \(AD^+ \) is the conjunction of the following three statements.

- DC\(_R \)
- Every subset of \(\omega^n \) is \(\infty \)-Borel.
- \(<\Theta \)-Determinacy

Some authors (including Woodin) do not include DC\(_R \) in the statement of \(AD^+ \), but consider \(AD^+ \) (defined instead as the conjunction of the other two parts) only in the context of DC\(_R \). The axiom DC\(_R \) is different from the other two parts of \(AD^+ \) in that it is witnessed by individual real numbers, as opposed to bounded subsets of \(\Theta \).

Here is a brief listing of implications, known non-implications, and open questions regarding the statements discussed so far.

- \(AD_R \) implies \(AD^+ \) Uniformization (Sections 1.1 and 1.2), which implies that all subsets of \(\omega^n \) are \(\infty \)-Borel (Theorem 3.7).
- \(AD_R + DC \) implies that all subsets of \(\omega^n \) are Suslin (Theorem 3.2).
- \(AD \) plus “all subsets of \(\omega^n \) are Suslin” implies \(AD^+ \) (Theorem 3.19 for \(<\Theta \)-Determinacy).
- If all subsets of \(\omega^n \) are Suslin, then Uniformization holds (Section 1.2).
- Uniformization implies DC\(_R \) (Section 1.2).
- \(<\Theta \)-Determinacy implies \(AD \), so \(AD^+ \) does, too (Section 3.2).
- \(AD^+ \) does not imply Uniformization (Theorem 1.3 and Section 5).
• It is open whether AD implies any or all of the parts of AD^+.
• It is open whether AD_R implies Θ-Determinacy (it does imply the other two parts of AD^+).
• It is open whether Θ-Determinacy implies the other two parts of AD^+ (the other two parts are both consequences of AC, so they don’t imply Θ-Determinacy).

The study of AD^+ was inspired by the following question. Suppose that $M \subseteq N$ are models of $\text{ZF} + \text{AD}$ with the same reals, and that every set of reals in M is Suslin in N. What consequences does this entail for M? As a partial answer, we have that in this situation $M \models \text{AD}^+$. To see this for the case of Θ-Determinacy, we use the Moschovakis Coding Lemma and the fact that AD implies the existence of cofinally many strong partition cardinals below Θ (see Sections 4 and 3.4). Similar arguments give the following theorem. As seen above, the corresponding theorem fails for AD_R.

Theorem 3.11 (Woodin). *If AD^+ holds, then it holds in every inner model containing ω^ω.*

More generally, for all three parts of AD^+, if $A \subseteq \omega^\omega$ and $L(A, R) \subseteq M$ where A satisfies the given part of AD^+ in M, then it satisfies this part in $L(A, R)$ also. For DC_R this follows from the fact, observed above, that DC_R is witnessed by individual real numbers. For Θ-Determinacy, this is discussed at the end of Section 4. The corresponding fact for Θ-Borel sets is covered in Section 6.2.

Combining these remarks with Theorems 3.2 and 3.3, we have the following.

Theorem 3.12. *Each of the following statements implies the ones below it, and the first two are equivalent. Assuming DC all four statements are equivalent.*

1. AD^+ “all subsets of $\mathcal{P}(\omega^\omega)$ are Suslin”
2. $\text{AD}^+ +$ “all subsets of $\mathcal{P}(\omega^\omega)$ are Suslin”
3. AD_R Uniformization
4. $\text{AD} + \text{Uniformization}$

While the question of whether AD implies AD^+ is open, it is known that the consistency strength of $\text{AD} + \neg \text{AD}^+$ is greater than that of AD. To illustrate this, let Γ_+ be the set of $A \subseteq \omega^\omega$ for which $L(A, R) \models \text{AD}^+$. By Theorem 3.11, Γ_+ is an initial segment of the Wadge hierarchy. Since the implication $\text{AD} \Rightarrow \text{AD}^+$ is known to hold in $L(\mathbb{R})$ (see Section 5), AD implies that Γ_+ is nonempty. The following theorem (whose proof we will not discuss in these notes) shows that a model of $\text{AD} + \neg \text{AD}^+$ would contain a model of AD_R.

Theorem 3.13 (Woodin). *Assuming $\text{AD} + \text{DC}_R$, $L(\Gamma_+, \mathbb{R}) \models \text{AD}^+$. If $\Gamma_+ \not\models \mathcal{P}(\omega^\omega)$ then $L(\Gamma_+, \mathbb{R}) \models \text{DC} + \text{AD}_R$.*

Woodin’s Derived Model Theorem (Theorem 3.14) is the standard method for producing models of AD^+. The model $L(\Gamma, \mathbb{R}^\ast)$ from the statement of the theorem is called the derived model. For any set or class X, the inner model HOD_X is the class of all sets a such that the transitive closure of $\{a\}$ is contained in $\text{OD}_{\text{TC}(X)}$, where $\text{TC}(X)$ denotes the transitive closure of X. When X is ordinal definable from one of its finite subsets, HOD_X is a model of ZF. If a wellordering of X is ordinal definable from a finite subset of X, HOD_X is a model of ZFC. A proof of the theorem can be found in [16].
Theorem 3.14 (Woodin). Let δ be a limit of Woodin cardinals and let G be a V-generic filter for $\text{Coll}(\omega, < \delta)$. Let
\[
R^* = \bigcup \{ R^{V[G]} : \lambda < \delta \}
\]
and
\[
\Gamma = \{ A \subseteq R^* : A \in \text{HOD}_{V,R^*}, L(A,R) \models \text{AD}^+ \}.
\]
Then $L(\Gamma, R^*) \models \text{AD}^+$.

This is the standard way to produce models of AD^+, and in a sense it is the only way, since the following theorem, a reversal of the Derived Model Theorem, says that every model of AD^+ arises as a derived model.

Theorem 3.15 (Woodin). Assuming $\text{AD} + \text{DC}_R$, $L(\Gamma_+, R)$ is the derived model of some inner model which exists in some forcing extension of V.

Finally, we note that Woodin has shown that AD^+ implies the following generalization of the Solovay Basis Theorem (Theorem 5.3). Among other things, the following theorem makes AD^+ the right context for Woodin’s \mathbb{P}_{max} forcing (see [18]).

Theorem 3.16 (Woodin). Assuming AD, AD^+ is equivalent to the statement that every true Σ^2_1 statement has a witness which is Suslin and co-Suslin.

3.4. Strong Partition Cardinals. Given ordinals α and β, we let $[\alpha]^\beta$ be the collection of subsets of α of ordertype β. The existence of an infinite κ satisfying the following definition contradicts the Axiom of Choice. It appears to be an open question whether one gets an equivalent definition by replacing γ with 2.

Definition 3.17. A cardinal κ is a strong partition cardinal if for every $\gamma < \kappa$ and every $f : [\kappa]^\kappa \rightarrow \gamma$ there is an $A \in [\kappa]^\kappa$ such that $f \upharpoonright [A]^\kappa$ is constant.

The converse of the following theorem holds in $L(\mathbb{R})$, but not in general [3]. The proof of the theorem involves a deep analysis of pointclasses under AD.

Theorem 3.18 (Kechris-Kleinberg-Moschovakis-Woodin [6]). The Axiom of Determinacy implies that the strong partition cardinals are cofinal in Θ, and in particular that, for each $A \subseteq \omega^\omega$, $\delta^2_\gamma(A)^{L(A,R)}$ is a strong partition cardinal.

The existence of strong partition cardinals, in conjunction with Suslin representations, can be used to prove $<\Theta$-Determinacy. In particular, assuming $\text{AD} + \text{DC}_R$, $<\Theta$-determinacy holds for games $G(f,A)$ where A is Suslin and co-Suslin.

Theorem 3.19 (Moschovakis, Woodin). Suppose that $\text{AD} + \text{DC}_R$ holds. Let $\gamma < \kappa < \lambda$ be ordinals, with λ a strong partition cardinal. Let $A \subseteq \omega^\omega$ be such that A and $\omega^\omega \setminus A$ are both κ-Suslin and let $f : \gamma^\omega \rightarrow \omega^\omega$ be continuous. Then $G(f,A)$ is determined.

The proof of Theorem 3.19 uses the Moschovakis Coding Lemma, which is discussed in Section 4. With the Coding Lemma in hand we will outline in Section 5 a proof that the implication $\text{AD} \Rightarrow \text{AD}^+$ holds in $L(\mathbb{R})$.
4. The Moschovakis Coding Lemma

Definition 4.1. A binary relation \leq is a prewellordering if it is reflexive, transitive, and wellfounded.

A prewellordering of a set X is the order induced by a surjection from X to some ordinal. We call this ordinal the length of the prewellordering. For each $x \in X$, the image of x under this surjection is called the rank of x in the prewellordering. We write $\text{rank}_\leq(x)$ for the rank of x in \leq when \leq is a prewellordering of a set with x as a member. We shall be interested in prewellorderings of ω^ω. Note that Θ is the supremum of the lengths of prewellorderings of ω^ω.

The following simplified version of the Moschovakis Coding Lemma is sufficient for our purposes. A more precise version replaces “projective” with a Σ^1_1 condition in parameters derived from the prewellordering \leq.

