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Abstract

Avian Influenza Viruses (AIV), specifically H5N1, are highly
adaptive and mutate continuously throughout their life-cycle.
The accumulation of constant mutations causes antigenic
drift, leading to the spread of epidemics which result in bil-
lions of dollars in socioeconomic losses each year. Conse-
quently, the containment of AIV epidemics is of vital impor-
tance. Computational approaches to the study of epidemi-
ology, such as phylodynamic simulations, enhance in vivo
analysis by examining the impact of ecological parameters
and evolutionary traits, as well as forecasting the rise of fu-
ture variants. We propose an improvement on existing phy-
lodynamic simulation models through the introduction of: ¶
actual Hemagglutinin (HA) protein sequences, · simulating
mutations, ¸ and implementing an amino-acid level antigenic
analysis algorithm to model natural selection pressure. In
contrast to prior approaches that use abstract antigenic mod-
els, our method uses and yields actual HA strains enabling
robust validation and direct application of results to inform
vaccine design. We assess the validity of our method against
the current World Health Organization (WHO) H5N1 nomen-
clature phylogram for 3 countries. Our calibration and val-
idation experiments use > 10,000 simulations with 1,000s
of different parameter settings requiring over 2,500 hours of
computing time. Our results show that our calibrated mod-
els yield the expected evolutionary characteristics but with a
compromise of ~10× longer simulation times.

Introduction
Avian Influenza Viruses (AIVs), specifically H5N1
serotype, cause billions of dollars of socio-economic losses
every year. Endemic in multiple species of waterfowl,
H5N1 transmits both directly between hosts as well as
indirectly via environmental contamination. Influenza
strains that fall under the subtype H5N1 are able to spread
to poultry, in turn causing widespread devastation. One of
the more prominent examples of its impact was between
the years of 2014-2015 where over 45 million chickens and
turkeys were culled in order to stop the spread of a major
epidemic (Giridharan and Rao, 2016).

AIV epidemics are perpetuated by continuous change to
the nucleotide structure of the protein haemagglutinin (HA)
which defines the receptor shape on the surface of influenza

viruses. Small changes to the protein structure are intro-
duced over time, accumulating into larger changes that dras-
tically morph the shape of the receptors on AIVs. The ac-
cumulation of mutations in phylogenetic code is called anti-
genic drift, and is the primary source of epidemics.

Challenges with current in vivo methods
There are a variety of approaches used in the containment of
AIVs such as livestock isolation, vaccination of at-risk pop-
ulations, and culling of infected hosts. Vaccinations are the
primary method used to prevent epidemics, allowing recip-
ients to gain immunity against the most common influenza
strains in their region (WHO, 2012). Vaccine design in re-
spect to in vivo analysis involves the collection of viral data
from infected hosts, tracking host migration patterns, and
sequencing collected viral data in order to make informed
decisions on the prevalence of different AIV strains. This
process can be lengthy in regards to the evolutionary time
line of AIV epidemics, requiring 10 to 18 months to final-
ize analysis. The demand for new strain selection dictates
vaccine candidates to be identified every 6 to 8 months. An-
other drawback to this methodology is that the analysis is
reactionary and does not allow analysts to predict future epi-
demics. Limitations also arise due to the spatial and tempo-
ral locality of surveillance and sampling. Hence, in vivo
analysis is ineffective alone when it comes to informing
H5N1 containment efforts.

In silico approaches & shortcomings
Computational analysis methods enhance in vivo efforts by
providing a platform for predictive modeling with results
delivered in the span of days or weeks. Of particular in-
terest are phylodynamic simulations (discussed in detail in
Section Background and related works) which enable explo-
ration of the effects of selection pressure, ecological parame-
ters, and regional factors on the spread of viruses to forecast
future epidemics. Future forecasts are of particular impor-
tance as they can be used to inform time lines for design of
new vaccines and validate containment measures (Bedford
et al., 2012; Giridharan and Rao, 2016; Volz et al., 2013).
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Figure 1: Overview of the current state-of-the-art antigenic
modeling approach

The evolutionary and antigenic models used in phylody-
namic simulations play a critical role in enabling effective
modeling and analysis. Current state-of-the-art phylody-
namic simulations merely use an abstract 2-dimensional or
multidimensional space to represent evolutionary changes as
summarized in Figure 1. Mutations in viral strains are mod-
eled by changing their associated coordinate values. The eu-
clidean distances are then used to approximate phylogenetic
differences and their ensuing antigenic differences.

