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Abstract 

Active networking techniques embed computational ca- 
pabilities into conventional networks thereby massively in- 
creasing the complexity and customization of the compu- 
tations that are performed with a network. In depth stud- 
ies of these large and complex networks that are still in 
their nascent stages cannot be effectively performed using 
analytical methods. Hence, discrete event simulation tech- 
niques are the only viable means to study and analyze active 
networking architectures. Furthermore, customized and 
jlexible tools are required to for  the analysis of active net- 
works using simulation. This paper describes an integrated 
environmentfor the modeling and parallel simulation of ac- 
tive networks called Active Networks Simulation Environ- 
ment (or ANSE). ANSE utilizes the Time Warp synchro- 
nized kernel of WARPED (a general purpose discrete event 
simulation kernel) to enable parallel simulation of active 
network models. ANSE also includes complete support for 
the modeling and simulation of active networks based on 
PLAN (Packet Language for Active Networks). This paper 
presents the issues involved in the design and development 
of ANSE. The Application Programming Interface (API) of 
ANSE is presented along with the issues involved in utiliz- 
ing it to develop support for PLAN based active networks. 
The paper also presents some results obtained from the sev- 
eral experiments conducted to evaluate the effectiveness of 
ANSE. Our studies indicate that ANSE provides an effec- 
tive environment for modeling and simulation of large scale 
active networks. 

1 Introduction 

Techniques to effectively utilize the computational and 
communication infrastructure of modern networks has lead 
investigators to develop active networking architectures. In 
an active network, the nodes constituting the network are 
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capable of performing customizable general purpose pro- 
cessing (or services) on the datagrams flowing through 
them [ 1,7]. Active networking techniques enable a massive 
increase in the complexity and customization of network- 
ing services. Active networking techniques also encompass 
conventional networking architectures and protocols [ 11. 
Unfortunately, traditional analytical methods cannot be ef- 
fectively used for studying active networks [8]. Hence, em- 
pirical methods must be employed. Simulation, discrete 
event simulation in particular, has proven to be an effec- 
tive tool to study conventional networks and is also the only 
method available for analyzing active networks [S, 7, 101. 

Model development, verification, and validation plays a 
critical role in simulation studies. Without sufficient verifi- 
cation and validation (V&V) little confidence can be placed 
in the results obtained from a simulation [9]. The network 
models should reflect the size and complexity of actual net- 
works in order to ensure that crucial scalability issues do not 
dominate during validation of simulation results. Model- 
ing and simulation of large networks can involve extremely 
long run times on sequential machines. Consequently, so- 
phisticated parallel simulation must be employed to sim- 
ulate large models in reasonable time frames [7, 101. To 
assist in modeling and simulation of active networks, we 
have developed a tool called the Active Networks Simula- 
tion Environment (or ANSE). ANSE provides a hierarchi- 
cal modeling language that can be used to develop network 
models represented as a set of interconnected nodes (or net- 
working components) developed using ANSE's Applica- 
tion Program Interface (API). The API fully insulates the 
application modules from the underlying simulation kernel. 
The API has been used to develop a library of components 
that can be used to model active networks based on PLAN, 
a Packet Language for Active Networks. The simulation in- 
frastructure of ANSE utilizes the Time Warp synchronized 
kernel of WARPED (a general purpose discrete event sim- 
ulation kernel [4]) to enable parallel simulation of active 
network models. 

This paper presents the issues involved in the design and 
development of ANSE. Section 2 presents brief description 
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Figure 1. Overview of ANSE 

of WARPED, the simulation kernel utilized by ANSE. In 
Section 3 an overview of ANSE and its various compo- 
nents are presented. The unified modeling front-end and 
ANSE’s API are also presented in this section. The issues 
involved in the design and development of support for mod- 
eling and simulation of active networks based on PLAN is 
presented in Section 3.5. Section 4 presents results from 
several experiments conducted using ANSE.  Finally, con- 
cluding remarks and pointers to future work are presented 
in Section 5. 