Theorem 4.2 (Moschovakis). Assume that AD holds and let \leq be a prewellordering of ω^ω of length γ. Then there is a projective formula φ with \leq as its only parameter such that for every $A \subseteq \gamma$ there is $x \in \omega^\omega$ such that

$$A = \{ \text{rank}_\leq(y) : y \in \omega^\omega \land \varphi(x,y) \}. \tag{1}$$

One important corollary of the Moschovakis Coding Lemma is that, assuming AD, whenever $A \subseteq \omega^\omega$ and γ is an ordinal below $\Theta^{L(A,\mathbb{R})}$, every subset of γ is in $L(A,\mathbb{R})$. Moreover, $P(\gamma)$ is a surjective image of ω^ω in $L(A,\mathbb{R})$, which implies that Θ is a limit cardinal (under AD).

Corollary 4.3. Assuming AD, if $A \subseteq \omega^\omega$ and $\gamma < \Theta^{L(A,\mathbb{R})}$ then $P(\gamma) \subseteq L(A,\mathbb{R})$ and there is a surjection from ω^ω to $P(\gamma)$ in $L(A,\mathbb{R})$.

Suppose now that AD holds, \leq is a prewellordering of ω^ω of length γ and $f : \gamma^\omega \to \omega^\omega$ is continuous and $A \subseteq \omega^\omega$. Strategies in the game $G(f,A)$ can be coded by subsets of γ. It follows from the Moschovakis Coding Lemma than that any winning strategy for the game $G(f,A)$ exists in $L(\leq,\mathbb{R})$. This gives the $<\Theta$-Determinacy part of Theorem 3.11.

5. AD^+ in $L(\mathbb{R})$

The fact that, in $L(\mathbb{R})$, AD implies AD^+ follows from several classical results from the Cabal Seminar. First, we have Kechris’s theorem, giving $\text{DC}_\mathbb{R}$.

Theorem 5.1 (Kechris [5]). $L(\mathbb{R}) \models (\text{AD} \Rightarrow \text{DC})$.

The following theorem of Martin and Steel characterizes the Suslin sets of $L(\mathbb{R})$ under AD.

Theorem 5.2 (Martin-Steel [12]). Assuming $\text{AD} + V = L(\mathbb{R})$, the Suslin subsets of ω^ω are exactly the Σ^1_2 sets.

Finally, we have the Solovay Basis Theorem, which reflects potential counterexamples to AD^+ into the Suslin, co-Suslin sets (see Section 2.4 of [8] for further discussion).

Theorem 5.3 (Solovay). In $L(\mathbb{R})$, Σ^1_2 facts have Δ^1_2 witnesses.

By the Moschovakis Coding Lemma, the assertion that there exist a pair (f,A) giving a counterexample to $<\Theta$-Determinacy is equivalent to a Σ^1_2-statement. If
<\Theta\text{-Determinacy} fails in $L(\mathbb{R})$, then, the Solovay Basis Theorem implies that there is a counterexample where A is Suslin and co-Suslin. Theorem 3.19 however implies that this is impossible. We have then that AD implies <\Theta\text{-Determinacy} in $L(\mathbb{R})$.

A similar argument applies to the statement that every subset of ω^ω is ∞-Borel, using the material in Section 6.2.

6. ∞-Borel sets

6.1. Infinitary ∞-Borel codes. In this section we give an alternate (equivalent) definition of ∞-Borel set which corresponds to the classical notion of Borel set. This definition defines the ∞-Borel subsets of 2^ω using an infinitary propositional language.

Definition 6.1. For κ an infinite cardinal, $L_{\kappa,0}$ is the language with κ propositional variables $\{p_n : n \in \omega\}$ which is closed under the unary connective of negation and under wellordered disjunctions and conjunctions of cardinality less than κ.

We let $L_{\infty,0}$ be the union over all cardinals κ of the languages $L_{\kappa,0}$. We consider conjunctions and disjunctions in $L_{\infty,0}$ sentences as indexed by sets of ordinals which need not be ordinals themselves.

An element $x \in 2^\omega$ may be viewed as an $L_{\infty,0}$-structure, where $x \models p_n$ if and only if $x(n) = 1$.

Definition 6.2. A set $A \subseteq 2^\omega$ is κ-Borel if there is a formula $\phi \in L_{\kappa,0}$ such that $A = \{x \in 2^\omega : x \models \phi\}$.

We let A_ϕ denote the set of $x \in 2^\omega$ such that $x \models \phi$. Then ϕ gives a description of a construction of A in terms of negations and wellordered unions and intersections, starting with the basic open sets in 2^ω. Using a definable paring function on the ordinals we can code elements of $L_{\infty,0}$ by sets of ordinals, and we let ϕ_S be the sentence coded by S. When κ is an infinite cardinal each ϕ in $L_{\infty,0}$ is ϕ_S for some $S \subseteq \kappa$. Then there is a first-order formula ψ such that (S, ψ) is an ∞-Borel code for A_ϕ in the sense defined previously. Our two notions of ∞-Borel set are in fact equivalent in ZF.

Theorem 6.3 (Woodin). For all $A \subseteq 2^\omega$ the following are equivalent:

1. There exist $S \subseteq \text{Ord}$ and a first-order formula ϕ such that $A = \{x \in 2^\omega : L[S, x] \models \phi(S, x)\}$.

2. There is $S \subseteq \text{Ord}$ such that $A = \{x \in 2^\omega : x \models \phi_S\}$.

We have just sketched the reverse direction of this theorem. The proof of the forward direction is more involved, and proceeds by induction on γ (observing that if $A = \{x \in 2^\omega : L[S, x] \models \phi(S, x)\}$ then there is an ordinal γ such that $A = \{x \in 2^\omega : L[\gamma[S, x] \models \phi(S, x)\} and a second induction on the complexity of ϕ.

The restriction to subsets of 2^ω here (instead of ω^ω) is a technical convenience in the case where $\kappa = \omega$. There are several ways to consider subsets of ω^ω as ∞-Borel in our new sense. For instance, we can assume instead that the propositional variables in $L_{\infty,0}$ can take arbitrary values in ω. We skip the details here and treat both notions of ∞-Borel set as equivalent and meaningful for subsets of ω^ω.

The ∞-Borel sets are not always the same as the smallest class containing the open sets and closed under negations and wellordered unions. In particular, it is consistent with ZF that the collection of ∞-Borel sets is not closed under wellordered
unions. In order to show that a given wellordered union of ∞-Borel sets is ∞-Borel one must be able to choose the codes, which is not possible in general.

In general ∞-Borel sets cannot be uniformized. In particular, models of the form $L(A, R)$ (where A is a subset of $L(R)$) can satisfy the statement that every subset of ω^ω is ∞-Borel, even though they cannot satisfy Uniformization. Similarly (and again, unlike the case of Suslin representations), it can be that S is an ∞-Borel code for a nonempty set of reals which has no members in the model $L[S]$. For instance, the set of reals which are Cohen-generic over L has an ∞-Borel code in L.

In [7] and [11] the type of ∞-Borel code defined in Definition 3.4 is called an ∞-Borel* code; here we will not make a distinction, and hope that the intended meaning will be clear from context. In practice one needs both definitions for the ∞-Borel sets, both types of ∞-Borel code and the ability to translate between them. In Section 6.2 we see that if a set $A \subseteq \omega^\omega$ is ∞-Borel, then it has one coded by a set of reals projective in A.

6.2. Local ∞-Borel codes. We show in this section that (assuming $\text{AD} + \text{DC}_R$) each ∞-Borel set $A \subseteq \omega^\omega$ has an ∞-Borel code which is not much more complicated than A. In particular, the assertion that a given set $A \subseteq \omega^\omega$ is ∞-Borel is projective in a parameter for A. This fact will complete the argument from Section 5 that AD implies AD^+ in $L(R)$. We start with two definitions.

Definition 6.4. Given $A \subseteq \omega^\omega$, we let

- δ_A be the supremum of the lengths of prewellorderings which are Wadge-below either A or $\omega^\omega \setminus A$, and
- $\delta_\omega(A)$ be the supremum of the lengths of prewellorderings which are projective in A.

Using Wadge reducibility and codes for continuous functions, one can show that δ_A is less than $\delta_\omega(A)$, for any $A \subseteq \omega^\omega$. Solovay’s argument for the measurability of ω_1 under AD can be adapted to show that (under $\text{AD} + \text{DC}_R$) each ordinal $\delta_\omega(A)$ is a limit of measurable cardinals. Since measurable cardinals are regular, we can let δ^*_A be the least regular cardinal in the interval $(\delta_A, \delta_\omega(A))$.

We define the following ordinals, all of which are at most Θ:

- χ_B, the least χ such that all ∞-Borel sets are χ-Borel;
- κ_B, the supremum of the lengths of wellordered sequences of ∞-Borel codes for nonempty disjoint sets;
- λ_B, the supremum of the lengths of ∞-Borel prewellorderings.
- ρ_B, the supremum of the Wadge ranks of ∞-Borel sets.

Assuming $\text{AD} + \text{DC}_R$ (or just Wadge Determinacy plus the wellfoundedness of the Wadge hierarchy), $\rho_B = \Theta$ is equivalent to the statement that every subset of ω^ω is ∞-Borel. We will see below that $\text{AD} + \text{DC}_R$ implies that all four ordinals are the same. Our proof of this fact will use Theorem 3.9, whose proof is not being discussed in these notes. It may be that there is an easier proof.

