Shutting Down the Bars: Options for Displaying and Comparing Data Distributions

John Bailer and Jim Oris
Dept. of Math. & Stat. (AJB) and Zoology (JTO)
(affiliate (AJB): Dept. of Zoology)
Ecolunch -- Jan. 30, 2007
Outline:

1. Graphical displays vs. numeric summaries
2. Default displays - tyranny of available software
3. Alternatives - hope provided by easily extended graphical tools
4. My own preferences
1. Summarizing data

“n” data values aren’t easily digested without some processing

Common numeric summaries - center (y-bar, median), spread (SD, SE)

Y-bar/SD sufficient summaries if the data are normal (describe response variability)

Y-bar/SE (describe uncertainty when estimating a population mean)
Why use graphs?

A good graphical display can capture the best of the numerical summary information plus shed light on other information (e.g. distribution shape, outliers, etc.)

Often default graphical displays don’t provide this (bar plots being the villain in this talk)
A short example - 2 groups (R you with me?)

#effectiveness of treatments for tapeworm
drug <- scan()
18 43 28 50 16 32 13 35 38 33 6 7
untrt <- scan()
40 54 26 63 21 37 39 23 48 58 28 39
groups <- rep(c("D","U"),
 c(length(drug), length(untrt))))
number.tapeworms <- c(drug, untrt)
Building an analysis dataset

tapewm.trt.df <- data.frame(Groups=groups, N.tapeworms=number.tapeworms)

tapewm.trt.df

<table>
<thead>
<tr>
<th>Groups</th>
<th>N.tapeworms</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>43</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>U</td>
<td>28</td>
</tr>
<tr>
<td>U</td>
<td>39</td>
</tr>
</tbody>
</table>
2. Default summaries -

```
attach(tapewm.trt.df)

by(N.tapeworms, Groups, function(x)
  c(n=length(x), ybar=mean(x),
    SD=sd(x), SE=sd(x)/sqrt(length(x))))

INDICES: D

<table>
<thead>
<tr>
<th>n</th>
<th>ybar</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>26.58</td>
<td>14.36</td>
<td>4.15</td>
</tr>
</tbody>
</table>

INDICES: U

<table>
<thead>
<tr>
<th>n</th>
<th>ybar</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>39.67</td>
<td>13.86</td>
<td>4.00</td>
</tr>
</tbody>
</table>
```
2. Default Graphical display for data of this type

* whiskers are 1 sd here
3. Alternative Graphical displays
Boxplots
Histograms

Histogram of drug

Histogram of untrt
Data plot with mean value noted
Quantiles of two distributions compared
A second example (larger data sets … more skew …)
Fold-change detectable difference

(points jittered horizontally)
4. Summary with my preferences stated …

<table>
<thead>
<tr>
<th>Graphical Display</th>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barplots</td>
<td>Familiar, journal acceptance</td>
<td>Doesn't display distribution shape; hides sample size info.</td>
</tr>
<tr>
<td>Boxplots</td>
<td>Familiar; appropriate for comparing a large # of groups; can be modified</td>
<td>Hides sample size info.</td>
</tr>
<tr>
<td>Histograms</td>
<td>Shows distribution; can superimpose density plots</td>
<td>Bin construction arbitrary; tough to display more than 3 groups</td>
</tr>
<tr>
<td>Data Plots</td>
<td>Shows all data and select summaries</td>
<td>Not always clear with lots of groups or obs. within groups</td>
</tr>
<tr>
<td>Quantiles</td>
<td>Compares the complete distribution</td>
<td>Limited to 2 group comparisons; little more work to process</td>
</tr>
</tbody>
</table>
Bonus section – Death of the legend
Replot with log-spacing on the y-axis
A non-legend alternative (thank you Ed Tufte)
No legend and a log DO scaling on the y-axis
Parting thoughts …

Harder work preparing figures ⇒ Easier work for the readers

Work to convey as much of the richness of your data in graphical displays (you deserve it … you collected the data!)
Appendix: R code

barplot
attach(ex6p3.df)
xtmp <- rep(c(1,2), c(12,12))
plot(N.tapeworms ~ xtmp, xlim=c(0.5, 2.5), xaxt="n",
type="n",
lab="", ylab="Number of Tapeworms")
axis(1, at=c(1,2), labels=c("Drug", "Untreated"))
segments(.75, 0, .75, mean(drug))
segments(.75, mean(drug), 1.25, mean(drug))
segments(1.25, mean(drug), 1.25, 0)
segments(1.75, 0, 1.75, mean(untrt))
segments(1.75, mean(untrt), 2.25, mean(untrt))
segments(2.25, mean(untrt), 2.25, 0)
segments(1,mean(drug), 1, mean(drug) + sd(drug)) # divide "sd" by sqrt(12) to get SE
segments(2,mean(untrt), 2, mean(untrt) + sd(untrt))

