Increasing δ_1^2 and Namba-style forcing

Richard Ketchersid Paul Larson †
Miami University Miami University
Jindřich Zapletal ‡
University of Florida

April 17, 2007

Abstract
We isolate a forcing which increases the value of δ_1^2 while preserving ω_1 under the assumption that there is a precipitous ideal on ω_1 and a measurable cardinal.

1 Introduction

The problem of comparison between ordinals defined in descriptive set theory such as δ_n^1, $n \in \omega$ and cardinals such as \aleph_n, $n \in \omega$ has haunted set theorists for decades. In this paper, we want to make a humble comment on the comparison between δ_1^2 and ω_2.

Hugh Woodin showed [6] that if the nonstationary ideal on ω_1 is saturated and there is a measurable cardinal then $\delta_2^1 = \aleph_2$. Thus the iterations for making the nonstationary ideal saturated must add new reals, and they must increase δ_2^1. It is a little bit of a mystery how this happens, since the new reals must be born at limit stages of the iteration and no one has been able to construct a forcing increasing the ordinal δ_2^1 explicitly. The paper [7] shed some light on this problem; it produced a single step Namba type forcing which can increase δ_2^1 in the right circumstances. In this paper we clean up and optimize the construction and prove:

Theorem 1.1. Suppose that there is a normal precipitous ideal on ω_1 and a measurable cardinal κ. For every ordinal $\lambda \in \kappa$ there is an \aleph_1 preserving poset forcing $\delta_2^1 > \lambda$.

An important disclaimer: this result cannot be immediately used to iterate and obtain a model where $\delta_2^1 = \aleph_2$ from optimal large cardinal hypotheses.

*2000 AMS subject classification.
†Partially supported by DMS NSF grant 0401603
‡Partially supported by GAČR grant 201-05-0933 and DMS NSF grant 0300201.
The forcing obtained increases δ_2 once, to a value less than ω_2. If the reader wishes to iterate the construction in order to obtain a model where $\delta_2 = \omega_2$, he will encounter the difficult problem of forcing a precipitous ideal on ω_1 by an \aleph_1-preserving poset. Forcing $\delta_2 = \aleph_2$ may be possible with some other type of accumulation of partial orders obtained in this paper.

The notation in this paper is standard and follows [2]. After the paper was written we learned that a related construction was discovered by Jensen [4]: a Namba-type forcing in the model $L[U]$ with one measurable cardinal introducing a mouse which iterates to any length given beforehand.

2 Generic ultrapowers, iterations, and δ_2^1

In order to prepare the ground for the forcing construction, we need to restate several basic definitions and claims regarding the generic ultrapowers and their iterations.

Definition 2.1. [3] Suppose that J is a σ-ideal on ω_1. If $G \subset \mathcal{P}(\omega_1) \setminus J$ is a generic filter, then we consider the generic ultrapower $j : V \to N$ modulo the filter G, in which only the ground model functions are used. If the model N is wellfounded, it is identified with its transitive collapse, and the ideal J is called precipitous.

The following definitions and facts have been isolated in [6].

Definition 2.2. [6] Suppose that M is a countable transitive model, and $M \models \"J$ is a precipitous ideal\". An iteration of length $\beta \leq \omega_1$ of the model M is a sequence $M_\alpha : \alpha \leq \beta$ of models together with commuting system of elementary embeddings; successor stages are obtained through a generic ultrapower, and limit stages through a direct limit. A model is iterable if all of its iterands are wellfounded.

Definition 2.3. [1] Suppose J is a precipitous ideal on ω_1. An elementary submodel M of a large structure with $j \in M$ is selfgeneric if for every maximal antichain $A \subset \mathcal{P}(\omega_1) \setminus J$ in the model M there is a set $B \in A \cap M$ such that $M \cap \omega_1 \in B$. In other words, the filter $\{B \in M \cap \mathcal{P}(\omega_1) \setminus J : M \cap \omega_1 \in B\}$ is an M-generic filter.