2 Background 

The parallel simulation capabilities of ANSE have been 
enabled by developing the framework around a general pur- 
pose discrete event simulation engine. Object oriented (00) 
techniques have been employed to isolate the various mod- 
ules of ANSE from the underlying simulation kernel. This 
design not only provides a desired level of “separation of 
concerns” but also enables the use of different simulation 
kernels without modification to the application modules. 
The current implementation of ANSE utilizes the WARPED 
simulation kernel [4] to enable sequential and parallel sim- 
ulation of active network models. WARPED is an Applica- 
tion Program Interface (API) for a general purpose discrete 
event simulation kernel with different implementations [4]. 
ANSE utilizes the sequential kernel and the Time Warp 
based parallel simulation kernel of WARPED. 

The parallel simulation implementation in WARPED uses 
the Time Warp optimistic synchronization strategy [3]. A 
Time Warp synchronized parallel simulation is organized as 
a set of asynchronously communicating logical processes 
(LPs). The LPs communicate between each other by ex- 
changing virtual time-stamped event messages [3]. Each LP 
processes its events maintaining a local virtual time (LVT), 
changing its state, and generating new events without syn- 
chronization concerns to other LPs. Although each LP pro- 

cesses local events in their correct time-stamp order, events 
are not globally ordered. Causal violations may occur due 
to the optimistic nature of Time Warp. Causality violations 
are detected by a LP when it receives an event with time- 
stamps lower than its LVT (called a struggler event). On 
receiving a straggler, a rollback mechanism [3] is invoked 
to recover from the causality error. The rollback process 
recovers the LP’s state prior to the causal violation, cancel- 
ing the erroneous output events generated by sending out 
anti-messages, and re-processing the events in their correct 
causal order [3:1. Each LP maintains a list of state transi- 
tions along with lists of input and output events correspond- 
ing to each state to enable the recovery process. A periodic 
garbage collection technique based on Global Virtual Time 
(GVT) [3] is used to prune the queues by discarding history 
items that are no longer needed. 

The WARPEI) kernel presents an interface to build logi- 
cal processes based on Jefferson’s original definition [3] of 
Time Warp [4]. The kernel provides an API to build dif- 
ferent LPs with unique definitions of state [4]. The basic 
functionality for sending and receiving events between LPs 
using a message passing system is supported by the kernel. 
In WARPED, LPs are placed into groups called “clusters”. 
LPs on the same cluster communicate with each other with- 
out the intervention of the message passing system, which is 
faster than communication through the message system [4]. 
Although LPs are grouped together into clusters they are not 
coerced into synchronizing with each other. Control is ex- 
changed between the application and the simulation kernel 
through cooperative use of function calls. 

3 The Active Networks Simulation Environ- 
ment (ANSE) 

ANSE was developed to ease modeling and simulation 
of active networks. An overview of ANSE is presented in 
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Figure 1. As shown in Figure 1, the primary input is the 
topology of the network model to be simulated. The syntax 
and semantics of the input topology is defined by the Topol- 
ogy Specification Language (TSL). TSL provides simple, 
yet robust, hierarchical modeling techniques for represent- 
ing a network as a set of interconnected componentslnodes. 
The components used in the TSL description are developed 
using ANSE’s API. As illustrated in Figure 1, the input net- 
work model is parsed into an object-oriented in-memory in- 
termediate format (TSL-IF). An elaboration module is used 
to elaborate or “flatten” a hierarchical network model. Elab- 
oration is performed to ease further processing of the net- 
work model. TSL-IF is used to represent the elaborated 
network model. As shown in Figure 1, a back-end code- 
generator utilizes the elaborated network model to gener- 
ate ANSE API compliant (C++) code. The generated code 
is compiled and linked with necessary libraries such as the 
WARPED library, ANSE library, PLAN library, and other 
user-defined libraries (as the case maybe) to obtain the final 
executable. The final executable performs the actual simu- 
lation when it  is run. A detailed description of the various 
modules constituting ANSE is presented in the following 
subsections. 