Shortcomings of state-of-the-art: The contemporary ge-
netic and antigenic modeling approaches shown in Figure 1
have several shortcomings, including:

1. They do not model the actual viral strains. Consequently,
mutations are grossly approximated.

2. Due to abstract nature, the mutation rates in the simulation
do not directly reflect mutation rates observed in nature,
such as those reported by Dang et al. (2010).

3. The antigenic characteristics are also approximated. Con-
sequently, all mutations are deemed equally significant, a
stark contrast to actual antigenic behaviors that primarily
arise from mutations to epitope regions.

4. Since the phylodynamic simulations cannot output actual
viral strains, forecasting to inform vaccine design is not
straightforward.

The aforementioned shortcomings significantly limit the
applicability of current phylodynamic methods.

Proposed enhancements: Our contributions
In this study we propose and assess an alternative antigenic
model. It addresses the aforementioned shortcomings of the
Euclidean model (shown in Figure 1) via the following three
improvements, namely:

1. We propose to use actual HA sequence(s) instead of the
abstract Euclidean model, starting with the root HA se-
quence (A/turkey/England/5092/1991) correspond-
ing to the root of the WHO H5N1 nomenclature (WHO,
2012).

2. We simulate realistic mutations based on observed mu-
tation rates in nature as reported by Dang et al. (2010).
However, the mutation rates are further calibrated to char-
acterize phylogenetic diversity in a given region.

3. Antigenic diversity is measured using an amino-acid
level comparison algorithm, called P-Epitope proposed by
Gupta et al. (2006).

This paper presents a detailed overview of our proposed
enhancements in Methods section. Experiments & Vali-
dation section presents results from experiments conducted
to calibrate and verify our model enhancements. In addi-
tion, results from sensitivity analysis are also discussed to
identify influential parameters in the model. Conclusions
presents concluding remarks along with a summary of our
envisioned future work.

Background and related works
Phylodynamic models are used to characterize the epidemi-
ological and evolutionary characteristics of viruses (Volz
et al., 2013). Computational phylodynamic simulations typ-
ically use agent-based models in conjunction with discrete
time simulation. Simulations enable analysis of the inter-
play between ecological processes and viral phylogenies.
Figure 2 represents an abstract view of the ecological pro-
cess that our phylodynamic simulations recreate. Waterfowl
hosts are seeded with an initial viral strain and the virus
then begins to mutate. For up to 8 days the virus will be
shed from infected individuals, with the potential to infect
not only other waterfowl but also the environment the host
has contact with (Wibawa et al., 2014). Water sources are
particularly vulnerable and can harbor infections for up to
20 days (Roche et al., 2014). Host immunity prevents hosts
from acquiring a new infection if the virus strain is antigeni-
cally similar to a recent previous infection. The mutations
that occur within individual hosts accumulate over time,
causing antigenic drift. Antigenic drift causes new viral
strains to diverge from their ancestral lineage, enabling them
to escape host immunity and cause new infections. Figure 2
summarizes this process and exemplifies how new virus lin-
eages diverge into new clades, or groupings, of viruses.
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Figure 2: Ecological model of the influenza life cycle

The current leading practices for phylodynamic model-
ing were introduced by Gog and Grenfell, who utilize the
classical model for epidemiological studies (Gog and Gren-
fell, 2002). This model is based on classic compartmental
epidemic models, such as: susceptible (S), exposed (E), in-
fective (I), and recovered (R). However, for avian influenza
which is endemic in waterfowl, we use a S-I-S model. Hosts



that are susceptible have not been in contact with a specific
viral strain but can potentially be infected. A viral strain
can infect a host only if an antigenically similar strain is not
present in the immune history of a host. A host remains in
the infective category until the infection has run its course.
While in the infective compartment, the host can spread the
virus to susceptible hosts that it comes into contact with. In
addition, an infective host also contaminates its environment
by shedding the virus. After the host acquires immunity
against a viral strain they transition back to the susceptible
state and the cycle repeats.