Our goal in this section is to prove Theorem 6.8 below assuming only $\text{AD} + \text{DC}_R$. We begin make a few preliminary observations on the four ordinals defined above. We first prove that $\chi_B \leq \kappa_B \leq \rho_B$, using a function $\phi \mapsto \phi^*$ on $L_{\infty,0}$ sentences, defined recursively as follows:

- $p_n^* = p_n$;
\((\neg \phi)^* = \neg \phi^* \);

- whenever \(Y \) is a set of ordinals,
 \[
 \left(\bigvee_{\alpha \in Y} \phi_\alpha \right)^* = \bigvee_{\alpha \in X} \phi_\alpha^*,
 \]

 where \(X = \{ \alpha \in Y : A_{\phi_\alpha} \not\subseteq \bigcup_{\beta \in Y \cap \alpha} A_{\phi_\beta} \} \), and

 \[
 \left(\bigwedge_{\alpha \in Y} \phi_\alpha \right)^* = \bigwedge_{\alpha \in X} \phi_\alpha^*,
 \]

 where \(X = \{ \alpha \in Y : A_{\phi_\alpha} \not\supseteq \bigcap_{\beta \in Y \cap \alpha} A_{\phi_\beta} \} \).

This function recursively removes from each conjunction and disjunction any terms which do not affect the final result. In particular, for any \(\phi \in \mathcal{L}_{\kappa,0} \), \(A_{\phi} = A_{\phi^*} \).

Parts of the proofs of Theorem 6.5 and 6.6 will be reused in the proof of Theorem 6.8.

Theorem 6.5 (Woodin). Assuming \(\text{AD} + \text{DC}_\mathbb{R} \), \(\chi_B \leq \kappa_B \leq \lambda_B \).

Proof. To see that \(\chi_B \leq \kappa_B \), let \(\phi \) be any sentence in \(\mathcal{L}_{\kappa,0} \). For any disjunction \(\bigvee_{\alpha < \gamma} \psi_\alpha \) in \(\phi^* \) the sentences \(\psi_\alpha \land \neg (\bigvee_{\beta < \alpha} \psi_\beta) \) are \(\infty \)-Borel codes for nonempty disjoint sets. A similar remark applies to the conjunctions. It follows that \(\phi^* \) is in \(\mathcal{L}_{\kappa_B,0} \).

To see that \(\kappa_B \leq \lambda_B \), note that one can convert a sequence of \(\infty \)-Borel codes for nonempty disjoint sets to an \(\infty \)-Borel code for a prewellordering in a uniform fashion by means of uniformly coding the product. Consider \(\langle \phi_\alpha : \alpha < \gamma \rangle \) with the \(A_{\phi_\alpha} \)'s disjoint and nonempty. For \(\alpha \leq \beta \) take

\[
\bigvee_{\alpha \leq \beta} A_{\phi_\alpha} \times A_{\phi_\beta}.
\]

If each \(\phi_\alpha \) is in \(\mathcal{L}_{\xi,0} \), the resulting code is in \(\mathcal{L}_{\xi \cup \gamma,0} \). \(\square \)

We observed above that \(\rho_B = \Theta \) if and only if all subsets of \(\omega^\omega \) are \(\infty \)-Borel. The same is true for \(\lambda_B \) (as, as well shall see, for all four ordinals).

Theorem 6.6 (Woodin). Assuming \(\text{AD} + \text{DC}_\mathbb{R} \), \(\lambda_B = \Theta \) if and only if every subset of \(\omega^\omega \) is \(\infty \)-Borel.

Proof. As noted above, \(\Theta \) is the supremum of the lengths of the prewellorderings of \(\omega^\omega \), so if every subset of \(\omega^\omega \) is \(\infty \)-Borel then \(\lambda_B = \Theta \). For the other direction, suppose that \(A \subseteq \omega^\omega \) is not \(\infty \)-Borel and that \(P \) is an \(\infty \)-Borel prewellorder. Then \(A \not\leq_W P \) as the \(\infty \)-Borel sets form an initial segment of the Wadge hierarchy. Thus either \(P \leq_W A \) or \(P \leq_W \omega^\omega \setminus A \), and in either case \(|P| < \delta_A < \Theta \). \(\square \)

Putting together the results above, we have the following.

Theorem 6.7 (Woodin). Assuming \(\text{AD} + \text{DC}_\mathbb{R} \), the following statements are equivalent:

- At least one of \(\chi_B, \kappa_B, \lambda_B \) and \(\rho_B \) is \(\Theta \).
- All subsets of \(\omega^\omega \) are \(\infty \)-Borel.
- \(\chi_B = \kappa_B = \lambda_B = \rho_B = \Theta \)
Proof. All that remains to be shown is that if all subsets of ω^ω are ∞-Borel then $\chi_B = \Theta$. This follows from the Moschovakis Coding Lemma, which implies that for each $\chi < \Theta$ there is a surjection from ω^ω to $\mathcal{P}(\chi)$, and therefore one from ω^ω to the χ-Borel sets.

Finally, we have the existence of local ∞-Borel codes.

Theorem 6.8 (Woodin). Assume $\text{AD} + \text{DC}_\mathbb{R}$. If $A \subseteq \omega^\omega$ is ∞-Borel then it is $(\delta^*_A)^+\text{-Borel}.$

Proof. If $\delta^*_A \geq \chi_B$ we are done. Otherwise there is a $\phi \in \mathcal{L}_{\infty,\theta}$ such that ϕ^* contains a disjunction or conjunction of length δ^*_A. Take a minimal example and cut it off at length δ^*_A. Thus we get $\langle \phi_\alpha : \alpha < \delta^*_A \rangle$ where each ϕ_α is in $\mathcal{L}_{\delta^*_A,0}$ (since δ^*_A is regular) and the sets A_{ϕ_α} are nonempty and disjoint. As in the second half of the proof of Theorem 6.5, we obtain a $(\delta^*_A)^+\text{-Borel}$ prewordering P of length $\delta^*_A > \delta_A$. Then P is not Wadge-below A or $\omega^\omega \setminus A$. Hence $A \preceq_W P$, and since P is $(\delta^*_A)^+\text{-Borel}$ A is too.

With the coding lemma and the fact that $\delta_\omega(A) < \Theta^{L(A,\mathbb{R})}$ we have that $\text{AD} + \text{DC}_\mathbb{R}$ implies that if A is ∞-Borel then it is ∞-Borel in $L(A,\mathbb{R})$, and moreover that the assertion that $A \subseteq \omega^\omega$ is ∞-Borel is projective in A. In particular, the assertion that there is a subset of ω^ω which is not ∞-Borel is Σ^1_2. With Theorems 5.2 and 5.3, and the fact that Suslin sets are ∞-Borel, we get that AD implies that in $L(\mathbb{R})$ every subset of ω^ω is ∞-Borel.

We conclude this section by showing that the four ordinals defined above are all the same under $\text{AD} + \text{DC}_\mathbb{R}$.

Theorem 6.9. Assume $\text{AD} + \text{DC}_\mathbb{R}$. Then

$$\chi_B = \kappa_B = \lambda_B = \rho_B = \Theta^{L(\mathcal{P}(\chi_B))}.$$

Proof. By Theorem 6.7, the theorem holds in the case where all subsets of ω^ω are ∞-Borel. Suppose then that some $A \subseteq \omega^\omega$ is not ∞-Borel. Since $\text{DC}_\mathbb{R}$ holds, $L(A,\mathbb{R})$ satisfies DC. Since the ∞-Borel sets form an initial segment of the Wadge hierarchy, they are all in $L(A,\mathbb{R})$. By Theorem 6.8, every ∞-Borel subset of ω^ω is ∞-Borel in $L(A,\mathbb{R})$. By the Moschovakis Coding Lemma, $L(A,\mathbb{R})$ contains all bounded subsets of its Θ. It follows that $\chi_B = \lambda_B^{L(A,\mathbb{R})}$, $\lambda_B = \lambda_B^{L(A,\mathbb{R})}$ and $\rho_B = \rho_B^{L(A,\mathbb{R})}$.

By Theorem 3.9 (applied in $L(A,\mathbb{R})$), every subset of ω^ω in $L(\mathcal{P}(\chi_B))$ is ∞-Borel. It follows then that the ∞-Borel sets are exactly the subsets of ω^ω in $L(\mathcal{P}(\chi_B))$, all of which are ∞-Borel in $L(\mathcal{P}(\chi_B))$. Moreover, $\chi_B = \lambda_B^{L(\mathcal{P}(\chi_B))}$, $\lambda_B = \lambda_B^{L(\mathcal{P}(\chi_B))}$ and $\rho_B = \rho_B^{L(\mathcal{P}(\chi_B))}$. The theorem then follows from Theorems 6.5 (applied in V) and 6.7 (applied in $L(\mathcal{P}(\chi_B))$).

6.3. **Strong ∞-Borel codes.** In this section we define a class of ∞-Borel codes which induce Suslin representations in the presence of $<\Theta$-Determinacy. We use a function similar to the $*$-operation from Section 6.2, but which instead reduces a $L_{\infty,0}$ sentence to a given set of indices.