3.1 Topology Specification Language (TSL) 

The primary input to ANSE (as shown in Figure 1) is the 
topology of the network to be simulated is provided to the 
environment in Topology Specification Language (TSL) [ 5 ]  
syntax. The Backus Normal Form (BNF) of TSL gram- 
mar is shown in Figure 2. As specified by the grammar, a 
TSL specification consists of a set of interconnected topol- 
ogy specifications. Each topology specification consists of 
three main sections, namely; (i) the object dejinition section 
that contains the details of the modules that need to be used 
to simulate the topology; (ii) the object instantiation section 
that specifies the various nodes constituting the topology; 
and (iii) the netlist section that defines the interconnectivity 
between the various instantiated nodes. Figure 3.1 presenls 
a network model along with the corresponding TSL descrip- 
tion. An optional label may be associated with each topol- 
ogy. The label may be used as an object definition in sub- 
sequent topology specifications to nest a topology within 
another. In other words, the labels, when used to instantiate 
an object, result in  the complete topology associated with 
the label to be embedded within the instantiating topology. 
Figure 3.1 presents the TSL source code to model a larger 
network using hierarchical constructs. As illustrated by the 
figure, the model of the network is specified by intercon- 
.netting three instances of the network model shown in Fig- 
ure 3.1. Using this technique, a simple sub-network consist- 
ing of merely ten nodes can be recursively used to construct 
a network with six levels of hierarchy to specify a network 

designfile ::= includeJist tsl-design-topology I 
includeiist ::= include-clause 1 includexlause include l is t  
includexlause ::= include “ filemime ”; 
file-name ::= identifier I identifier. identifier 
tsl-network ::= tsl-topology 1 label tsl-topology I 
tsl-topology ::= { objectdefinitionsection } 

label ::= identifier 
object-definitionsection ::= object definition 1 

objectdefinition objectdefinition section 
object-definition ::= objectname : url optional parameter 
object-name ::= identifier 
url ::= hostmime : portnumber. factory 
optionalparameter ::= parameter ; I; 
parameter ::= ‘‘ string ” 1‘“’ 
factory ::= identifier I identifier. factory 
portnumber ::= number 
objectinstantiationsection ::= objectinstantiation I 

objectinstantiation object instantiation section 
objectinstantiation ::= 

objectinstance : objectname optional parameter 1 
objectinstance : objectmime number optional parameter 

tsl-design-topology 

tsl-topology tslsetwork I label tsl -topology tsl network 

{ objectinstantiationsection } { n e t h t s e c t i o n  } 

I objectinstance : label 
objectinstance ::= identifier 
netJist-section ::= netlist I netlist netiist-section 
netAist ::= objectinstance : instanceiist ; 
instancdist := objectinstance 1 objectinstance instancelist 
identifier ::= start-char anyxhar 
start-char ::= [a - z, A - Z] 
any-char ::= [a - z, A - Z, 0 - 9, -1  
string ::= string-char 1 string-char string 
string-char ::= [ ] 
number ::= [0 - 91 

Figure 2. BNF of TSL grammar 

with million ( lo6)  nodes [7, 61. ANSE also include a tool 
for translating Georgia Tech Internet Topology Models (GT- 
ITM) [ 1 13 models into equivalent TSL descriptions. The 
translation tool and GT-ITM can be used to automatically 
generate network topologies in TSL. 

3.2 TSL Parser 

The input topology configuration is parsed using a parser 
into an 00 TSL Intermediate Format (TSL-IF). The TSL 
parser is generated using the Purdue Compiler Construc- 
tion Tool Set (PCCTS) [7]. TSL-IF forms the primary in- 
put to the other modules of ANSE. TSL-IF is designed 
to provide efficient access to related data from the various 
TSL sections [6]. In conjunction with the parser, TSL-IF 
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is also implemented in C++. The IF consists of a set of 
cross-referenced classes, each class representing a particu- 
lar grammar entity. The IF  is composed by filling in the ref- 
erences in the various C++ classes generated by the parser 
with appropriate values. Since composition is achieved 
via base class references, each node can refer to another 
node or even a sub-network. This provides an efficient data 
structure for representing and analyzing hierarchical net- 
works [7, 61. 