PhySim: A phylodynamic simulator
PhySim is the computational implementation of the ecology
of avian influenza shown in Figure 2. PhySim is an adap-
tation of a general simulation tool named Antigen (Bedford
et al., 2012). As discussed by Giridharan et al. (Giridha-
ran and Rao, 2016), PhySim’s enhancements include: ¬ en-
abling simulation of avian influenza strains,  simulation of
multiple species with different birth and death rates; ® births
occurring only during specific brooding seasons rather than
throughout the year; ¯ genetic and antigenic properties of
viruses are independently modeled; ° antigenic distances
between simulated HA strains are estimated using the cross-
immunity approach proposed by Gog et al.; ± phylogenetic
trees are constructed based on genetic differences rather than
difference in emergence times; and ² infection rates and in-
fective periods account for seasonal variations in the coun-
tries.

Written in Java, PhySim uses Gillespie’s Stochastic Sim-
ulation Algorithm (SSA) with Tau-Leap optimization. In or-
der to simulate epidemic progression with sufficient accu-
racy, PhySim uses a time step of 0.1. PhySim uses an an
Individual-Based Model (IBM) for modeling epidemic pro-
gression. PhySim only moves hosts between the susceptible
and infective compartments to form an S-I-S model where
the exposure of infections is simulated by probability at the
point of contact and hosts move directly to infective, once
the infection dies off in the host they are returned to the sus-
ceptible compartment. An S-I-S model is used due to the
endemic nature of H5N1 in waterfowl, the Exposed com-
partment is modeled as a transition from S to I as infections
immediately take hold in the host. Hosts become immedi-
ately susceptible to new infections after recovery as the R
compartment becomes the transition from I back to S. Fig-
ure 3 represents a broadened view of how the S-I-S and eco-
logical models for our simulation interact.

We are able to analyze the impact of a variety of param-
eters summarized in Table 1. Hosts represent a group of
waterfowl from a specific species, where multiple species
can be present in each simulation. We can target specific
countries and model the spread and mutation of an influenza
virus for that country by setting parameter values specific
for the waterfowl found in the region. Nigeria and Turkey
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Figure 3: Ecological and SIS Modeled with example param-
eters from PhySim

were identified as high risk countries using a combination of
Phylodynamic and Phylogeographic analysis and will be the
focus of our attention (Giridharan and Rao, 2016). A point
of interest in our model is that we take seasonal temperature
fluctuation into consideration when determining transmis-
sion of potential infections. By using a sinusoidal curve as
a modulation factor we can increase the chance of infection
in colder seasons and decrease the chance of transmission
during warmer months.

µb Species specific daily birth rate during brooding season
µd Species specific daily death rate derived from lifespan
β Contact rate (direct) between hosts for a region
Ω Sinusoidal seasonal modulation factor
ψ Average daily phenotypic mutation rate
ν Inverse of infectuous period

Table 1: A sample of PhySim ecological parameters for a
multi-species simulation model

The models for phylodynamic simulations can be vali-
dated by setting ecological parameters such as those in table
1 to produce phylograms that mirror those constructed from
in vivo analysis. By examining the parameters that produce
the best matching phylograms we are able to deduce what
factors play the most impact on the spread of AIVs and can
succinctly inform vaccine design. Simulations are run with
a burn-in period of 15 years to simulate the time leading
up to current day, by stepping past the burn-in period sim-
ulations are able to then effectively predict what the evolu-
tionary landscape will look like in the future. Parameters
such as contact rate can be abstractly represented as live-
stock isolation, and features such as average mutation rate
can be mapped to vaccination efforts.

Comparisons with recent related works
Current phylodynamic simulations (Bedford et al., 2012;
Giridharan and Rao, 2016) model AIV strains as abstract
2D-vectors representing evolutionary data. Euclidean dis-
tance between two vectors represents phylogenetic distance
between two viral strains, we will call this the geometric



approach (Gog and Grenfell, 2002). Antigenic similarity is
merely approximated using Euclidean distances as summa-
rized in Figure 1.

Our research proposes to improve upon the current mod-
eling standards used in phylodynamic simulations by re-
lying on a new measure of antigenic distance called P-
Epitope (Gupta et al., 2006). P-Epitope has been shown to
have a higher correlation to vaccine efficacy when compared
to other measures of antigenic distance such as P-Sequence
which is the current measure used by the WHO (Gupta et al.,
2006).

