NOTES ON TODORCEVIC’S ERICE LECTURES ON FORCING
WITH A COHERENT SUSLIN TREE

PAUL B. LARSON

1. Part I

1.1. The P-ideal dichotomy. The P-ideal dichotomy is the statement that whenever \(I \) is a P-ideal on a set \(X \), either \(X \) is a countable union of sets orthogonal to \(I \) (i.e., intersecting no member of \(I \) infinitely), or there is an uncountable subset of \(X \) whose countable subsets are all in \(I \). The statement is not weakened when we assume that \(I \) consists of countable sets, which we do here.

First we review a proper forcing which forces an instance of the P-ideal dichotomy. Let \(X \) and \(I \) be as above, and assume that \(X \) is not a countable union of sets orthogonal to \(I \). Fix \(a = (\kappa, H(\kappa))^{+} \). For each countable elementary submodel \(M \) of \(H(\kappa) \) with \(X \) and \(I \) in \(M \), fix an element \(a_M \) of \(I \) which contains mod finite all members of \(M \cap I \). Let \(P \) be the partial order whose conditions \(p \) are pairs \((M_p, Y_p)\), where \(M_p \) is a finite \(\in \)-chain of countable elementary submodels of \(H(\kappa) \) with \(X \) and \(I \) as members, and \(Y_p \) is a finite \(M_p \)-separated (i.e., for any two members of \(Y_p \) there is an element of \(M_p \) that has one as an element and not the other) subset of \(X \) such that for each \(y \in Y_p \) and each \(M \in M_p \), if \(y \in M \) then \(y \in a_M \), and if \(y \notin M \) then \(y \) is not in any set in \(M \) orthogonal to \(I \). The order is inclusion on both coordinates.

Now suppose that \(p \) is a condition, and \(N \) is a countable elementary submodel of \(H((2^{(P)})^{+}) \) with \(P \) and \(p \) as elements. Let \(p' \) be the condition \((M_p \cup \{N\cap H(\kappa)\}, Y_p)\). We want to see that \(p' \) is \((P, N)\)-generic. So let \(D \) be a dense subset of \(P \) in \(N \) and let \(r \) be a condition below \(p' \). We may assume that \(r \in D \). Let \(M_0 \) be the largest model in \(M_r \cap N \).

Arguing in \(N \) and identifying finite subsets of \(X \) with their increasing enumeration in terms of some wellordering of \(X \) in all models of \(M_r \), let \(T \) be the tree of finite increasing sequences \(t \) from \(X \) such that

- all members of \(t \) are greater than all members of \(Y_r \cap N \),
- no member of \(t \) is in any set in \(M_0 \) orthogonal to \(I \),
- there is an extension \(Z \) of \((Y_r \cap N) \cup t \) of length \(|Y_r|\) for which there is some condition \(q \in D \) with \(Y_q = Z \).

Note that \(Y_r \setminus N \) is in \(T \). Now thin \(T \) (iteratively removing as few nodes as possible) to a tree \(T' \) such that for each node \(t \) of \(T' \) of length less than \(|Y_r \setminus N|\) (including the emptyset), the set of \(x \in X \) such that \(t \setminus \langle x \rangle \in T' \) is not orthogonal to \(I \). This thinning takes \(|Y_r \setminus N| \) many rounds starting, one for each non-terminal level of the tree, proceeding from the top down. Note that \(Y_r \setminus N \) is still in \(T' \), since for

Date: December 14, 2012.

The author is supported in part by NSF grant DMS-0401603. Most of the details of this note were worked out in discussion with István Juhasz, Justin Moore and Stevo Todorcevic, at the Mittag-Leffler Institute, in the fall of 2009.

1
each proper initial segment t of $Y \setminus N$, t is in some elementary submodel M of $H(\kappa)$, and the next element of Y above the maximum of t is not in any set in M orthogonal to I.

Now we can choose a cofinal branch through T' consisting of elements of N, with the property that the elements of the branch are all in a_M for all $M \in M_p \setminus N$. To see this, note that at each point of our construction the set of possible extensions in T' must contain an infinite element of I, and all but finitely many of the members of I will be in $\bigcap_{M \in M_p \setminus N} a_M$.

This completes the proof.