3.2.1 Static Elaborator 

Hierarchical constructs provide convenient techniques to 
specific large networks by reusing the specification for 
smaller sub-networks [7, 61. However, the hierarchical con- 
structs have to be elaborated or "flattened' prior to simula- 
tion [7, 61. Elaboration is the process in which each hierar- 
chical level is broken down to its constituting components. 
The basic steps involved in elaborating a hierarchical spec- 
ification are shown in Figure 4. As illustrated in the figure, 
the elaborator starts with an user-specified topology and re- 
cursively traverses the various sub-topologies in the model 
and creates new instances of the sub-topologies and the ob- 
jects. Elaboration of sub-topologies is done before they are 
imploded into the enclosing topology. Imploding hierar- 
chies involves inclusion of all necessary object definitions, 
object instantiations, and corresponding data structures. 
Elaboration may be done statically or at runtime. Static 
elaboration occurs prior to code-generation while runtime 
elaboration occurs just before simulation commences, when 

SN ( Ncdr : SnmpeNide; 
Switch SimplrSwitch: ) 

' 9  it I 

{ NI : Node; NZ : Node; N3 : Ncdr; 
N4 : Node: NS : Node: 

I >  I 
SI : Swtch; ) 

{ S l  :NI  NZ N3N4N5 NI; 
NI:SI:NZ:SI:N3:SI; 

Sample Network (SN) 
r' * ? *< IS 

N4:SI:NS:Sl )  

TSL For SN 

(1) Simple network 

_ -  

include "SN.lsl" 
HN { rwkh : S m p l r S w I ~ h ;  ) 

( S : Switch 
SNI : SN; SN2 : SN; SN3 : SN; t 

Y I < ,  c 

[ S :  SNI SNZSN3; 1 

_ I  \ 

A Hierarchical Network (HN) ~ s ~ f ~ ~  HN 

(2) Hierarchal network 

Figure 3. Example Network models and TSL 

step 1: Initialize elaborator 
1. Initialize new symbol table and IF 
2 .  Search input IF and locate node corresponding to user 

3. Call elaboration (step 2) with new topology 
specified top level topology 

step 2: Elaboration subroutine (parameter topology) 
1. Process the list of netlists specified in the topology. 

If the node is an object instantiation perform step 3. If 
the node is a topology label perform step 4. 

step 3: Elaborate object instantiation 
1. Create new instance of the object instantiation with 

mangled labels. 
2. Create new object definition for the new instance with 

mangled labels and add to new symbol table, if neces- 
sary. 

3. Add new object instantiation to the new topology and 
update netlist entry. 

step 4: Elaborate sub-topology 
1 .  Instantiate temporary symbol table and IF 
2. Recursively call elaboration with the sub- topology 
3. Implode new IF to the new topology 

Figure 4. Phases in elaborating a TSL design 

the generated code is executed. In ANSE,  static elaboration 
is performed with the TSL-IF generated by the parser and 
the elaborated topology is also represented in TSL-IF (as 
shown in Figure 1). 

3.3 Code Generator 

As shown in Figure 1, the back-end code-generator uti- 
lizes the elaborated TSL-IF to generate a simulatable model 
from the given TSL description. The generated code in 
in C++ in concordance with all the other components of 
ANSE. The 00 nature of TSL-IF has been exploited in 
the development of the code-generator. The generated code 
is compliant with the API of ANSE. A model developer 
can directly develop the network model (compliant with 
ANSE's API) and bypass these stages. However, the com- 
plexity involved in model development would be consider- 
ably higher. The back-end code-generator can be replaced 
with a different code-generator in order to re-target the gen- 
erated code for different frameworks. 