In order to utilize P-Epitope as a measure of antigenic dis-
tance our representation of AIV strains in PhySim has been
enhanced. We propose to implement amino acid sequencing
and use an amino acid substitution model to represent com-
peting viral strains and adjust our mutation model to reflect
the current 2D-vector approach. Our work is distinguish-
able from recent state-of-the-art in a variety of ways. Instead
of distancing ourselves from biological functions we instead
embrace the computational complexity of working with pro-
tein sequence data in order to derive a simulation model that
better reflects vaccine efficacy and natural mutation. The
amino acid substitution model we chose to implement in our
approach has been shown to be a top performer in regards
to predicting future phylograms using machine learning ap-
proaches (Dang et al., 2010). This work is similar to ours
in that we are also striving to predict future phylograms, but
our work distinguishes itself from the machine learning ap-
proaches explore by (Dang et al., 2010) in that we are pro-
ducing HA protein sequences in a more organic way through
selection pressure, environmental influence, and relying on
strain comparisons using a method that is more closely re-
lated to vaccine efficacy.

Methods

PhySim is progressed on a daily basis, and actions are con-
trolled used a time step value (e.g. delta=0.1 means a day
is divided into 10 time steps). The daily rate of contact and
mutation are defined through input parameters. Simulation
runs are conducted to match with WHO H5N1 nomenclature
– i.e., starting with 1991, with 15 years of burn-in time to
produce strains for 2006–2010 for constructing phylograms.

Hosts are introduced and removed from both the sus-
ceptible and infective compartments at the same rate on
a daily basis in order to maintain a stable population for
each waterfowl species. The birth and death rates account
for abundance and lifespans of different high-risk water-
fowl species (that are endemic to a given region), includ-
ing – A.Acuta (Northern Pintail), A.Crecca (Common Teal),
A.Fuligula (Tufted Duck), A.Penelope (Eurasian Wigeon),
L.Canus (Common Gull), L.Limosa (Black-tailed Godwit),
P.Pugnax (Ruff), and V.Vanellus (Northern Lapwing).

Antigenic model enhancements
PhySim was originally adapted to simulate changes in the
nucleotide structure of H5N1 HA protein sequences. One of
the major assumptions of this model is that changes in pro-
tein sequences are uniform and random, this is known to not
be the case under in vivo analysis and is a limitation to the
original geometric model. FLUModel, an amino acid substi-
tution matrix derived from a database of currently spreading
H5N1 strains, is our solution to this limitation (Dang et al.,
2010). Given a parameter value for t a substituion matrix
can be calculated from an instantaneous rate of change ma-
trix and steady state vector for amino acids in HA proteins.
FLUModel was derived from the same set of H5N1 protein
sequences that we are looking to recreate.

(a) Rate Matrix (b) Substitution Matrix

Figure 4: Using matrix exponentiation figure (a) is trans-
formed into figure (b), this example is done using a large
value for t to show the differences in substitution rates

Figure 4 illustrates the transformation from a rate of
change matrix to a substitution matrix. Given the rate of
change matrix q and a steady state matrix π we can get the
ensuing substitution matrix P(t) using the following calcula-
tions:

qxy = πrxy, qxx = −Σx6=yqxy
P (t) = etQ

A value of t = 1.0 represents the substitution rates for all
amino acids over the course of an entire branch. The sub-
stitution rates have been shown to be exceptionally accurate
for small values of t.

Algorithm’s 1 and 2 exemplify how the two methods of
mutation differentiate between the geometric and P-Epitope
simulation models. Algorithm 1 is the current geometric
substitution model, a percentage of the infective population
has their associated infection mutated approximately once
per day based on the time step delta value. The mutation
rate ψ was computed from in vivo sequence analysis, the di-
rection of the mutations are controlled using sin and cosine
waves (Cattoli et al., 2011).

Algorithm 2 is our proposed substitution model. Its as-
sumed that amino acid substitutions are independent and
generally time reversible. That is to say in one example mu-



tation there could be multiple amino acid substitutions that
occur, and their substitution rates are mutually exclusive.