Note that if M is a selfgeneric submodel, N is the Skolem hull of $M \cup \{M \cap \omega_1\}$, and $j : M \to N$ is the elementary embedding between the transitive collapses induced by $id : M \to N$, then j is a generic ultrapower of the model M by the generic filter identified in the above definition. The key observation is that selfgeneric models are fairly frequent:

Proposition 2.4. Suppose that J is a precipitous ideal on ω_1 and $\mu > 2^{\aleph_1}$ is a regular cardinal. The set of countable selfgeneric elementary submodels of H_μ is stationary in $[H_\mu]^{\aleph_0}$.

2
Proof. Suppose that $f : H^\omega_\mu \to H_\mu$ is a function; we must find a selfgeneric submodel of H_μ closed under it. Let $G \subseteq \mathcal{P}(\omega_1) \setminus J$ be a generic filter and $j : V \to N$ be the associated generic ultrapower embedding. Note that $j''H^\omega_\mu$ is a selfgeneric submodel of $j(H_\mu)$ closed under the function $j(f)$; it is not in general an element of the model N. Consider the tree T of all finite attempts to build a selfgeneric submodel of $j(H_\mu)$ closed under the function $j(f)$. Then $T \in N$ and the previous sentence shows that the tree T is illfounded in $V[G]$. Since the model N is transitive, it must be the case that the tree T is illfounded in N too, and so $M \models \exists T$ is a countable selfgeneric elementary submodel of $j(H_\mu)$ closed under the function $j(f)$. An elementarity argument then yields a countable selfgeneric elementary submodel of the structure H_μ closed under the function f in the ground model as desired.

Our approach to increasing δ^2_3 is in spirit the same as that of Woodin. We start with a ground model V with a precipitous ideal J on ω_1, a measurable cardinal κ, and an ordinal $\lambda \in \kappa$. Choose a regular cardinal μ between λ and κ. In the generic extension $V[G]$, it will be the case that $\omega^V_1 = \omega^V_1[G]$ and κ is still measurable and moreover there is a countable elementary submodel $M \prec H^V_\mu$ such that

- M is selfgeneric
- \bar{M} is iterable
- λ is a subset of one of the iterands of \bar{M}.

In fact, it will be the case that writing $M_\alpha, \alpha \in \omega_1$ for the models obtained by transfinite inductive procedure $M_0 = M$, $M_{\alpha+1} =$ Skolem hull of $M_\alpha \cup \{M_\alpha \cap \omega_1\}$, and $M_\alpha = \bigcup_{\beta < \alpha} M_\beta$ for limit ordinals α, and writing M_α for the respective transitive collapses, the models M_α are all selfgeneric, the models $\bar{M}_\alpha, \alpha \leq \omega_1$ constitute an iteration of the model M, and $\lambda \in \bigcup_\alpha M_\alpha$. By Lemma 4.7 of [6], δ^2_3 must be larger than the cumulative hierarchy rank of the model M_{ω_1}, which by the third item is at least λ. Note that the model M cannot be an element of the ground model.

It may seem that adding a model M such that all the models $M_\alpha, \alpha \in \omega_1$ are selfgeneric is an overly ambitious project. The forcing will in fact add a countable set $\{f_\alpha : n \in \omega\} \subseteq H^\omega_\mu$ such that every countable elementary submodel containing it as a subset is necessarily selfgeneric. It will also add a countable set $\{g_\alpha : n \in \omega\} \subseteq H^\omega_\mu$ of functions from $\omega_1^{<\omega}$ to ω such that $\lambda = \bigcup_\alpha \mathrm{rng}(g_\alpha)$. This will be achieved by a variation of the classical Namba construction by an \aleph_1-preserving forcing of size $< \kappa$. In the generic extension, use the measurability of κ to find an elementary submodel N of a large structure containing J, μ, κ as well as the functions $f_n, g_n, n \in \omega$ such that the ordertype of $N \cap \kappa$ is ω_1, and consider the transitive collapse \bar{N} of the model $N \cap V$. It is iterable by Lemma 4.5 of [6]. This means that even the transitive collapse \bar{M} of the model $M = N \cap H^V_\mu$ is iterable, since it is a rank-initial segment of \bar{N}.
and every iteration of M extends to an iteration of N. Thus the model M is as desired, and this will complete the proof.