3.4 ANSE API and Library 

ANSE presents an interface to the application developer 
for modeling a network as set of communicating logical 
processes (LPs). The LPs are modeled as entities which 
send and receive events to and from each other, and act 
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on these events by applying them to their internal state. 
Figure 5 shows the Universal Markup Language (UML) 
diagram for the core classes that constitute the API. As 
illustrated in the figure, the NetworkNode class forms 
the parent class for all the networking components in the 
system. The ActiveNode and PLANNode are derived 
from this class. The NetworkNode class is used to model 
conventional networking components while the Ac t iveN- 
ode is used to model active components. The Networ- 
kNode also provides methods for accessing routing tables 
and supports primitive domain name services (DNS). The 
state (NetworkNodeS tate and Act iveNodeState) 
and packet (Packet and Activepacket) classes corre- 
sponding to the LP hierarchy are also shown in Figure 5. 
The state classes are used to encapsulate the state informa- 
tion associated with each nodekomponent. The state in- 
formation is used by WARPED (the underlying simulation 
kernel) to enable rollbacks [ 3 ]  and recover from causal vio- 
lations that could occur in Time Warp based simulations [4]. 
The Packet (and derived) class is used for all communica- 
tions between the nodes constituting a network model. The 
packets in turn represent the discrete events in the simula- 
tion. The API has been developed in C++ and the object 
oriented features of the language,have been exploited to en- 
sure it is simple and yet robust. The API plays a critical 
role in insulating the model from the underlying simulation 
kernel. The interface has been carefully designed to provide 
sufficient flexibility to the application developer and enable 
optimal system performance. Further details on the API are 
available in the literature [7] .  

3.5 PLAN library 

As illustrated in Figure 5 ,  ANSE's API has been used 
to develop a library for modeling and simulating active net- 
works based on PLAN, a Packet Language for Active Net- 
works [2]. PLAN is a simple, functional programming lan- 
guage based on a subset of ML with some added primitives 
to express remote evaluation (21. In a PLAN based active 
network, the active packets can contain a PLAN program 

Figure 5. Core classes of ANSE API 

that can be used to customize the active network to provide 
different networking services. The PLAN library provides 
a PLANNode that is capable of parsing and interpreting 
PLAN packets. A PLAN parser, constructed using PCCTS, 
is used to parse incoming PLAN packets into an 00 inter- 
mediate format (IF). The IF is fed to a PLAN interpreter 
that executes the program contained in the packet. The in- 
terpreter supports all PLAN constructs including recursive 
function calls, exceptions, and forwarding of any PLAN 
packets generated during interpretation. The PLAN library 
also contains a PacketInj ector component that can be 
used to inject PLAN packets into the simulated network. 
The PacketInj ector can be used to inject a PLAN pro- 
gram from a given file or obtain the PLAN program interac- 
tively from the user. The PacketInj ector can be driven 
using a variety of traffic generators based on random num- 
ber generators available as a part of the ANSE library. The 
random number generators generate traffic based on mathe- 
matical distributions (such as normal or constant delay dis- 
tributions, Poisson distribution, and Pareto distributions). 
The library also contained components for modeling differ- 
ent types of communication links with different parameters 
(such as transmission delay and packet loss ratio). 

The runtime structure of a typical PLAN based ac- 
tive network is shown in Figure 6. As illustrated in the 
figure, a single instance of the PLAN parser and inter- 
preter are shared by the different PLANNodes. The de- 
sign helps to minimize the overall resource requirements 
(memory in particular) of the simulations; thereby enabling 
simulation of larger networks using available hardware re- 
sources. However, in parallel simulations, a single instance 
of the PLAN parser and interpreter are used in each clus- 
ter. This approach is a tradeoff between the overall mem- 
ory requirements of the simulation versus simulation over- 
heads (such as communication and concurrency). It must be 
noted that concurrent demandslusage of the parser and in- 
terpreter never arises because execution of events on a clus- 
ter proceeds in a serial order. In other words, although the 
WARPED clusters and the LPs operate asynchronously with 
each other, the events on a given cluster are executed seri- 
ally. Hence, in a given cluster, only one event can be active 
at a time and the PLAN parser and interpreter are assigned 
(or reserved) for use by that event. Since parsing of PLAN 
packets their interpretation are two distinct and indepen- 
dent stages, they can be cascaded or pipelined (Le., when 
a previous packet is being interpreted the next packet can 
be parsed) to improve performance. Such a design would 
be of considerable benefit in shared memory multiprocessor 
(SMP) platforms. Any dependencies or inconsistencies that 
could arise due to asynchronous pipelining can be resolved 
by directly utilizing the optimistic simulation infrastructure. 
In other words, if inconsistencies arise then the simulation 
would get rolledback and the events would get reprocessed 
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Figure 6. Runtime structure 
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Table 1. Characteristics of the models 