Boxplots
plot(N.tapeworms ~ factor(Groups),xlab="Group")

Histograms
par(mfrow=c(2,1))
hist(drug,density=T,xlim=c(0,70))
hist(untrt,density=T,xlim=c(0,70))
Plots with all data + mean

```r
xtmp <- rep(c(1,2), c(12,12))
plot(N.tapeworms ~ xtmp, xlim=c(0.5, 2.5), xaxt="n", type="n",
    xlab="", ylab="Number of Tapeworms",
    main="Tapeworm count plotted vs. treatment",
    sub="(Points jittered horizontally)")
points(jitter(xtmp), N.tapeworms)
axis(1, at=c(1,2), labels=c("Drug", "Untreated"))
segments(.75, mean(drug), 1.25, mean(drug), lwd=2)
segments(1.75, mean(untrt), 2.25, mean(untrt), lwd=2)
abline(v=1.5)
```

QUANTILES of the two data sets plotted

```r
qqplot(drug, untrt, xlim=c(0,70), ylim=c(0,70))
abline(a=0,b=1)
```

Code from the EROD and rtPCR

```r
xtmp <- rep(c(1,2), c(length(detinc.rtPCR),length(detinc.EROD)))
plot(detinc ~ xtmp, xlim=c(0.5, 2.5), xaxt="n",
    type="n", xlab="", ylab="",
    main="Fold-change detectable difference",
    sub="(Points jittered horizontally)")
points(jitter(xtmp), detinc)
axis(1, at=c(1,2), labels=c("rtPCR", "EROD"))
segments(.75, mean(detinc.rtPCR), 1.25, mean(detinc.rtPCR), lwd=2)
segments(1.75, mean(detinc.EROD), 2.25, mean(detinc.EROD), lwd=2)
abline(v=1.5)
```
histograms with density superimposed
along with changing plot margins
par(mfrow=c(2,1), mar=c(3,2.5,0,0))
hist(detinc.rtPCR,probability=T,
 breaks=seq(from=0,to=max(detinc)+.2,by=.2),
 xlim=range(c(detinc.rtPCR,detinc.EROD)),
 xlab="",xaxt="n",
 ylim=c(0,2.5),
 main="")
axis(1,at=1:7,paste(1:7))
text(4,1.5,"rtPCR")
lines(density(detinc.rtPCR))

hist(detinc.EROD,probability=T,
 breaks=seq(from=0,to=max(detinc)+.2,by=.2),
 xlim=range(c(detinc.rtPCR,detinc.EROD)),
 xlab="",xaxt="n",
 ylim=c(0,2.5),
 main="")
mtext("Fold-change detectable difference",side=1)
axis(1,at=c(1,2,6,7),c("1","2","6","7"))
text(4,1.5,"EROD")
lines(density(detinc.EROD))

#
legends or not
#

lake.lst <- scan(what=list(depth=0, DO=0, lakeid=""))
```r
lake.df <- as.data.frame(lake.lst)
attach(lake.df)

# original DO plot
plot(depth, DO, type="n", xlab="Depth (m)", ylab="Dissolved Oxygen")
lines(depth[lakeid=="T"], DO[lakeid=="T"],lty=1)
lines(depth[lakeid=="E"], DO[lakeid=="E"],lty=2)
legend(10,8,legend=c("Tahoe Keys", "Eagle Lake"), lty=1:2)

# log(DO) plot with legend
plot(depth, DO, type="n", xlab="Depth (m)", ylab="Dissolved Oxygen", log="y")
lines(depth[lakeid=="T"], DO[lakeid=="T"],lty=1)
lines(depth[lakeid=="E"], DO[lakeid=="E"],lty=2)
legend(10,8,legend=c("Tahoe Keys", "Eagle Lake"), lty=1:2)

# original DO plot WITHOUT legend
plot(depth, DO, type="n", xlab="Depth (m)", ylab="Dissolved Oxygen")
lines(depth[lakeid=="T"], DO[lakeid=="T"],lty=1)
lines(depth[lakeid=="E"], DO[lakeid=="E"],lty=2)
text(5,2,"Tahoe Keys", adj= 0)
text(10,5,"Eagle Lake",adj= 0)
arrows(13,4.6,9.9,3.67, length=.1)
arrows(6.4, 2.4, 2.7, 3.9, length=.1)

# log DO plot WITHOUT legend
plot(depth, DO, type="n", xlab="Depth (m)", ylab="Dissolved Oxygen", log="y")
```

```
lines(depth[lakeid=="T"], DO[lakeid=="T"], lty=1)
lines(depth[lakeid=="E"], DO[lakeid=="E"], lty=2)
text(5,2,"Tahoe Keys", adj= 0)
text(10,5,"Eagle Lake", adj= 0)
# arrows(13,4.6,9.9,3.67, length=.1)
# arrows(6.4, 2.4, 2.7, 3.9, length=.1)