1.2. \textbf{PFA(S) and the P-ideal dichotomy.} Now suppose that S is a coherent Suslin tree, λ is a cardinal and I is an S-name for a P-ideal on λ such that λ is not a countable union of sets orthogonal to I. Again, let κ be $(\lambda^{<\lambda})^+$. For each countable elementary submodel M of $H(\kappa)$ with S and I as members, we choose a name \dot{a}_M for a countable subset of λ such that the members of $S_{\omega_1 \cap M}$ (where S_α denotes the αth level of S) decide \dot{a}_M, and the realization of \dot{a}_M is forced to

- contain mod finite all members of the realization of \dot{I}_M.
- be contained mod finite in some member of I containing mod finite all members of the realization of \dot{I}_M.

where \dot{I}_M is the name for the realization of all the names in M for members of I. We can find such a name by filling an appropriate (ω, ω)-gap corresponding to each member of $S_{\omega_1 \cap M}$. Since we assume that \dot{I} is a name for an ideal containing all finite subsets of λ, \dot{a}_M is in fact a name for a member of the realization of \dot{I}.

For each such M, let ξ_M be the canonical (nice) name for the least element of λ not in any subset of λ orthogonal to \dot{I} realized by a name in M.

We now define the forcing P. A condition in p is a function whose domain is a finite \in-chain M_p of countable elementary submodels of $H(\kappa)$ with S and I as members, and range contained in S, such that for each $M \in M_p$, $p(M)$ is not in M but is in all members of $M_p \setminus M$, and that $p(M)$ decides the value of ξ_M (note that $p(M)$ will also decide the value of \dot{a}_M, though this is less important). The function p must have the further property that if M, N are in M_p and $p(N) < p(M)$, then $p(M)$ forces that $\xi_N \in \dot{a}_M$.

Now suppose that p_0 is a condition in P, and N is a countable elementary submodel of $H((2^{<\lambda})^+) \cap P$ with p_0 as members. Let p_1 be the condition $p_0 \cup \{ (N \cap H(\kappa), t') \}$, where t' is any element of $S \setminus N$. Now let s_0 be any element of $S_N \cap \omega_1 \setminus M$. We need to see that (p_1, s_0) is $(P \times S, N)$-generic.

Let (r, s_1) be an element of $P \times S$ below (p_1, s_0). We may assume that $(r, s_1) \in D$, and that the height of s_1 is greater than the height of any member of the range of r. Fix $\gamma_0 \in \omega_1 \cap N$ such that no member of the range of r disagrees with s_0 at any point in the interval $[\gamma_0, \omega_1 \cap N)$. Enumerate the models of the domain of r (as ordered by the \in-relation) as $(Q_i : i < |r|)$.

For any condition $p \in P$, let Ξ_p be the function with the same domain as p where $\Xi_p(Q)$ is the value of ξ_Q as decided by $p(Q)$.

For each $t \in T$, let T_t be the tree of consisting of all initial segments of increasing sequences ϵ from X which are the ranges of $\Xi^p_{(r \cap N)}$, for some $p \in P$ end-extending $(r \cap N)$ such that $(p, t) \in D$, $|p| = |r|$ and
for each $i < |r|$, if M is the ith element of the domain of p, then $p(M)$ agrees with $r(Q_i)$ up to γ_0, and $p(M)$ agrees with t after γ_0 if and only if $r(Q_i)$ agrees with s_1 after γ_0.

Let a be the set of $i < |r|$ such that $r(Q_i)$ does not disagree with s_1 on ordinals greater than or equal to γ_0.

Since D is closed under strengthening the right coordinate, $T_i \subseteq T_i'$ whenever $t \geq S t'$.

For each $t \in S$, thin T_i to a tree T_i' (iteratively removing as few nodes as possible, level by level) such that for each $\sigma \in T_i$ (including the empty sequence),

- if $|r \cap N| + |\sigma| + 1 \in a$,
- B_{σ} is the set of immediate successors of σ in T_i',
then B is forced by the union of t beyond γ_0 with $r(Q_{|r \cap N| + |\sigma| + 1})|_{\gamma_0}$ to have infinite intersection with some countable set C forced by this condition to be in \check{I} (which since this union is M-generic is the same as saying that the union does not force B to be orthogonal to \check{I}).