in the correct causal order. However, such a design was not 
adopted in the current implementation because other simu- 
lation techniques (such as sequential simulation and conser- 
vative simulations) may not be capable of supporting such 
a design. 

As shown in Figure 6, the routing tables and DNS tables 
(built and maintained by NetworkNodes) are also shared 
between the various nodes constituting the simulation. This 
design also helps to reduce the overall memory require- 
ments’ of the simulations. As explained earlier, concurrent 
access to these data structures does not arise. Hence, com- 
plex locking mechanisms/semaphores are not necessary to 
ensure their consistency/coherence. The routing and DNS 
tables are replicated at each cluster (in a parallel simulation) 
to minimize simulation overheads. The runtime modules of 
ANSE (present in the ANSE library) assist in construct- 
ing the tables by providing necessary information about the 
network model being simulated. Although, the LPs are par- 
titioned onto different clusters, the necessary information 
(such as name of the nodes along with the interconnectiv- 

ity data) related to all the nodes are extracted and filled 
into the tables. In the current implementation of ANSE, 
the LPs are equally divided amongst the clusters used in 
a simulation i.e., each cluster has (almost) an equal num- 
ber of LPs. ANSE’s API also includes interfaces for im- 
plementing other partitioning algorithms. It must be noted 
that, partitioning, assignment of nodes to clusters, and par- 
allel simulation is completely transparent to the application 
modules. The applications (and generated code) does not 
change based on the number of clusters or the underlying 
synchronization technique used in the simulations. 

4 Experiments 

The experiments conducted to evaluate the performance 
of ANSE and the results obtained from the experiments 
are presented in this section. Table 1 tabulates the char- 
acteristics of the models used to conduct the experiments. 
The network models were described in TSL and utilized the 
various components available in the PLAN and ANSE li- 
braries. The network models consisted of a set of intercon- 
nected PLAN nodes. The larger models such as Model3, 
Model4, Model 5 were constructed using the hierarchi- 
cal modeling constructs supported by TSL. The number 
of PLAN nodes in each model is shown in Table 1 .  The 
other components of the model such as traffic generators, 
packet injectors, and links are grouped together and tabu- 
lated in Table 1 (under the “Others” column). A route trac- 
ing PLAN program [2] was run on the simulated network 
model. The route tracing PLAN packets hop from one node 
to another (as they get interpreted by each PLAN node in the 

182 



simulated network) and at each node they generate two new 
PLAN packets. One packet carries the information about 
the current hop back to the source node (i.e., the node at 
which the route tracing for that particular packet began). 
The other packet proceeds forward to trace the route un- 
til the destination node is reached. The destination node on 
each packet was randomly chosen from the set of nodes par- 
ticipating in the simulation. The Packe t In  j e c t o r  (de- 
scribed earlier) was used to inject the PLAN packets into 
the simulated network. Each Packe t In j  e c t o r  was pro- 
grammed to generate 500 requests (i.e., trace route to 500 
randomly chosen PLAN nodes). The links interconnecting 
the nodes were configured (through suitable parameters in 
the TSL description) to have zero losses i.e., no packets get 
lost (in other words, a basic TCP/IP type of connectivity 
was assumed). 