Algorithm 1 2dMutate(delta)
1: I = Σspecies.I, for all species in model
2: I ′ = poisson(I ∗ delta)
3: while I ′ > 0 do
4: i = getInfected(uniform(I))
5: v = i.getV irus()
6: θ = uniform(2π)
7: v.traitX = v.traitX + ψ ∗ cos(θ)
8: v.traitY = v.traitY + ψ ∗ sin(θ)
9: I ′ = I ′ − 1

10: end while

Algorithm 2 subMatrixMutate(delta)
1: I = Σspecies.I, for all species in model
2: I ′ = poisson(I ∗ delta)
3: while I ′ > 0 do
4: i = getInfected(uniform(I))
5: v = i.getV irus()
6: for aminoAcid ε v.HASequence do
7: substitute(aminoAcid, uniform(1))
8: end for
9: end while

This mutation model allows us to represent actual changes
in protein structure over the course of the simulation. More
importantly it enables the use of P-Epitope to measure anti-
genic distance between competing viral strains.

Algorithm 3 canInfect(virus v, susceptibleHost s)
1: minRisk = 1− homologousImmunity
2: maxRisk = homologousImmunity
3: risk = 0.0
4: for viεs.immuneHistory do
5: distance(v, vi)
6: if distance < risk then
7: risk = distance
8: end if
9: end for

10: risk = min(maxRisk, risk)
11: infectF lag = uniform(1) < risk
12: return infectF lag

The method of determining if an infection occurs in a host
is described in Algorithm 3. After contact has been estab-
lished the distance between the virus and every virus in the
hosts immune history is calculated. If a uniform random
number generated at the time of contact is less than the risk
associated with the immune history then the host is infected.

It is here that we propose to use P-Epitope to determine
the risk factor of a potential infection. As shown in the re-
search conducted by Gupta et al. there are various examples
of past vaccination regimes failing due to strain selection re-
lying on P-Sequence (Gupta et al., 2006). Had P-Epitope
been used to compare strains for vaccine selection a more

successful vaccination regime could have been promoted in
many of the examples cited. Gupta et al. showed that there is
a higher correlation between P-Epitope and vaccine efficacy
than other measures of antigenic distance when examining
past vaccination regimes.

Algorithm 4 pEpitope(virus v1, virus v2)

1: pEpitope = 0
2: for epitope ε epitopeRegions do
3: localDifference = 0
4: for residue ε epitope do
5: if v1[residue] 6= v2[residue] then
6: localDifference = localDifference+ 1
7: end if
8: end for
9: difference = localDifference/epitope.size

10: if difference > pEpitope then
11: pEpitope = difference
12: end if
13: end for
14: return pEpitope ∗ pEpConv

P-Epitope is described in detail in Algorithm 4. The epi-
tope regions to be compared can be fed into PhySim as a
parameter, there are five major epitope regions in HA pro-
tein sequences A, B, C, D, & E where a recent survey iden-
tified which residues can be attributed to respective epitopes
(Peng et al., 2014). A scalar value is attached to P-Epitope
to obtain a parabolic risk function. The advantage of cal-
culating antigenic distance using P-Epitope is that we are
able to identify antigenic similarity between virus strains
that other measures of antigenic distance would overlook.
Figure 5 illustrates the area of overlap that other measures,
such as P-Sequence, are unable to detect. As seen in the
Figure there is significant overlap between the frequency
distributions when using P-Epitope to compare strains from
the same clade and strains from different clades which were
grouped using P-Sequence. These are similarities that mea-
sures such as P-Sequence can not detect.

Figure 5: A sample of 100 H5N1 HA protein sequences
from 10 different clades were compared using P-Epitope,
frequency of P-Epitope values for inter and intra -clade dis-
tances is plotted



Experiments & Validation
We calibrated the model with respect to the following sim-
ulation outputs: ¬ Infective and susceptible populations for
each time step,  Number of clades in resulting phylogram,
® antigenic diversity. The outputs of the simulation using
the new model were compared against the previously cali-
brated geometric model.

(a) Calibration Heat Map (b) Infected Population Compar-
isons

Figure 6: A window of the calibration efforts for PhySim
with the antigenic model implemented

The starting point of the calibration effort consisted of es-
timating the average mutation rate for the new model based
on the average nucleotide mutation rate used in the geo-
metric model. The expected amino acid substitution rates
were approximated to within 1% of the nucleotide substitu-
tion rates. This was done by adjusting the t parameter value
for the substitution matrix, generating probabilities for each
amino acid substitution and multiplying by the average num-
ber of each amino acid in a typical HA protein sequence.

