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Abstract

The factors influencing spread of Lyme disease are of-
ten studied using computer-based simulations and spatially
explicit models. However, simulating large and complex
models is a time consuming task, even when parallel sim-
ulation techniques are employed. In an endeavor to accel-
erate such simulations, an alternative approach involving
dynamic (i.e., during simulation) changes to spatial resolu-
tion of the model via a novel methodology called Dynamic
Component Substitution (DCS) is proposed. Changes to the
resolution are performed such that the total number of in-
teractions between the entities in the model is optimized,
thereby improving overall performance but introducing mi-
nor (< ±1%) deviations in the results. This paper explores
the effectiveness and issues involved in applying DCS to ac-
celerate sequential and parallel simulations of spatially ex-
plicit Lyme disease models. The paper also presents a brief
description of the simulation environment along with empir-
ical results. Our experiments indicate that performance im-
provements can be obtained using the proposed approach.

1. Introduction

Lyme disease is a bacterial (Borrelia burgdorferi),
vector-borne disease that is transmitted through a complex
chain of interactions between the vectors carrying the bacte-
ria, other organisms in the Eco system, and humans [5, 11].
It is prevalent in many parts of the world, including: north-
eastern US, central Europe, and central Asia. In the year
2002, more than 23,000 cases were reported in United
States alone [8]. Consequently, analysis of various aspects
of Lyme disease particularly its spread and transmission is
an important and active area of research and study [8, 5, 11].

The study and analysis of the spread of Lyme disease,
the domain of interest in this study, is a task complicated
by the numerous interactions and symbiotic relationships
between the vector (deer ticks), the primary hosts (white
footed mice), and their Eco system. For example, it has
been shown that in oak forests, there is a direct correlation
between the number of acorns in the Eco system to the in-
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tensity of Lyme disease [11]. The correlation arises because
increases in acorns (a primary food for mice) encourages
an increase in mice population which results in increased
proliferation of the disease causing bacteria [11]. Analyz-
ing and comprehending these secondary factors makes the
study of spread of Lyme disease a complex task.

Several experimental and analytical approaches have
been employed for the study and analysis of Lyme disease.
Amongst the various methods, computer-based simulations
have gained significant importance primarily because they
provide a powerful and intuitive mechanism to explore sce-
narios that cannot be analyzed using other approaches. Sim-
ulations of Lyme disease are typically performed using spa-
tially explicit models [7, 6]. Spatially explicit models pro-
vide a convenient conceptual representation for modeling
Eco systems as they have an explicit notion of space or en-
vironment [7, 6, 16, 17]. The motivation to treat the envi-
ronment as a separate dimension is that it undergoes its own
sequence of changes. In addition, it eases modeling the in-
fluence of the environment on all interactions between the
entities that reside in them [3, 16, 17].

Unfortunately, simulating large, complex models is a
time consuming task [7, 13]. In addition, capacity (or re-
source) limitations of the workstations often prevent simu-
lation of large models [13]. Different approaches have been
proposed to address these bottlenecks [7, 6, 13]. Amongst
the various approaches, the application of parallel simula-
tion methodologies have shown to provide considerable ca-
pacity and performance improvements [7, 6].

In order to achieve efficient parallel simulations, spa-
tially explicit models are subdivided into smaller, non-
overlapping regions [7, 6]. Subdivision of space (say into
k subspaces) reduces the average time complexity for simu-
lating interactions between each pair of n entities in the sim-
ulation from O(n2) to O(k ∗ [(n/k)2]). Furthermore, sub-
division is necessary for optimal parallel simulations [7, 6].
Figure 1(a) presents an example in which the space con-
taining 7 entities (M1 · · ·M7) has been divided into 4 sub-
areas (S1 · · ·S4). The division of space into smaller units is
usually performed statically, that is either when the model
is developed or just before simulation commences. How-
ever, the dynamics of the model make static partitioning in-
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Figure 1. Example of optimal & suboptimal scenarios in static subdivision