The graphs in Figure 7 present the time taken for per- 
forming the different phases of model generation such as 
parsing, elaboration, code-generation, and compiling the 
generated code. The experiments were conducted on a 
Linux workstation consisting of dual Pentium I1 (300 Mhz) 
processors with 128 MB of main memory. The timings 
were obtained using the standard Unix t i m e  command. 
The times plotted in the graphs are the average values com- 
puted from 10 simulation runs. As illustrated by the graphs 
shown in Figure 7 the time overall time for generating a net- 
work model scales almost linearly with respect to the total 
number of objects (or LPs) constituting a network model. 
This data suggests illustrates the scalability of the modeling 
and simulation infrastructure supported by ANSE. It also 
indicates that ANSE will be capable of generating large 
network models in  reasonable time frames. 

The parallel simulation experiments were conducted us- 
ing a network of workstations. Each workstation consisting 
of two Pentium I1 (300 MHz) processors in shared mem- 
ory configuration. Each workstation had 128 MB of main 

memory (RAM) and were running Linux. The workstations 
were interconnected by fast Ethernet. The parallel simula- 
tions were conducted using 1 to 16 WARPED clusters. The 
results obtained from the various experiments are presented 
by the graphs in Figure 8. The timing information for the 
various simulations were obtained using the standard Unix 
t i m e  command. The simulation times plotted in the graphs 
are the average values computed from 10 simulation runs. 
The timings obtained from the simulations conducted using 
the sequential kernel available with WARPED are also plot- 
ted in the graphs. The sequential-simulator was configured 
for its most optimal configuration (including using a splay 
tree data structure for maintaining event lists). 

As illustrated by the graphs in Figure 8, parallel simu- 
lation provides considerable improvements in performance 
for even medium sized network models. For example, par- 
allel simulation using 16 processors provides an order of 
magnitude improvement in performance when compared to 
a sequential simulation. The primary factor for the pro- 
nounced improvement in performance is the high event 
granularity of the active packets which need to be parsed 
and interpreted. As the number of processors used in the 
simulation are increased, the computational load gets dis- 
tributed across the parallel processors which in turn reduces 
the overall simulation time. However, as illustrated by Fig- 
ure 8(a), for small models, the performance deteriorates as 
the number of processors are increased. This is because the 
smaller models do not have sufficient concurrency and load 
to utilize all the parallel processors. Hence, the overheads of 
parallel simulations out weigh the gains accrued by increas- 
ing the number of processors. The results also demonstrate 
the scalability of the parallel simulation framework. The ex- 
periments highlight that considerable improvements in per- 
formance of the simulations can be achieved by employing 
parallel simulation techniques. The experiments also illus- 
trate the overall effectiveness of ANSE for modeling and 
simulation of active networks. 

u.. . . . . . . . . . . . . . . . . . . . .. ... .. . .... . .. .. ... ......... I 
J 

100 200 3.30 4W 5W 600 700 Bw 900 lo00 
0.W1 c 

Number GI Obpm 

Figure 7. Time for model generation 

5 Conclusions 

The issues involved in the design and implementation of 
an Active Networks Simulation Environment (ANSE) were 
presented in this paper. The experiences gained during the 
development of ANSE also highlight a number of issues 
on different aspects of active network modeling and simula- 
tion. Our experiences indicate that it is better to have to have 
a simple, yet flexible, language such as TSL, for modeling 
network topologies. It is useful to have a clear delineation 
between the languages for developing the software mod- 
ules for networking components and network modeling lan- 
guages. For example, TSL and ANSE can also be used to 
enable simulation of conventional networks. The flexibility 
and general purpose design of ANSE can be utilized to en- 
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(a) Small Models (b) Large Models 

Figure 8. Comparison between sequential and parallel simulation times 

able inter-operability between different type of models and 
even different simulators. An experimental evaluation of 
ANSE was presented in the paper. The experiments demon- 
strate that considerable improvements in performance of the 
active network simulations can be achieved by employing 
parallel simulation techniques. The experiments in con- 
junction with the diverse set of issues addressed by ANSE 
highlight the effectiveness of the active networks simulation 
environment provided by ANSE. 
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