3 A class of Namba-like forcings

Definition 3.1. Suppose that X is a set and I is a collection of subsets of X closed under subsets, $X /\notin I$. The forcing Q_I consists of all nonempty trees $T \subset X^{<\omega}$ such that every node $t \in T$ has an extension $s \in T$ such that $\{x \in X : s \upharpoonright \omega x \in T\} \notin I$. The ordering is that of inclusion.

It is not difficult to see that the forcing Q_I adds a countable sequence of elements of the underlying set X. The only property of the generic sequence we will use is that it is not a subset of any ground model set in the collection I. The usual Namba forcing is subsumed in the above definition: just put $X = \aleph_2$ and $I =$ all subsets of ω_2 of size \aleph_1. A small variation of the argument in [5] will show that whenever I is an ω_2-complete ideal then the forcing Q_I preserves \aleph_1 and if in addition CH holds then no new reals are added. We want to increase the ordinal δ^2_1, so we must add new reals, and so we must consider weaker closure properties of the collection I. The following definition is critical.

Definition 3.2. Suppose that J is an ideal on a set Y, X is a set, and I is a collection of subsets of X. We say that I is closed under J-integration if for every J-positive set $B \subset Y$ and every set $D \subset B \times X$ whose vertical sections are in I the set $\int_B D dJ = \{x \in X : \{y \in B : \langle y, x \rangle \notin D\} \in J\} \subset X$ is also in the collection I.

We will use this definition in the context of a precipitous ideal J on ω_1. In this case, the closure under J integration allows of an attractive reformulation:

Proposition 3.3. Suppose that J is a precipitous ideal on ω_1 and I is a collection of subsets of some set X closed under inclusion. Then I is closed under J-integration if and only if $P(\omega_1) \setminus J$ forces that writing $j : V \rightarrow M$ for the generic ultrapower, the closure of I under J integration is equivalent to the statement that for every set $A \subset X$ not in I, the set $j''A$ is not covered by any element of $j(I)$.

Proof. For the left-to-right implication, assume that I is closed under J integration. Suppose that some condition forces that $\hat{C} \in j(I)$ is a set; strengthening this condition of necessary we can find a set $B \in P(\omega_1) \setminus J$ and a function $f : B \rightarrow I$ such that $B \vdash \hat{C} = j(f)(\omega_1)$. Let $D \subset B \times X$ be defined by $\langle \alpha, x \rangle \in D \iff x \in f(\alpha)$ and observe that $\int_B D dJ \in I$. Thus, if $A \notin I$ is a set, it contains an element $x \notin \int_B D dJ$, then the set $B' = \{\alpha \in B : x \notin f(\alpha)\} \subset B$ is J-positive and as a $P(\omega_1) \setminus J$ condition it forces $j(x) \notin \hat{C}$ and $j(A) \subsetneq \hat{C}$. The opposite implication is similar.

The reader should note the similarity between the above definition and the Fubini properties of ideals on Polish spaces as defined in [8].
The basic property of the class of forcings we have just introduced is the following.

Proposition 3.4. Suppose that J is a precipitous ideal on ω_1, X is a set, and I is a collection of subsets of the set X closed under J integration. Then the forcing Q_I preserves \aleph_1.

Proof. Suppose that $T \models \dot{f} : \check{\omega} \rightarrow \check{\omega}_1$ is a function. A usual fusion argument provides for a tree $S \subset T$ in the poset Q_I such that for every node $t \in S$ on the n-th splitting level the condition $S \upharpoonright t$ decides the value of the ordinal $\dot{f}(\check{n})$ to be some definite ordinal $g(t) \in \omega_1$. Here, $S \upharpoonright t$ is the tree of all nodes of the tree S inclusion-compatible with t. To prove the theorem, it is necessary to find a tree $U \subset S$ and an ordinal $\alpha \in \omega_1$ such that the range $g''U$ is a subset of α.

For every ordinal $\alpha \in \omega_1$ consider a game G_α between Players I and II in which the two players alternate for infinitely many rounds indexed by $n \in \omega$, Player I playing nodes $t_n \in T$ on the n-th splitting level of the tree T and Player II answering with a set $A_n \in I$. Player I is required to play so that $t_0 \subset t_1 \subset \ldots$ and the first element on the sequence $t_{n+1} \setminus t_n$ is not in the set A_n. He wins if the ordinals $g(t_n), n \in \omega$ are all smaller than α.