Definition 6.10. Given $\phi \in \mathcal{L}_{\infty,\theta}$ and a set σ of ordinals, $\phi|\sigma$ is defined recursively by setting $p_0|\sigma = p_0$, $\neg(\phi)|\sigma = \neg(\phi|\sigma)$ and

$$\left(\bigvee_{\alpha \in \chi} \phi_\alpha \right)|\sigma = \bigvee_{\alpha \in \chi \cap \sigma} (\phi_\alpha|\sigma)$$
and
\[
\left(\bigwedge_{\alpha \in \mathcal{X}} \phi_\alpha \right) |_\sigma = \bigwedge_{\alpha \in \mathcal{X} \cap \sigma} (\phi_\alpha|_\sigma)
\]
whenever \(X \) is a set of ordinals.

Let \(\delta \) be an infinite cardinal and let \(S \) be a subset of \(\delta \) corresponding to a sentence \(\phi_S \) in \(L_{\delta, 0} \). Suppose that \(Z \) is an elementary submodel of \(L_{\delta, 1 + [S, x]} \) with \(S \in Z \), and that \(x \) is in \(2^\omega \cap Z \). Then \(x = \phi_S \) iff \(x = \phi_S | (Z \cap \delta) \). However, in general, \(A_\phi \) and \(A_\phi|_\sigma \) can be very different. For one thing, if \(\sigma \) is countable, then \(A_\phi|_\sigma \) is a Borel set, whereas \(A_\phi \) need not be. Moreover, in general \(A_\phi|_\sigma \) need not be a subset of \(A_\phi \) (consider an uncountable conjunction and a countable set \(\sigma \)).

Given an uncountable cardinal \(\delta \) and a sentence \(\phi \in L_{\delta, 0} \), we let \(G_{\phi, \delta} \) be the game in which players I and II alternate choosing the values of some \(x \in \delta^\omega \), with Player I winning if and only if \(A_\phi|_{\text{range}(x)} \subseteq A_\phi \).

Definition 6.11. A sentence \(\phi \in L_{\delta, 0} \) is a strong \(\infty \)-Borel code if Player I has a winning strategy in \(G_{\phi, \delta} \).

Given \(\phi \in L_{\delta, 0} \), one can continuously associate to each \(x \in \delta^\omega \) an element \(c \) of \(\omega^\omega \) coding \(\phi | (\text{range}(x)) \). In the proof of Theorem 6.13 below we let \(f \) be a continuous function taking \(x \in \delta^\omega \) to such a \(c \). Moreover, this can be done in such a way that the set of pairs \((a, c) \in 2^\omega \times \omega^\omega \) such that \(c \) codes a sentence \(\psi \) in \(L_{\delta, 1} \) with \(a \in A_\psi \) is analytic (this will also be used in the proof of Theorem 6.13, where we will let \(C \) denote this set of pairs). It follows that \(\delta \)-Determinacy applies to games of the form \(G_{\phi, \delta} \).

Lemma 6.12. If \(\delta \)-Determinacy holds then \(G_{\phi, \delta} \) is determined.

A winning strategy for Player I in \(G_{\phi, \delta} \) induces a Suslin representation for \(A_\phi \).

Theorem 6.13 (Woodin). If \(\delta \) is an infinite cardinal and \(\phi \in L_{\delta, 0} \) is a strong \(\infty \)-Borel code then \(A_\phi \) is \(\delta \)-Suslin.

Proof. If \(\Sigma \) is a winning strategy for Player I then, for each \(a \in \omega^\omega \), \(a \in A_\phi \) if and only if there is a run \(x \) of \(G_{\phi, \delta} \) where Player I plays according to \(\Sigma \) and \(a \in A_\phi|_{\text{range}(x)} \). Let \(T \subseteq (2 \times \delta \times \omega)^{<\omega} \) be a tree such that \([T]\) is the set of \((a, x, y)\) such that \(x \) is a run of \(G_{\phi, \delta} \) where I plays according to \(\Sigma \), and \(y \) witnesses that \((a, f(x))\) is in the analytic set \(C \) defined above. Then \(A_\phi = \text{p}[T] \).

To show that a given \(\infty \)-Borel set \(A \) is Suslin then, in the presence of \(\Theta \)-Determinacy, it remains to show that \(A \) has an \(\infty \)-Borel code \(\phi \) for which Player I has a winning strategy in the corresponding game \(G_{\phi, \delta} \). Sections 7 and 8 present a method for doing this, and thereby converting \(\infty \)-Borel codes into strong \(\infty \)-Borel codes. The result of these arguments is Theorem 7.16. Although we are introducing the machinery of the proof of this theorem, we will not give the proof itself.

7. Cone Measures

7.1. Turing reducibility.

Let \(HF \) denote the set of hereditarily finite sets. Given \(x \) and \(y \) in \(HF \), we say that \(x \) is Turing-reducible to \(y \) if \(x \) is \(\Delta^0_1 \) definable in \(HF \) with a parameter for \(y \). We write \(x \leq_{Tu} y \) to indicate that \(x \) is Turing-reducible to \(y \), and \(x \equiv_{Tu} y \) to mean that \(x \leq_{Tu} y \) and \(y \leq_{Tu} x \).
Given \(x \in \omega^\omega \), we let \([x]_{Tu} = \{ y \in \omega^\omega : x \equiv_{Tu} y \} \). Sets of the form \([x]_{Tu} \) (for some \(x \in \omega^\omega \)) are called Turing degrees. We write \(D_{Tu} \) for the set of Turing degrees. The sets \(\{ y \in \omega^\omega : y \geq_{Tu} x \} \) or \(\{ y \mid y \in \omega^\omega, y \geq_{Tu} x \} \) are both referred to as the Turing cone above \(x \) (for any \(x \in HF \), which is called a base for the cone).

Given an equivalence relation \(E \) on a set \(X \), we say that a set \(A \subseteq X \) is \(E \)-invariant if it is a union of \(E \)-classes, that is, if, for all \(x, y \in X \) such that \(xEy \), \(x \in A \) if and only if \(y \in A \). A subset of \(\omega^\omega \) is said to be Turing-invariant if it is invariant for the restriction of \(\equiv_{Tu} \) to \(\omega^\omega \). The following theorem of Martin shows that, under \(\text{AD} \), every Turing-invariant subset of \(\omega^\omega \) either contains or is disjoint from a Turing cone.

Theorem 7.1 (Martin). Let \(A \subseteq \omega^\omega \) be Turing-invariant, let \(\sigma \) be a strategy in \(\mathcal{G}_\omega(A) \) and let \(x \in \omega^\omega \) be such that \(x \geq_{Tu} \sigma \). If \(\sigma \) is a winning strategy for Player I then \(A \) contains the Turing cone above \(x \). If \(\sigma \) is a winning strategy for Player II then \(A \) is disjoint from the Turing cone above \(x \).

We let TD be the statement that each Turing-invariant subset of \(\omega^\omega \) either contains or is disjoint from a cone. Countable Choice for Reals (\(\text{CC}_R \)) is the restriction of the Axiom of Choice to countable subsets of \(\mathcal{P}(\mathbb{R}) \); \(\text{CC}_R \) is also a consequence of \(\text{AD} \). It appears to be an open question whether TD implies \(\text{CC}_R \). It is also open whether TD + \(\text{CC}_R \) implies \(\text{AD} \). Woodin has shown that this implication does hold in \(L(\mathbb{R}) \).

We let \(\mu_{Tu} \) be the set of \(A \subseteq D_{Tu} \) which contain a Turing cone. Martin’s theorem implies \(\mu_{Tu} \) is an ultrafilter on the Turing degrees, and \(\text{CC}_R \) implies this ultrafilter is countably complete. The following theorem implies that TD + \(\text{CC}_R \) implies that \(N_1 \leq 2^{\aleph_0} \).

Theorem 7.2. If \(\text{CC}_R + \text{TD} \) holds then \(\omega_1 \) is measurable.

Proof. Let \(U \) be the set of \(A \subseteq \omega_1 \) for which the set

\[
\{ [x]_{Tu} : x \in \omega^\omega, \omega^\omega_{\cdot[x]} \in A \}
\]

is in \(\mu_{Tu} \). Then \(U \) is a countably complete ultrafilter on \(\omega_1 \). \(\Box \)

These results above apply to a larger class of equivalence relations, including those described by the following definition. We will use a nonstandard definition.

Definition 7.3. An equivalence relation \(E \) on \(\omega^\omega \) is good if it contains \(\equiv_{Tu} \) and there exists a partial order \(\leq_E \) on \(\omega^\omega \) such that

- \(E = \leq_E \cap \geq_E \);
- for every \(x \in \omega^\omega \) the set \(\{ y \in \omega^\omega : y \leq_E x \} \) is countable;
- for all \(x, y \in \omega^\omega \), if \(x \leq_E y \) then there is \(z \equiv_{Tu} x \) such that \(z \equiv_E y \).

In particular, for \(S \subseteq \text{Ord} \) the following equivalence relations are good.