effective as the average number of entities in a given sub-
space may not be optimal throughout the course of simu-
lation. Figure 1(b) illustrates a scenario where the mobile
entities crowd into few or just one subspace and the perfor-
mance deteriorates. Figure 1(c) illustrates another subopti-
mal or possibly worst case scenario, where the entities are
at the edges of subspaces. In this scenario the vicinity of
the entities span across multiple subspaces. Consequently,
additional events need to be exchanged by the logical pro-
cesses modeling the subspaces in order to correctly capture
all interactions between various entities. Note that in this
scenario, these extra events would not be necessary if the
space was modeled as a whole, but a single subspace would
be suboptimal in other cases. These issues present a chal-
lenging dilemma and are a significant bottleneck preventing
efficient simulation of spatially explicit models [6, 13].

In an endeavor to address the complications with static
division of the simulated space, this study proposes to dy-
namically change the subdivisions during the simulation
runtime. The spatial resolution of the model is continuously
adapted to the changing conditions in the simulated system.
More specifically, the resolution of the model is changed
depending on the relative positions of the mobile, interact-
ing entities (mice) in the model to improve performance
with acceptable tradeoffs in fidelity. The dynamic changes
to the resolution of the model are achieved by applying a
novel methodology called Dynamic Component Substitu-
tion (DCS) [13].

This paper presents the issues involved in applying DCS
to accelerate the simulation of the spread of Lyme disease
using multi-resolution, spatially explicit models. A brief

biological background on the spread of Lyme disease per-
tinent to this study is presented in Section 2. Section 3 in-
cludes a brief review of some of the related research ac-
tivities along with a brief background on spatially explicit
models. A summary on Dynamic Component Substitution
(DCS) is presented in Section 4. An overview of WESE,
the modeling and simulation environment used in this study
is presented in Section 5 along with a brief description of
WESE’s infrastructure for DCS. The models developed as a
part of this study along with the strategy for using DCS is
presented in Section 6. Section 7 presents the statistics and
inferences collated from the various sequential as well as
parallel simulations conducted to evaluate the effectiveness
of the proposed approach. Finally, Section 8 concludes the
paper and presents pointers to future work.

2. Biological Background

The Lyme disease causing spirochete (Borrelia burgdor-
feri) is transmitted to humans by tick (Ixodes scapularis)
bites. Although the ticks are the major vectors for carrying
the spirochete they are relatively immobile and the spread of
the disease is primarily driven through a complex chain of
interactions with their mobile hosts such as deer and mice.
The dominant hosts for ticks in many habitats are white
footed mice (Peromyscus leucopus) [11]. Accordingly, in
consensus with earlier biological and simulation studies on
spread of Lyme disease, the model used in this research
also employs mice as the main, mobile host [5, 11]. Fur-
thermore, in concordance with earlier research, interactions
with other hosts such as humans is ignored because such in-
teractions do not have a significant bearing on the spread of
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Figure 2. Chain of interactions causing
spread of Lyme disease

the disease [5, 11]. Accordingly, a brief description of the
interactions between ticks and mice is presented in the fol-
lowing paragraph; more detailed discussions are available
elsewhere [5, 11, 13].

Figure 2 presents an overview of the typical sequence of
interactions between ticks and mice that has been used to
develop the simulation model. The interactions occur over
a two year period starting with summer. In summer, the tick
eggs hatch and become larvae. If a larvae comes in close
contact with a mouse it bites the mouse to feed on its blood.
Larvae typically feed for a few days and may be carried to
a different area by the mouse. If the mouse was infected
earlier with the disease causing spirochete, the bacteria is
transmitted from the mouse to the larva. Larvae that suc-
cessfully feed on a host drop off and molt into a nymph.
Nymphs that survive the winter actively seek a blood meal
in spring. If an infected nymph bites a mouse, the bacteria
is transmitted from the nymph to the mouse. Nymphs that
find sufficient food molt into adult ticks. Female ticks lay
eggs and the cycle continues.