It is clear that these games are closed for Player I and therefore determined. Note that if Player I has a winning strategy σ in the game G_α for some ordinal $\alpha \in \omega_1$, then the collection of all nodes which can arise as the answers of strategy σ to some play by Player II forms a tree U in Q_I and $g''U \subset \alpha$. Thus the following claim will complete the proof of the theorem.

Claim 3.5. There is an ordinal $\alpha \in \omega_1$ such that Player I has a winning strategy in the game G_α.

Assume for contradiction that Player II has a winning strategy σ_α for every ordinal $\alpha \in \omega_1$. Let $M \prec H_\kappa$ be a selfgeneric countable elementary submodel of some large structure containing the sequence of these strategies as well as X, I, J. We will find a legal counterplay against the strategy σ_β in which Player I uses only moves from the model M. It is clear that in such a counterplay, the ordinals $g(t_n), n \in \omega$ stay below β. Therefore Player I will win this play, and that will be the desired contradiction.

The construction of the counterplay proceeds by induction. Build nodes $t_n, n \in \omega$ of the tree S as well as subsets $B_n, n \in \omega$ of ω_1 so that

1. $B_0 \supset B_1 \supset \ldots$ are all J-positive sets in the model M such that $\beta \in B_n$ for every number n.

2. $t_0 \subset t_1 \subset \ldots \subset t_n$ are all in the model M and they form a legal finite counterplay against all strategies $\sigma_\alpha, \alpha \in B_n$, in particular, against the strategy σ_β.

Suppose that the node $t_n \in S \cap M$ and the set B_n have been found. Consider the set $D = \{(\alpha, x) : \alpha \in B_n, x \in \sigma_\alpha(t_n)\} \subset B \times X$. Its vertical sections are sets in the collection I, and by the assumptions so are the integrals $\int_C D \, dJ$.

5
for all \(J \)-positive sets \(C \subset B_n \). Since the node \(t_n \in S \) has more than \(I \) many immediate successors, it follows that the set \(A = \{ C \subset B_n : C \notin J \text{ and } \exists x \in X \forall \alpha \in C t_\alpha \in S \land x \notin \sigma_\alpha(t_\alpha) \} \) is dense in \(\mathcal{P}(\omega_1) \setminus J \) below the set \(B_n \). This set is also in the model \(M \) and by the selfgenericity there is a point \(x \in X \cap M \) such that \(t_\alpha \in S \) and the set \(S_{n+1} = \{ \alpha \in B_n : x \notin \sigma_\alpha(t_\alpha) \} \) is in the set \(A \cap M \) and contains the ordinal \(\beta \). The node \(t_{n+1} \supset t_n \) is then just any node at \(n + 1 \)-st splitting level extending \(t_\alpha \). Clearly, \(t_{n+1} \in M \) by the elementarity of the model \(M \). This concludes the inductive construction and the proof. \(\square \)

As the last remark in this section, the class of sets \(I \) closed under \(J \)-integration is itself closed on various operations, and this leads to simple operations on the partial orders of the form \(Q_\kappa \). We will use the following operation. If \(X_0, X_1 \) are disjoint sets and \(I_0 \subset \mathcal{P}(X_0) \) and \(I_1 \subset \mathcal{P}(X_1) \) are sets closed under subsets and \(J \)-integration, then also the set \(A \subset \mathcal{P}(X_0 \cup X_1) \) defined by \(A \in K \) if either \(A \cap X_0 \in I_0 \) or \(A \cap X_1 \in I_1 \) is closed under subsets and \(J \)-integration. It is easy to see that the forcing \(Q_\kappa \) adds an \(\omega \) sequence of elements of \(X_0 \cup X_1 \) which cofinally often visits both sets and its intersection with \(X_0 \) or \(X_1 \) is not a subset of any ground model set in \(I_0 \) or \(I_1 \) respectively.

4 Wrapping up

Fix a normal precipitous ideal \(J \) on \(\omega_1 \), a measurable cardinal \(\kappa \), and an ordinal \(\lambda < \kappa \). Theorem 1.1 is now proved through identification of several interesting collections of sets closed under \(J \)-integration. This does not refer to the precipitousness of the \(\sigma \)-ideal \(J \) anymore.