- \(x \equiv_S y \Leftrightarrow L[S, x] = L[S, y] \) (induced by setting \(x \leq_S y \) to be \(x \in L[S, y] \));
- \(x \equiv_{\text{HOD}} y \Leftrightarrow \text{HOD}_{\{S, x\}} = \text{HOD}_{\{S, y\}} \) (induced by setting \(x \leq_{\text{HOD}} y \) to be \(x \in \text{HOD}_{\{S, y\}} \)).

Under \(\text{AD} \), Martin’s theorem implies that if \(E \) is a good equivalence relation, then every set of \(E \)-degrees either contains or is disjoint from a \(\leq_E \)-cone, and that the corresponding cone measures for these relations are (countably complete) ultrafilters. We let \(D_S \) be the set of \(\equiv_S \)-degrees, and \(\mu_S \) be the corresponding cone measure. We call the corresponding cones \(S \)-cones. In the next section we will consider ultraproducts by these measures.
7.2. Cone Measures and Ultrapowers. We have seen that AD implies TD and that the Turing measure μ_T is countably complete, and that the same holds for any good equivalence relation, including the relations \equiv_S and \equiv_{HOD}. We will be looking at ultraproducts of the form

$$\prod_{d \in D_T} M_d/\mu_T$$

or

$$\prod_{d \in D_S} M_d/\mu_S,$$

for S a set of ordinals.

If the ultraproduct by the Turing measure is wellfounded, then so is the ultraproduct by any good equivalence relation, since any ultraproduct for a good equivalence relation embeds into the corresponding ultraproduct by the Turing measure. By countable completeness, these ultraproducts are wellfounded provided $\mathcal{TD} + \mathsf{DC}$ holds. Recall that the implication $\mathcal{DC}_\mathbb{R} \Rightarrow \mathsf{DC}$ holds in models of the form $L(A, \mathbb{R})$ when A is a subset of $L(\mathbb{R})$. The following theorem of Solovay shows that $\mathcal{DC}_\mathbb{R}$ follows from the wellfoundedness of the ultrapower of the ordinals by the cone measure for a good equivalence relation.

Theorem 7.4 (Solovay). If (E, \leq_E) is a good equivalence relation, μ_E is the corresponding cone measure and the ultrapower of the ordinals by μ_E is wellfounded, then $\mathcal{DC}_{\mathbb{R}}$ holds.

Woodin has shown that if $V = L(\mathcal{P}(\mathbb{R}))$ and AD^+ holds then the wellfoundedness of the ultrapower of the ordinals by the Turing measure on the Turing degrees. The proof uses the reversal of the Derived Model Theorem.

Theorem 7.5 (Woodin). If $V = L(\mathcal{P}(\mathbb{R}))$ and AD^+ holds then the ultrapower of the ordinals by μ_T is wellfounded.

For the purpose of finding strong Σ^1_1-Borel codes, we will eventually consider functions of the form $x \mapsto \omega_2^{L[S, x]}$, and the ordinals they represent in the μ_S ultrapower. First we will look at functions of the form $x \mapsto \omega_1^{L[S, x]}$. Given a set S of ordinals, and function f on ω^ω, we say that f is S-invariant if $f(x) = f(y)$ whenever $x \equiv_S y$.

Let WO be the set of wellorderings of ω. The proof of Theorem 7.6 uses the following classical fact, known as \Sigma^1_1 boundedness: for every analytic $\mathcal{A} \subseteq \omega^\omega$, \mathcal{WO} there is $\beta < \omega_1$ such that for every $x \in \mathcal{A}$, the ordertype of x is less than β. We write $\text{otp}(x)$ for the ordertype of a wellordering x.

Theorem 7.6 (Woodin). Assume that AD holds. Let S be a set of ordinals, define the function $f: \omega^\omega \to \omega_1$ by setting $f(x)$ to be $\omega_1^{L[S, x]}$. Then f represents ω_1 in the ultrapower $\prod\text{Ord}/\mu_S$.

Proof. Let $[f]_S$ denote the element of $\prod\text{Ord}/\mu_S$ represented by f. The countable completeness of μ_S implies that ω_1^V is (isomorphic to) an initial segment of the ultrapower $\prod\text{Ord}/\mu_S$. For each $\alpha \in \omega_1$, $\{[x]_S : f(x) > \alpha\} \in \mu_S$, so $[f]_S \geq \alpha$.

To see that $[f]_S \leq \omega_1$, suppose that $g: \omega^\omega \to \omega_1$ is S-invariant and that for every $x \in \omega^\omega$ we have that $g(x) < \omega_1^{L[S, x]}$. We want to find an $\alpha < \omega_1$ such that $\{[x]_S : g(x) < \alpha\} \in \mu_S$.

Consider the game where
• Player I plays \(x(i) \) in round \(i \), collectively defining \(x \in \omega^\omega \);
• Player II plays \((y(i), z(i)) \) ∈ \(\omega \times (\omega \times \omega) \) in round \(i \), collectively defining \(y \in \omega^\omega \) and \(z \subseteq \omega \times \omega \);
• Player II wins if and only if \(y \geq_S x, z \in \mathrm{WO} \), and the ordertype of \(z \) is greater than \(g(y) \).

If \(\sigma \) is a strategy for Player I, Player II can defeat it by playing a \(y \in \omega^\omega \) such that \(y \geq_{\mathcal{T}_u} \sigma \), and a \(z \in \mathrm{WO} \cap L[S,y] \) with ordertype greater than \(g(y) \) (such a \(z \) exists since \(g(y) < \omega_1^{L[S,y]} \)). Thus by AD we may fix a winning strategy \(\sigma \) for Player II. For each \(x \in \omega^\omega \), let \(\sigma_y(x) \) denote the \(y \in \omega^\omega \) that \(\sigma \) produces when Player I plays \(x \), and let \(\sigma_z(x) \) denote the set \(z \subseteq \omega \times \omega \) that \(\sigma \) produces when Player I plays \(x \). Then \(\{ \sigma_z(x) : x \in \omega^\omega \} \) is analytic and included in \(\mathrm{WO} \), so there is \(\alpha < \omega_1 \) such that for every \(x \in \omega^\omega \), the ordertype of \(\sigma_z(x) \) is less than \(\alpha \). The set of \(x \in \omega^\omega \) such that \(x \geq_{\mathcal{T}_u} \sigma \) is an \(S \)-cone. For any such \(x \), \(\sigma_y(x) \equiv_S x \), and
\[
\alpha > \text{otp}(\sigma_z(x)) > g(\sigma_y(x)) = g(x).
\]
•

The following application of cone measures is used in the proof of Theorem 7.15, which is the key theorem for producing Suslin representations from \(\infty \)-Borel codes. The theorem was first proved by Steel assuming \(\text{AD} \) [15] and later by Woodin from TD by the proof given below. Almost the same proof gives the corresponding result for \(\Diamond \). Whether one can also get \(\square \) or forms of condensation seems to be open.

Theorem 7.7. Suppose that \(\aleph_1 \not\leq 2^\aleph_0 \) and let \(S \) be a set of ordinals such that \(\mu_S \) is an ultrafilter. Then
\[
\{[y]_S : L[S,y] \cap V_{\omega_1} \models \text{GCH} \} \in \mu_S.
\]

Proof. We first prove the theorem with \(\text{CH} \) in place of \(\text{GCH} \). It suffices to show that for each \(y \in \omega^\omega \) there is \(x \in \omega^\omega \) such that \(L[S,y][x] \models \text{CH} \). Since \(\aleph_1 \not\leq 2^\aleph_0 \), for each \(y \in \omega^\omega \) there exist \(L[S,y] \)-generic filters for each partial order in \(L[S,y] \cap V_{\omega_1} \). Fix \(y \in \omega^\omega \) and force \(L[S,y] \) with the iteration \(\text{Col}^*(\omega_1, \omega^\omega) \ast \mathbb{Q} \) (as defined in \(L[S,y] \)), where \(\text{Col}^* \) adds a bijection \(f \) from \(\omega_1 \) to \(\omega^\omega \) by countable approximations and \(\mathbb{Q} \) is the almost disjoint coding forcing to make the relation
\[
\{(a,b) \in (\omega^\omega)^2 : f(x) \leq f(y)\}
\]
an \(F_\gamma \) subset of \((\omega^\omega)^2 \). If \(a \in \omega^\omega \) is a real in the corresponding generic extension coding this \(F_\gamma \), then \(L[S,y][a] \models \text{CH} \).

For the general case of \(\text{GCH} \), let \(x_0 \in \omega^\omega \) be such that for every \(y \geq_S x_0 \), \(L[S,y] \models \text{CH} \). Fix \(y \geq_S x_0 \) and an \(L[S,y] \)-cardinal \(\gamma < \omega_1^Y \). Let \(g \subseteq \text{Col}(\omega, \gamma) \) be an \(L[S,y] \)-generic filter. Then \(L[S,y][g] \models \text{CH} \) so \(L[S,y] \models 2^\gamma = \gamma^+ \). □

7.3. A degree notion for sets of ordinals

The proof of Theorem 7.15 uses the following order on sets of ordinals. Given \(S,T \subseteq \text{Ord} \), we write \(S \leq_T T \) to mean that
\[
\{[x]_{\mathcal{T}_u} : \omega^\omega \cap L[S,x] \subseteq L[T,x] \} \in \mu_{\mathcal{T}_u}.
\]
We write \(S <_T T \) for \(S \leq_T T \land \lnot(T \leq_T S) \). A reflection argument shows that for any set \(S \) of ordinals there is a bounded \(T \subseteq \text{Ord} \) with \(S \leq_T T \). Ultimately we will be concerned only with the restriction of \(\leq_T \) to bounded subsets of \(\text{Ord} \).