Claim. The range of $\Xi_{\check{r} \setminus N}$ is in T_s.

Proof: For each $t \in S$, let $T_i^0 = T_i$. For each ordinal $j < |r \setminus N|$ and each $t \in S$, T_i^{j+1} is formed from T_i^j by thinning removing those sequences from T_i^j of length $|r \setminus N| - j - 1$ whose set of immediate successors is not sufficiently large. It suffices then to fix $j < |r \setminus N|$, to suppose that the range of $\Xi_{\check{r} \setminus N}$ is in T_i^j and show that it is in T_i^{j+1}. To do this, let $i = |r \setminus N| - j - 1$, and let σ_i be the first i member of the range of $\Xi_{\check{r} \setminus N}$.

Let U be the set of $t \in S$ such that $\sigma_i \in T_i^j$. Then $U \in Q_{i+1}$.

For each $t \in U$, let $B_{\sigma_i}^j$ be the set of immediate successors of σ_i in T_i^j.

If there exist $t \geq S t'$ in $S \cap Q_{i+1}$ below s_1 such that t' forces $B_{\sigma_i}^j$ not to be orthogonal to I, then we are done. Otherwise, there is a name in Q_{i+1} for the union of the sets $B_{\sigma_i}^j$ along the generic branch, and this set must be forced by some initial segment of s_1 in Q_{i+1} to be orthogonal as it is an increasing union of uncountably many orthogonal sets. But s_1 forces that $\Xi_{\check{r}(Q_{i+1})}$ is not in this set, and $\Xi_{\check{r}(Q_{i+1})} \in B_{\sigma_i}^n$, giving a contradiction. This concludes the proof of the claim.

Then T_s has height $|r|$, so the set of $s \in S$ extending $s_1|_{\gamma_0}$ for which T_s has height $|r|$ contains s_1, so we can find such a s_2 in N which is an initial segment of s_1. Then we can find a condition of size $|r|$ in $N \cap T_{s_2}$ such that the corresponding ξ’s are in the required realizations of the names a_M, minus their finite errors. We do this by finding in N a branch p_2 (i.e., p_2 is the set of left-coordinates of the branch) through T_{s_2} with the property that for each $M \in M_{p_2}$ and each $Q \in M_r \setminus N$, if $p_2(M) < r(Q)$, then ξ_M as decided by $p_2(M)$ is in the set \check{a}_Q as decided by $r(Q)$. Note that as we do this, if $i < |r|$ and $r(Q_i)$ disagrees with s_1 above γ_0, then the same will be true for the ith level of p_2, so the hypotheses of the above implication will not be satisfied. In the other case, the set of values ξ_M for potential models M at the ith level (according to T_{s_2}) is forced by the union of s_2 beyond γ_0 with $r(Q_i)|_{\gamma_0}$ to have infinite intersection with some countable set C forced by this condition to be in \check{I}. Then for each $Q \in r \setminus N$ such that $r(Q)$ agrees with $r(Q_i)$ up to γ_0, \check{a}_N (as decided by $s_1[\gamma_0, N \cap \omega_1] \cup r(Q_i)|_{\gamma_0}$ contains all but finitely much
of C, so there is some member of $C \cap B$ which is in all of these sets. Choose the ith model M of P_2 so that the realization of ξ_M is such a member. This completes the proof that (p_1, s_0) is $(P \times S, N)$-generic.

Finally, let us suppose that $\langle M_\alpha : \alpha < \omega_1 \rangle$ is a generic sequence for P, with a corresponding function p whose domain is this sequence and whose range is contained in S. The set of conditions $p(M_\alpha)$ is somewhere dense in S, and any branch through S below this condition will force that the realizations of the names ξ_{M_α} for which $p(M_\alpha)$ is in the generic branch will be an uncountable set whose countable subsets are all in the realization of I. Since we could carry out this entire argument below any node of S, a dense set of nodes in S force the existence of such an uncountable set and this completes the proof that under PFA(S) the P-ideal dichotomy holds after forcing with S.

Department of Mathematics, Miami University, Oxford, Ohio 45056, USA
E-mail address: larsonpb@muohio.edu
URL: http://www.users.muohio.edu/larsonpb/