Definition 4.1. \(X_0 \) is the set of all functions from \(\omega_1^{<\omega} \) to \(\lambda \). \(I_0 \subset \mathcal{P}(X_0) \) is the closure of the set of its generators under subset and \(J \)-integration, where the generators of \(I_0 \) are the sets \(A_\alpha = \{ g \in X_0 : \alpha \notin \text{rng}(g) \} \). \(\alpha \in \lambda \).

The obvious intention behind the definition is that if \(\{ g_n : n \in \omega \} \subset X_0 \) is a set of functions which is not covered by any element of the set \(I_0 \) then \(\bigcup \text{rng}(g_n) = \lambda \). With the previous section in mind, we must prove that \(X_0 \notin I_0 \). Unraveling the definitions, it is clear that it is just necessary to prove that whenever \(n \) is a natural number, \(S \subset \omega_1^n \) is a \(J^n \)-positive set, and \(D \subset S \times X_0 \) is a set whose vertical sections are \(I_0 \)-generators, then the integral \(\int_S D \ dJ^n \) is not equal to \(X_0 \). Here \(J^n \) is the usual \(n \)-fold Fubini power of the ideal \(J \). Let \(g : \omega_1^n \to \lambda \) be a function such that for every \(n \)-tuple \(\bar{\beta} \in S \), the vertical section \(D_{\bar{\beta}} \) is just the generator \(A_{g(\bar{\beta})} \). Then clearly \(g \notin \bigcup_{\bar{\beta} \in S} D_{\bar{\beta}} \), in particular \(g \notin \int_S D \ dJ^n \) and \(\int_S D \ dJ^n \neq X_0 \).

Definition 4.2. \(X_1 \) is the set of all functions with domain \(\omega_1^{<\omega} \times \mathfrak{A} \) and range a subset of \(\omega_1 \times \mathcal{P}(\omega_1) \). Here \(\mathfrak{A} \) is the set of all maximal antichains in the forcing \(\mathcal{P}(\omega_1) \setminus J \). The set \(I_1 \) is the closure of the set of its generators under subset and \(J \)-integration, where the generators of \(I_1 \) are the sets of the form \(A_{\alpha, Z} = \{ f \in X_1 : \)
for every finite sequence $\vec{\beta} \in \alpha^{<\omega}$, $f(\vec{\beta}, Z)(0) \in \alpha$ and $f(\vec{\beta}, Z)(1)$ is not a set in Z containing α, where $\alpha \in \omega_1$ and $Z \in \mathfrak{A}$ are arbitrary.

The obvious intention behind this definition is that whenever $\{f_n : n \in \omega\}$ is a countable subset of X_1 which is not covered by any element of the set I_1 then every countable elementary submodel $M \prec H_\mu$ containing all these functions must be self-generic: whenever $Z \in M$ is a maximal antichain in $\mathcal{P}(\omega_1) \setminus J$, writing $\alpha = M \cap \omega_1$, there must be a number n such that $f_n \notin A_{\alpha, Z}$. Perusing the definition of the set $A_{\alpha, Z}$ and noting that M is closed under the function f_n, we conclude that it must be the case that for some finite sequence $\vec{\beta} \in \alpha^{<\omega}$ the value $f_n(\vec{\beta}, Z) \in M$ must be a set in Z containing the ordinal α. Since the maximal antichain Z was arbitrary, this shows that M is self-generic as required.

We must prove that $X_1 \notin I_1$. This is a rather elementary matter, nevertheless it is somewhat more complicated than the 0 subscript case. Unraveling the definitions, it is clear that it is just necessary to prove that whenever n is a natural number, $S \subset \omega_1^n$ is a J^n-positive set, and $D \subset S \times X_0$ is a set whose vertical sections are I_1-generators, then the integral $\int_S D \, dJ^n$ is not equal to X_1. Here J^n is the usual n-fold Fubini power of the ideal J. Fix then $n \in \omega$, a J^n-positive set $S \subset \omega_1^n$, and the set $D \subset S \times X_1$; we must find a function $f \in X_1$ and a J_n-positive set $U \subset S$ such that $\forall \vec{\beta} \in U \langle \vec{\beta}, f \rangle \notin D$. For every sequence $\vec{\beta} \in S$ choose a countable ordinal $\alpha(\vec{\beta})$ and a maximal antichain $Z(\vec{\beta}) \subset \mathcal{P}(\omega_1) \setminus J$ such that $D_{\vec{\beta}} = A_{\alpha(\vec{\beta}), Z(\vec{\beta})}$. Use standard normality arguments to find numbers $m, k \leq n$ and a J^n-positive set $T \subset S$ consisting of increasing sequences such that