Theorem 7.8 shows that \(\leq_T \) is a total order when \(\mu_{\mathcal{T}_u} \) is a countably complete ultrafilter. As with Theorem 7.7, Theorem 7.8 was first proved by Steel in [15]
assuming AD and later by Woodin from TD + CC\(\mathbb{R}\). Woodin’s proof uses a variation of Mathias forcing.

Theorem 7.8. Assume TD + CC\(\mathbb{R}\). If \(\neg(T \leq D S)\) then

\[
\{ [x]_{\text{Tu}} : \omega^\omega \cap L[S, x] \in H(\mathbb{R}_1)^{L[T, x]} \} \in \mu_{\text{Tu}}.
\]

The proof of Theorem 7.10 uses the following classical result of Solovay. In many of our applications we will have \(M = M'\), but we will use the general version at the end of Section 7.4.

Theorem 7.9 (Solovay). If \(M \subseteq M'\) are both transitive models of \(\mathsf{ZF}\), \(\mathbb{P} \in M\) is a partial order, \(P(\mathbb{P}) \cap M'\) is countable, and \(x \in M[G]\) for all \(M'\)-generic \(G \subseteq \mathbb{P}\), then \(x\) is in \(M\).

Theorem 7.10 lists some consequences of Theorem 7.8 which will be used in Section 7.4. Parts (1a) and (2a) follow from Theorems 7.8 and 7.9 by a collapsing argument as in the second half of the proof of Theorem 7.7 (note that both parts apply to all \(\gamma\) below \(\omega^\gamma\), not just \(\omega_1^{L[T, x]}\)). Part (1b) follows from part (1a) and Theorem 7.9, by another collapsing argument. Part (2b) follow from part (2a). Note that neither part of the theorem assumes (or implies) that \(S\) is in \(L[T, y]\). A natural application of part (1b) is when \(S\) is an \(\infty\)-Borel code.

Theorem 7.10. Assume TD + CC\(\mathbb{R}\), and let \(S\) and \(T\) be sets of ordinals.

1. If \(x\) is a base of a cone witnessing that \(S \leq_D T\), then the following hold for all \(y \geq_{\text{Tu}} x\).
 a. For every \(\gamma < \omega^\gamma\), \(P(\gamma) \cap L[S, y] \subseteq L[T, y]\).
 b. For every formula \(\phi\),
 \[
 \{ z \in \omega^\omega : L[S, z] \models \phi(S, z) \} \cap L[T, y] \in L[T, y].
 \]
2. If \(x \in \omega^\omega\) is a base of a Turing cone witnessing that \(S <_D T\), then the following hold for all \(y \geq_{\text{Tu}} x\).
 a. For every \(\gamma < \omega^\gamma\),
 \[
 P(\gamma) \cap L[S, y] \subseteq H(|\gamma|^+)^{L[T, y]}.
 \]
 b. \(\omega_1^{L[T, y]}\) is a strongly inaccessible cardinal in \(L[S, y]\).

7.4. Forcing with sets of reals.

Given a set \(S\) of ordinals (and assuming that \(\mu_S \) induces a wellfounded ultrapower), we let \(\delta_S^\infty\) be the ordinal represented by the function \(x \mapsto \omega^\infty_{L[S, x]}\). Theorem 7.13 (in conjunction with part (2b) of Theorem 7.10) shows that if \(S\) is not \(\leq\mathbb{P}'\)-maximal, then \(\delta_S^\infty < \Theta\), which is one of the hypotheses of Theorem 7.16. The proof of Theorem 7.13 uses a result of Martin on pointed perfect trees.

Given a set \(S\) of ordinals, a set \(A \subseteq \omega^\omega\) is \(S\)-positive if it intersects every \(S\)-cone. A tree is **perfect** if each node has an incompatible pair of extensions.

Definition 7.11. For \(S \subseteq \text{Ord}\), an \(S\)-pointed (perfect) tree is a perfect tree \(a \subseteq \omega^{<\omega}\) such that for every \(x \in [a], a \in L[S, x]\).

Theorem 7.12 (Martin). AD implies that for every \(B \subseteq \omega^\omega\) and every \(S \subseteq \text{Ord}\), \(B\) is \(S\)-positive if and only if there is an \(S\)-pointed perfect tree \(a\) with \([a] \subseteq B\).
Given a set T of ordinals, we define the relation $<_T$ on $(\omega^\omega)^2$ by setting $(x, y) <_T (z, w)$ if $x = z$, $y, w \in L[T, x]$ and y comes before w in the constructibility order on $L[T, x]$ using T and x as parameters. Theorem 7.13 says (in conjunction with part (2) of Theorem 7.10) that if $S \subseteq \text{Ord}$ is not $\leq_{\mathcal{P}}$-maximal, and f is an S-invariant function on ω^ω sending each x to $H(\gamma)^{L[S, x]}$, for some γ below the least strongly inaccessible cardinal of $L[S, x]$, then the structure represented by f in the μ_S ultrapower is coded by a subset of ω^ω. Although it is not the case we are interested in, this fact holds even in the case where this structure is illfounded.

Theorem 7.13 (Woodin). Suppose that AD holds, and let S and T be sets of ordinals. Suppose that f is an S-invariant function on ω^ω such that for every $x \in \omega^\omega$, $f(x)$ is a transitive set in $H(\aleph_1)^{L[T, x]}$. Then $\prod f(x)/\mu_S$ is isomorphic to a relation projective in $\leq_{\omega^\omega} \times <_{\mu_T}$.

Let S^∞ denote the set represented by the constant function $x \mapsto S$ in the ultrapower given by μ_S. The countable completeness of μ_S gives that for all $x, y \in \omega^\omega$, $x \in L[S, y]$ if and only if $x \in L[S^\infty, y]$. It follows that a tree is S-pointed if and only if it is S^∞-pointed.

Let \mathbb{P}_S be the partial order of (not necessarily S-invariant) S-positive sets under containment. Theorem 7.12 implies that \mathbb{P}_S is forcing-equivalent to the partial order of S^∞-pointed-perfect trees, also under containment. Therefore any x_G produced by a V-generic filter $G \subseteq \mathbb{P}_S$ is also generic over $L(S^\infty, \mathbb{R})$.

Since μ_S is countably complete, whenever A is an S-positive set and n is in ω there exists an $s \in \omega^n$ such that $\{x \in A : x|n = s\}$ is S-positive. It follows that if G is a V-generic filter for \mathbb{P}_S then there is a unique $x \in \omega^\omega$ such that, for each $n \in \omega$ the set $\{y \in A : y|n = x|n\}$ is in G. We let x_G denote the unique such x. A standard genericity argument shows that x_G will be Turing-above every element of $\omega^\omega \setminus V$. This shows that \mathbb{P}_S collapses ω^ω.

A generic filter G for \mathbb{P}_S induces an ultrapower $\prod_{x \in \omega^\omega} V/G$, whose elements are represented by functions with domain ω^ω. Although we will not prove it here, it turns out that, assuming AD plus the wellfoundedness of the μ_S-ultrapower, the models $\prod_{x \in \omega^\omega} L[S, x]/G$ and $L[S^\infty, x_G]$ are isomorphic.

Now suppose that $A \subseteq \omega^\omega$ is such that $A \cap L[S, x] \subseteq L[S, x]$ for all $x \in \omega^\omega$. Then the function $A \mapsto A \cap L[S, x]$ represents in $\prod_{x \in \omega^\omega} L[S, x]/G$ a set $A^* \subseteq \omega^\omega$ in $V[G]$ such that $A^* \in L[S^\infty, x_G]$ and $A^* \cap (\omega^\omega)^V = A$. It follows that for any V-generic x_G we have $A \in L(S^\infty, \mathbb{R})[x_G]$, so $A \in L(S^\infty, \mathbb{R})$ by Theorem 7.9. Along with part (1b) of Theorem 7.10, this gives Theorem 7.14.

Theorem 7.14 (Woodin). Assume that AD holds, S is a set of ordinals, and the μ_S-ultrapower of the ordinals is wellfounded. If S is a $\leq_{\mathcal{P}}$-maximal set of ordinals, then every ω-Borel set is in $L(S^\infty, \mathbb{R})$.

By Theorem 6.8, the ω-Borel sets are all ω-Borel in $L(S^\infty, \mathbb{R})$, assuming the hypotheses of Theorem 7.14. Wellfoundedness of the μ_S-ultrapower follows from AD + DC, and also from AD$^+$, by Theorem 7.5. If AD holds and $A \subseteq \omega^\omega$ is not ω-Borel, then every ∞-Borel set is ω-Borel in $L(A, \mathbb{R})$ by Theorem 6.8, and one can apply the theorem in $L(S, A, \mathbb{R})$ assuming (in addition) only AD. In this case, however, the S^∞ in the statement of the theorem is as computed in $L(S, A, \mathbb{R})$.