Figure 6 illustrates an example of how the simulation
model was validated for Turkey. The majority of parameter
settings were kept consistent between the geometric model
and our new model. In order to properly calibrate and test
the new model only the mutation and contact rates were ad-
justed. Subfigure 6a shows a narrow window of calibration
settings that produced consistent results, a more exhaustive
calibration effort was conducted to find this window that re-
quired hundreds of different parameter combinations rang-
ing the contact rate from 1.0 to 3.0 and the mutation rate
from 0.002 to 0.10 in varying step sizes. The window illus-
trated represents the success rate of parameter combinations
with a contact rate between 1.8 and 2.6 in steps of 0.2, and
mutation rates between 0.008 and 0.012 in steps of 0.001.

Each simulation was seeded with slightly mutated root se-
quence variants equivalent to the number of initial infected
individuals. Due to the discrete steps mutations take in the
new model the initial propagation period is susceptible to
low mutation rates, and can cause the number of infected in-
dividuals to zero out early. This was combated by spawning
the slight variants, ensuring what is the equivalence of 100
simulation days of mutations. This results in the initial spike
of infective individuals in subfigure 6b.

(a) Antigenic (b) Geometric (c) Reference

(d) Antigenic

0.014

(e) Geometric

0.016

(f) Reference

Figure 7: Antigenic phylograms were produced using our
enhanced model (sucess is 2 clades for Turkey, 4 for Nige-
ria). Subfigures(a-c): Turkey. Subfigures(d-f): Nigeria

Parameter analyses
In this study we have used Generalized Sensitivity Analy-
sis (GSA) (Guven and Howard, 2007) to assess the influ-
ence of parameter settings in our model. GSA is based on a
two-sample Kolmogorov-Smirnov Test (KS-Test) and yields
a dm,n statistic that is sensitive to differences in both central
tendency and any differences in the distribution functions of
parameters. The dm,n statistic (0 ≤ dm,n ≤ 1.0) is the
maximum separation between cumulative probability distri-
butions observed in a two-sample KS-Test. The dm,n statis-
tic is computed for each parameter by varying its value over
a ±25% range, in steps of 10%, around its calibrated setting
as shown in Figure 8. At each setting, 10 stochastic sim-
ulations are conducted and the number of successful (i.e.,
simulation produces phylogram with same number of clades
as reference in vivo phylogram) and unsuccessful outcomes
are recorded. We have used the model for Turkey to conduct
the sensitivity analysis.

The data is used to compute the cumulative probability of
success and failure for each parameter as shown in Figure 8.
The maximum difference between the cumulative success
and failure probabilities is the dm,n statistic shown in red
for each parameter. For example, from Figure 8, the dm,n

statistic for Contact rate (β) is 0.256. Figure 9 shows
a summary comparison of the influence of the parameters.
The lightly shaded bands show the 95% Confidence Inter-
vals (CI) computed using standard bootstrap approach using
5000 replications with 1000 samples in each.

As illustrated by the GSA dm,n statistic values, the fol-
lowing parameters do not have a strong influence on the
model’s characteristics – the initial population of birds (N),
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Figure 8: Detailed results from Generalized Sensitivity
Analysis (GSA). The x-axis in each sub-chart indicates
range of values for each parameter. In all sub-charts the y-
axis is the dm,n statistic.

initial number of infected birds (I), variance in the abun-
dance of different species (Skew), and the antigenic scaling
parameter used with p-epitope. In other words, assumptions
made about the values of these parameters do not have a sig-
nificant impact on the validity and outcome of our analyses.
Insensitivity to these assumed parameter values is an impor-
tant aspect of our model. It enables us to draw inferences
with sufficient confidence without requiring to have a good
estimate of waterfowl populations, waterfowl species abun-
dance, initial infections etc.

On the other hand, the most influential factors that primar-
ily drive diversity of viral strains are: recovery rate (ν) at
0.386, contact rate (β) at 0.256, and mutation rate at 0.152.
The recovery rate for H5N1 has been set to the putative value
of 5 days. Accordingly, the two key parameters whose val-
ues have been determined via calibration are β and ψ, which
are specific to each region being analyzed. These three in-
fluential parameters are also the primary targets for contain-
ment and prophylaxis efforts.