- for a sequence $\vec{\beta} \in T$, the value of $\alpha(\vec{\beta})$ depends only on $\vec{\beta} \upharpoonright m$ and $\alpha(\vec{\beta}) \geq \vec{\beta}(m - 1)$
- the value of $Z(\vec{\beta})$ depends only on $\vec{\beta} \upharpoonright k$ and the partial map π with domain ω_1^k, defined by $Z(\vec{\beta}) = \pi(\vec{\beta} \upharpoonright k)$ whenever $\vec{\beta} \in T$, is countable-to-one.

There are now several cases.

- There is a J^n-positive set $U \subset T$ such that $\alpha(\vec{\beta}) > \vec{\beta}(m - 1)$. Here, consider the function $f \in X_1$ such that $f(\vec{\beta} \upharpoonright m, Z) = \alpha(\vec{\beta})$ for every sequence $\vec{\beta} \in U$ and every maximal antichain Z. Clearly, $f \notin \bigcup_{\vec{\beta} \in U} D_{\vec{\beta}}$ as required: for every sequence $\vec{\beta} \in U$, it is the case that $\alpha(\vec{\beta}) = f(\vec{\beta} \upharpoonright m, Z(\vec{\beta}))(0)$ and so the ordinal $\alpha(\vec{\beta})$ does not have the required closure property with respect to f.
- The first case fails and $k \geq m$. Here, define the map $f \in X_1$ by $f(0, Z)(0) = \sup\{\vec{\beta}(k - 1) : \vec{\beta} \in T \text{ and } Z = Z(\vec{\beta})\} + 1$ for every maximal antichain Z. The set $U = \{y \in T : \alpha(\vec{\beta}) = \vec{\beta}(m - 1)\}$ and the map f are as required: again, for every sequence $\beta \in U$ the ordinal $\alpha(\vec{\beta}) \leq \vec{\beta}(k - 1) < f(0, Z(\vec{\beta}))(0)$ does not have the required closure properties.
The first case fails and $k < m$. Define the function $f \in X_1$ in the following way. For every sequence $\vec{\gamma} \in \omega_1^{m-1}$, if the set $W_{\vec{\gamma}} = \{ \alpha \in \omega_1 : \exists \vec{\beta} \in T \vec{\gamma} \alpha \subset \vec{\beta} \text{ and } \alpha = \alpha(\vec{\beta}) \}$ is J-positive, let $f(\vec{\gamma}, \pi(\vec{\gamma} \upharpoonright k))$ to be some element of the maximal antichain $\pi(\vec{\gamma} \upharpoonright k)$ with J-positive intersection with $W_{\vec{\gamma}}$. The set $U = \{ \vec{\beta} \in T : \alpha(\vec{\beta}) = \vec{\beta}(m) \text{ and } \vec{\beta}(m) \in f(\vec{\beta} \upharpoonright (m-1), \pi(\vec{\beta} \upharpoonright k)) \}$ is then J^ω positive and $f \notin \bigcup_{\vec{\beta} \in U} D_{\vec{\beta}}$ as required: the ordinal $\alpha(\vec{\beta})$ belongs to the set $f(\vec{\beta} \upharpoonright k, Z(\vec{\beta})) \in Z(\vec{\beta})$.

Thus $X_1 \notin I_1$.

To conclude the proof of Theorem 1.1, just form a collection $K \subset P(X_0 \cup X_1)$ as in the end of the previous section and force with the poset Q_K. Since K is closed under J-integration, the forcing preserves \aleph_1. It also adds sets $\{ f_n : n \in \omega \} \subset X_1$ and $\{ g_n : n \in \omega \} \subset X_0$ with the required properties, showing that in the generic extension, $\delta_1^2 > \lambda$.

References