7.5. Getting strong ω-Borel codes

Suppose now that $A \subseteq \omega^\omega$ is ω-Borel, and that S is an ω-Borel code for A which is not $\leq_{\mathcal{P}}$-maximal. By Theorem 7.13, then,
\(\delta^{\omega}_{S} < \Theta \). Theorem 7.15 says that \(S \) induces a strong \(\infty \)-Borel code for \(A \), which, by Theorem 6.13, implies that \(A \) is Suslin. The proof of Theorem 7.15 uses Woodin’s analysis of the Vopěnka algebra, which we will discuss briefly in Section 8.

Theorem 7.15 (Woodin). Let \(S \) be a set of ordinals such that \(\mu_S \) is an ultrafilter on \({\text{Ord}}/\mu_S \). Suppose that \(\prod \text{Ord}/\mu_S \) is wellfounded, \(\delta^{\infty}_{S} < \Theta \), and \(\delta^{\infty}_{S} \)-Determinacy holds. If \(S \) is an \(\infty \)-Borel code for some \(A \subseteq \omega^{\omega} \) then \(A \) has a strong \(\infty \)-Borel code which is contained in \(\delta^{\infty}_{S} \) and definable from \(S \).

Again, Theorems 6.13 and Theorem 7.16 give the following.

Theorem 7.16 (Woodin). If \(\langle \Theta \rangle \)-Determinacy and \(\text{DC}_{\mathbb{R}} \) hold, then every subset of \(\omega^{\omega} \) which has an \(\infty \)-Borel code which is not \(\leq_{\mathcal{P}} \)-maximal is Suslin.

In addition, one gets the following equivalences under \(\text{AD}^{+} \).

Theorem 7.17. Assuming \(\text{AD}^{+} \), the following are equivalent.

1. There is no \(\leq_{\mathcal{P}} \)-maximal set of ordinals.
2. Every subset of \(\omega^{\omega} \) is Suslin.
3. \(\text{AD}_{\mathbb{R}} \)
4. Uniformization

Proof. By Theorem 7.16, (1) implies (2). Theorem 3.3 gives that (2) implies (3). The implication (3) \(\Rightarrow \) (4) is discussed in Section 1.2. We show that (4) implies (1) at the end of Section 8.

The proof of the implication (4) \(\Rightarrow \) (1) in Theorem 7.17 also uses Woodin’s analysis of the Vopěnka algebra.

8. The Vopěnka Algebra

Let \(X \) be a set with \(X \in \text{OD}_{X} \), let \(z \) be an element of \(\text{HOD}_{X} \) and let \(\lambda \) be the least ordinal such that \(\mathcal{P}(\mathcal{P}(z)) \cap \text{OD}_{X} \subseteq \text{OD}^{\lambda}_{X} \). We let \(P_{X,z} \) be the set of triples \((n, \bar{x}, \bar{a})\) such that

- \(n \) is the Gödel number of a formula \(\phi_{n} \) of arity \(|\bar{x}| + |\bar{a}| + 1 \),
- \(\bar{x} \in X^{<\omega} \),
- \(\bar{a} \in \lambda^{<\omega} \) and
- the set \(b_{n,\bar{x},\bar{a}} = \{ C \subseteq z : V_{\lambda} \models \phi_{n}(C, \bar{x}, \bar{a}) \} \) is nonempty.

Order \(P_{X,z} \) by setting \((n, \bar{x}, \bar{a}) \leq (m, \bar{y}, \bar{b})\) to hold if \(b_{n,\bar{x},\bar{a}} \subseteq b_{m,\bar{y},\bar{b}} \). We write \([[(n, \bar{x}, \bar{a})]]\) for the corresponding equivalence class of \((n, \bar{x}, \bar{a})\) and let \(\mathcal{V}_{X,z} \) denote the corresponding partial order on the equivalence classes. Then \(\mathcal{V}_{X,z} \in \text{HOD}_{X} \).

Furthermore, for each \(a \in z \), the set \(T_{X,a} \) consisting of the pairs \((a, [[(n, \bar{x}, \bar{a})]])\) for which \(b_{n,\bar{x},\bar{a}} = \{ C \subseteq z : a \in C \} \) is in \(\text{HOD}_{X} \).

For each \(C \subseteq z \), we let \(G_{C}^{X,z} \) be the set of \([[(n, \bar{x}, \bar{a})]]\) for which \(V_{\lambda} \) satisfies \(\phi_{n}(C, \bar{x}, \bar{a}) \). Vopěnka’s Theorem says that under these assumptions on \(X \) and \(z \), each set \(G_{C}^{X,z} \) is a \(\text{HOD}_{X} \)-generic filter for \(\mathcal{V}_{X,z} \). The key point in the proof is that union of the sets \(b_{n,\bar{x},\bar{a}} \) corresponding to any maximal antichain in \(\mathcal{V}_{X,z} \) is all of \(\mathcal{P}(z) \).

Theorem 8.1 (Vopěnka). Let \(X \) be a set with \(X \in \text{OD}_{X} \), and let \(z \) be an element of \(\text{HOD}_{X} \). For each \(C \subseteq z \) the set \(G_{C}^{X,z} \) is a \(\text{HOD}_{X} \)-generic filter in \(\mathcal{V}_{X,z} \), and \(C \) is in \(\text{HOD}_{X}[G_{C}^{X,z}] \).
For the rest of this section we restrict to the case where \(X = \{ S \} \), for some set \(S \) of ordinals, and \(z = \omega \), and consider the Vopěnka algebra in models of the form \(L[S, x] \), where \(x \in \omega^\omega \). Using the definability order in \(\text{HOD}^{L[S, x]}_{\{S\}} \) we can definably copy \(Y_{\{S\}, \omega}^L[S, x] \) and \(T_{\{S\}, \omega}^L[S, x] \) to a partial order \(Q^S_z \subseteq \text{Ord} \times \text{Ord} \) and a corresponding set \(K^S_z \subseteq \text{Ord} \times \text{Ord} \), both in \(\text{HOD}^{L[S, x]}_{\{S\}} \). Thus for every \(c \in P(\omega) \cap L[S, x] \) there exists a \(L[S, Q^S_z, K^S_z, x] \)-generic filter \(G_c \subseteq Q^S_z \) with \(c \in L[S, Q^S_z, K^S_z, x] \).

It follows immediately from either definition that the collection of \(\omega^\omega \) (which generalizes naturally to subsets of \((\omega^\omega)^n \) for any \(n \in \omega \)) is closed under complements. We will now outline a proof (assuming \(\text{TD} + \text{DC}_{\mathbb{R}} \)) that it is also projectively closed. This amounts to showing that if \(A \subseteq (\omega^\omega)^2 \) is an \(\infty \)-Borel set, and \(B = \{ x \in \omega^\omega : \exists y (x, y) \subseteq A \} \), then \(B \) is also \(\infty \)-Borel. We start with the following lemma, recalling that the assumption that \(\mu_S \) is an ultrafilter implies that \(N_1 \not\subseteq 2^{\aleph_0} \).

Lemma 8.2 (Woodin). Let \(S \) be a set of ordinals, and suppose that \(\mu_S \) is an ultrafilter. Let \(\phi \) be a ternary formula. Then for all \(x \in \omega^\omega \),

\[
\exists y \in \omega^\omega L[S, x, y] \models \phi(S, x, y)
\]

if and only if, for \(\mu_S \)-many \(z \in \omega^\omega \), the model \(L[S, Q^S_z, K^S_z, x] \) satisfies the statement that some partial order of cardinality at most \(2^{Q^S_z} \) forces the existence of a \(y \in \omega^\omega \) such that \(L[S, x, y] \models \phi(S, x, y) \).

Proof. The reverse direction follows from the fact that each partial order of cardinality at most \(2^{Q^S_z} \) in \(L[S, Q^S_z, K^S_z, x] \) is countable in \(V \), so \(L[S, Q^S_z, K^S_z, x] \)-generic filters exist.

For the other direction, fix \(x \in B \) and \(y \in \omega^\omega \) such that \(L[S, x, y] \models \phi(S, x, y) \). Let \(z \in \omega^\omega \) be \(\leq_S \)-above both \(x \) and \(y \). Then \(z \) is in the model \(L[S, Q^S_z, K^S_z, x] \) of \([G^S_z]_{\omega_1} \), which is a generic extension of \(L[S, Q^S_z, K^S_z, x] \) by a quotient of the regular open algebra of \(Q^S_z \).

The \(\mu_S \)-ultrapower now gives an \(\infty \)-Borel code for the set coded by the pair \((S, \phi)\).