Correlation analysis: Consistent with interrelationships
in nature, the parameters in the model have inherent cor-
relations as illustrated by the correlogram in Figure 10. The
correlogram has been plotted using results from successful
configurations, i.e., parameter settings that yield the correct
number of clades, i.e.,, the same number of clades as in the
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Figure 9: Parameter comparisons based on GSA

reference phylogram. The corellogram has been plotted us-
ing R and the PerformanceAnalytics package.
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Figure 10: Correlation between parameters elicited by GSA

The correlogram shows that the recovery rate (1/ν) is
strongly, negatively correlated to contact rate (β), mutation
rate (ψ), p-epitope scale (p-Ep), and initial population (N ).
These negative correlation are expected because of the na-
ture of these parameters. For example, decreasing mutation
rates (ψ) but increasing recovery time (ν) essentially main-
tains the antigenic diversity. Similarly, increasing contact
rate (β) enables more infections to occur and hence, even
with decreasing ν, overall antigenic diversity is maintained.
The correlogram shows that the recovery rate ν plays a cen-
tral role in anchoring other epidemiological and ecological
parameters in the model. This observation also emphasizes
the need for surveillance and assay-based identification of at
least one of these four parameters in emergent epidemics and
other parameters can be estimated via phylodynamic simu-
lations.



Conclusions
Vaccinations are widely used to contain and mitigate epi-
demics caused by antigenic variants of Avian Influenza
Viruses (AIVs), including the H5N1 serotype. However,
vaccines need to be regularly updated to compensate for
antigenic drift in AIVs. Currently, expensive in vivo assays
are required to regularly update vaccines to compensate for
antigenic drift. Furthermore, such in vivo assays and anal-
yses do not provide insight into the underlying ecological
processes that is necessary to inform containment and pro-
phylaxis strategies. Consequently, in vivo methods are en-
hanced using computational or in silico approaches involv-
ing phylodynamic simulations. The antigenic models used
for phylodynamic simulations play a critical role in over-
all effectiveness of in silico methods. Current state-of-the-
art models merely use an abstract multidimensional space to
approximate both genetic and antigenic changes.

This paper proposed and evaluated a novel antigenic
model which is distinguished from current research by: ¶
use of actual Hemagglutinin (HA) protein sequences, ·
simulating mutations occurring to the HA sequence(s) and
further calibrating the mutation rates to mirror ecological
niches, and ¸ and implementing an amino-acid level anit-
genic analysis algorithm. The paper discussed the motiva-
tion for the aforementioned enhancements and presented an
algorithmic overview. The models were verified and vali-
dated using over 10,000s of simulations with 1,000s of dif-
ferent parameter settings and requiring over 2,500 hours of
compute time. We assess the validity of our method us-
ing the current World Health Organization (WHO) H5N1
nomenclature for Turkey and Nigeria.

The influence and impact of parameters in our model has
been explored via Generalized Sensitivity Analysis (GSA).
Our GSA analysis showed that recovery rate (ν), contact
rate (β), and mutation rate (ψ) strongly influence the anti-
genic diversity. Correlation analysis revealed a strong, neg-
ative correlation between recovery rate (ν) and contact rate
(β), mutation rate (ψ), p-epitope scale (p-Ep), and initial
population (N ). This correlation emphasizes the need for
surveillance and assay-based identification of at least one of
these four parameters in emergent epidemics. Once a puta-
tive value for one of the parameters is identified, the other
parameters can be estimated via phylodynamic simulations.

This study lays the groundwork for using detailed anti-
genic models in phylodynamic simulations. A key issue that
we encountered was the high computational times for the
simulations. Currently, we are exploring solutions to reduce
the computational times.

Nevertheless, we contend that the benefits accrued from
our methods offset the higher computational times. The sig-
nificance of this research is that not only are we able to in-
form containment efforts similar to the current state-of-the-
art, we also produce actual HA protein sequences that can
be used in different methods of analysis in the future. As an
example, with a fine-tuned model there is the possibility to

explore and monitor evolutionary characteristics and niches
of avian influenza viruses. Unlike analysis done using cur-
rent state-of-the-art models direct connections between clus-
ters of viruses in our simulations to real world clades can be
made, and the direct impact on containment efforts on the
structure of real world avian influenza viruses will be able
to be examined.
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