Theorem 8.3 (Woodin). Let \(S \) be a set of ordinals, and suppose that \(\text{DC}_{\mathbb{R}} \) holds and \(\mu_S \) is an ultrafilter. Let \(\phi \) be a ternary formula and let

\[
B = \{ x \in \omega^\omega : \exists y \in \omega^\omega L[S, x, y] \models \phi(S, x, y) \}
\]

Then there exist a binary formula \(\psi \) and a set \(T \) of ordinals such that \(T \in \text{OD}_{\{S\}} \) and

\[
B = \{ x \in \omega^\omega : L[T, x] \models \psi(T, x) \}
\]

Proof. Work in \(L(S, \mathbb{R}) \), and let

\[
S^\infty = \prod S/\mu_S,
\]

\[
Q^S_z = \prod Q^S_{x}/\mu_S
\]

and

\[
K^S_z = \prod K^S_{x}/\mu_S.
\]

For each \(x \in \omega^\omega \), the constant function \(y \mapsto x \) represents \(x \) in the ultrapower by \(\mu_S \). By Lemma 8.2, then, we have that for every \(x \in \omega^\omega \), \(x \in B \) if and only
if \(L[S^\infty, Q^\infty_\infty, K^\infty_\infty, x] \) satisfies the statement that there exists a partial order of cardinality at most \(2^{|Q^\infty_\infty|} \) forcing the existence of a \(y \in \omega^\omega \) such that

\[
L[S^\infty, x, y] = \phi(S^\infty, x, y).
\]

\[\square\]

Restating Theorem 8.3, we have the following.

Theorem 8.4. If \(\text{TD} + \text{DC}_\aleph \) holds, then the set of \(\infty \)-Borel subsets of \((\omega^\omega)^{<\omega} \) is projectively-closed.

Finally, we prove the forward direction of Theorem 7.17. It remains to show that if there is a \(\leq_D \)-maximal set of ordinals, then Uniformization fails. Supposing that \(S \) is a \(\leq_D \)-maximal set of ordinals, let \(A \) be the set of \((x, y) \in (\omega^\omega)^2 \) such that \(y \notin L[S, x] \). Then \(A \) is \(\infty \)-Borel. Suppose toward a contradiction that \(f \) is a uniformizing function for \(A \), and let \(F \) be the set of \((x, n, m) \in \omega^\omega \times \omega \times \omega \) such that \(f(x)(n) = m \). If \(T \) is an \(\infty \)-Borel code for \(F \), then for all \(x \in \omega^\omega \), \(f(x) \in L[T, x] \). It follows that \(S <_D T \), giving a contradiction.

In the remaining two sections we will briefly sketch some structural consequences of \(\text{AD}, \text{AD}^+, \text{AD}_{\aleph} \).

9. Suslin Cardinals

A *Suslin cardinal* is an ordinal \(\gamma \) for which there exists an \(A \subseteq \omega^\omega \) which is \(\gamma \)-Suslin but not \(\eta \)-Suslin for any \(\eta < \gamma \). Any such \(\gamma \) must be a cardinal.

A reflection argument shows that if \(A \subseteq \omega^\omega \) is Suslin, then \(A \) is \(\gamma \)-Suslin for some \(\gamma < \Theta \). It follows that all Suslin cardinals are below \(\Theta \). The Moschovakis Coding Lemma implies that, for each \(\gamma < \Theta \), there is a surjection from \(\omega^\omega \) onto the set of \(\gamma \)-Suslin sets. It follows that if every subset of \(\omega^\omega \) is Suslin, then the Suslin cardinals are cofinal in \(\Theta \). The converse is also true, although its proof is more involved.

Theorem 9.1. Assuming \(\text{AD} \), every subset of \(\omega^\omega \) is Suslin if and only if the Suslin cardinals are cofinal in \(\Theta \).

A join argument shows that the supremum of a countable sequence of Suslin cardinals is Suslin. A theorem of Steel and Woodin shows that if \(\text{AD} \) holds then the set of Suslin cardinals is closed below its supremum, which by Theorem 9.1 is below \(\Theta \) if and only if some subset of \(\omega^\omega \) is not Suslin. The following theorem of Woodin shows that under \(\text{AD}^+ \) the supremum of the Suslin cardinals is also Suslin if it is less than \(\Theta \).

Theorem 9.2 (Woodin). Assuming \(\text{AD}^+ \), the set of Suslin cardinals is closed below \(\Theta \).

These facts give the following theorem.

Theorem 9.3. If \(\text{AD} + \text{DC}_\aleph \) holds, then \(\text{AD}^+ \) holds if and only if the supremum of the Suslin cardinals is either \(\Theta \) or a Suslin cardinal.

We will sketch the proof of Theorem 9.2, using Theorems 9.4 and 9.5 below. The proof of Theorem 9.4, which we will not give, uses a classical pointclass analysis for the first conclusion, and an analysis of ultrapowers by cone measures (using the first conclusion) for the second. We say that a subset of \(\omega^\omega \) is \(\kappa \)-Borel if it is \(\gamma \)-Borel for some \(\gamma < \kappa \), and \(\kappa \)-Suslin if it is \(\gamma \)-Suslin for some \(\gamma < \kappa \).
Theorem 9.4. If AD^+ holds and κ is a limit of Suslin cardinals and the cofinality of κ is uncountable, then every $<\kappa$-Borel set is $<\kappa$-Suslin, and for all bounded $S \subseteq \kappa$, $\prod_2 \omega_2^{[S,x]} / \mu_\text{Tu} < \kappa$.

The following (ZF) theorem of Kunen and Martin generalizes Σ_1^1-boundedness, and follows from applying Σ_1^1-boundedness in a forcing extension by $\text{Col}(\omega, \gamma)$.

Theorem 9.5 (Kunen-Martin). For any cardinal γ, every γ-Suslin prewellordering of ω_ω has length less than γ^+.

Proof of Theorem 9.2. It suffices to show that if $\kappa < \Theta$ is a limit of Suslin cardinals of uncountable cofinality, then κ is a Suslin cardinal. Fixing such a κ, there is by the Moschovakis Coding Lemma a set $A \subseteq \omega_\omega$ which is not κ-Borel. Since A is ∞-Borel, the $*$-operation from Section 6.2 applied to an ∞-Borel code (in $L_{\infty,0}$) for A gives a κ-sequence of ∞-Borel codes for disjoint nonempty subsets of ω_ω. The proof of the second half of Theorem 6.5 then produces a κ-length disjunction of $L_\kappa,0$-sentences defining a prewellordering of length κ. A uniform version of Theorem 7.15 applied to the members of this disjunction, along with Theorem 6.13, gives a strong ∞-Borel code in $L_\kappa,0$ for this prewellordering. Theorem 6.13 then implies that this prewellordering is κ-Suslin. Theorem 9.5 implies that the prewellordering cannot be γ-Suslin for any $\gamma < \kappa$. \square

10. The Solovay Sequence

The Solovay sequence [14] is the unique continuous sequence $\langle \theta_\alpha : \alpha \leq \beta \rangle$ such that

- θ_0 is the least ordinal which is not the surjective image of ω^ω under an OD function;
- for every ordinal α such that $\alpha + 1 \leq \beta$, $\theta_{\alpha+1}$ is the least ordinal which is not the surjective image of ω^ω under an OD$_A$ function for any $A \subseteq \omega^\omega$ of Wadge rank θ_α;
- $\theta_\beta = \Theta$.

We call β the length of the Solovay sequence. In $L(\mathbb{R})$, $\theta_0 = \Theta$, so $\beta = 0$. For each $\alpha \leq \beta$, if we let Γ_α be the set subsets of ω^ω of Wadge rank less than θ_α, then $\text{HOD}_{\Gamma_\alpha}$ is a model of ZF containing ω^ω whose subsets of ω^ω are exactly the members of Γ_α and whose Solovay sequence is the Solovay sequence of V up to θ_α.

The proof of Theorem 1.3 shows that if $\text{AD} + \text{Uniformization}$ holds then β is a limit ordinal. On the other hand, Theorems 7.14 and 7.16 (noting that every bounded subset of Θ is in $L(A, \mathbb{R})$ for some $A \subseteq \omega^\omega$, and that the μ_S ultrapower of a set S of ordinals ordinal definable from S) give the following theorem, the conclusion of which implies $\text{AD}_\mathbb{R}$ by Theorem 3.3.

Theorem 10.1 (Woodin). If AD^+ holds and the Solovay sequence has limit length, then every subset of ω^ω is Suslin.

If the length of the Solovay sequence is at least $\alpha + 1$, then there is a largest Suslin cardinal below $\theta_{\alpha+1}$. The largest Suslin cardinal below $\theta_{\alpha+1}$ is either θ_α or $\delta^+_1(A)$ for any $A \subseteq \omega^\omega$ of Wadge rank α. These cases are mutually exclusive, and the former can happen only when α is a limit ordinal.

As a final note, we observe that the length of the Solovay sequence in a model of $\text{AD} + \text{DC}_\mathbb{R}$ determines whether of not DC holds in the model. If Θ has countable
cofinality, then DC fails in $L(\mathcal{P}(\mathbb{R}))$. If the Solovay sequence has length 0, or successor length, then DC holds if $DC_\mathbb{R}$ does. Solovay showed that, assuming $AD_\mathbb{R}$, DC holds in $L(\mathcal{P}(\mathbb{R}))$ if and only the cofinality of Θ is uncountable. In conjunction with Theorem 10.1 we get that under AD^+, DC fails in $L(\mathcal{P}(\mathbb{R}))$ if and only if, in $L(\mathcal{P}(\mathbb{R}))$, the length of the Solovay sequence is a limit ordinal of countable cofinality.

References

Department of Mathematics
Miami University
Oxford, Ohio 45056
USA
larsonpb@miamioh.edu