3. Related Research

A large number of processes in nature are strongly influ-
enced by the environment or “space” in which they occur.
Space is usually used to denote processes or factors of in-
terest that encapsulate and affect the system under study.
The actual process or factors referred to as space depends
on the domain and context of a study. For example, in de-
mographic analysis the plant-animal-human ecology is typ-
ically considered as space [1]. On the other hand, Deelman
et al present an Eco system model to study the spread of
Lyme disease in which they consider ticks in the environ-
ment to be the background or space [6]. In order to ana-
lyze such systems using computer-based simulations, mod-
els that have an explicit notion of space in their conceptual

representations have been developed [1, 6]. Such models
are classified as spatially explicit models. Spatially explicit
models are widely used in a number of domains such as:
ecology, economics, and physics [3, 6, 16, 17].

One of the complex tasks in simulation of spatially ex-
plicit models is capturing the interaction between the enti-
ties involved in the simulation. In order to ease model de-
velopment, analysis, and optimize simulation performance,
the space is divided into subspaces. The choice of the sub-
space dimensions plays a crucial role in the overall accu-
racy and efficiency of the simulation [2, 6, 7, 9, 17]. How-
ever, in related studies [2, 6, 7, 9, 17], the space is bro-
ken into smaller blocks during model development or be-
fore simulation commences, i.e., statically. In this study,
we proposes to dynamically (at simulation runtime) abstract
and refine subspaces to further improve performance. Dy-
namic changes to the spatial resolution conspicuously dis-
tinguishes this research from the earlier efforts.

Since the proposed methodology utilizes models at dif-
ferent levels of resolution, this study also falls under the
broad umbrella of multi-resolution modeling and simula-
tion. A number of studies have been reported on selectively
abstracting parts of a model to enable efficient tradeoffs
between several model and simulation related parameters
(e.g., model resolution, fidelity, and performance). Most of
these earlier studies deal with static abstractions or refine-
ment where the abstraction or refinement is performed dur-
ing model development or prior to simulation commence-
ment. On the other hand, dynamically changing the resolu-
tion of the model enables more optimal tradeoffs between
several interrelated parameters such as: model observabil-
ity, fidelity, resource requirements, and performance [13].

The previous multi-resolution simulation studies clos-
est to this research activity was performed by Natrajan et
al [10]. They propose the use of Multiple Resolution Enti-
ties (MRE) to process events at various levels of abstraction
or resolution of a model [10]. MREs are entities that are
capable of interacting with the remainder of the model at
different levels of resolution by maintaining internal con-
sistency across multiple, concurrent levels of resolution. In
contrast, this study utilizes a novel methodology called Dy-
namic Component Substitution (DCS) for changing the res-
olution of the model during simulation. Unlike MREs that
may maintain state at all possible resolutions at all times,
DCS operates using a single state at a given resolution for
each component (or simulation object) at a given instant of
time. In DCS, states at different levels of resolution are cre-
ated on-demand whenever resolution changes [13].

4. Dynamic Component Substitution (DCS)

Dynamic Component Substitution (DCS) is used to
change the resolution or level of abstraction of a hierarchi-
cal, component-based model [13]. DCS is performed by
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substituting a set of components called a module with an
equivalent component or vice versa. The equivalent com-
ponent of a module must satisfy the following criteria: (i) it
must have an interface that is identical to that of the mod-
ule; and (ii) its externally visible functionality must be the
same (or within some acceptable delta) as that of the origi-
nal module. Substituting a module with its equivalent com-
ponent or vice versa is synonymous to abstracting or refin-
ing a model respectively. Note that the DCS transforma-
tions induce changes to the model which in-turn impacts
the overall simulation.

The strategies that may used by a model developer for
triggering DCS are broadly categorized into proactive and
reactive strategies. Approaches in which DCS transfor-
mations are scheduled to occur in the future (with respect
to simulation time) are classified as proactive strategies.
Proactive strategies are used when the scenarios for trig-
gering DCS are known apriori either during model devel-
opment or can be identified during simulation. In reactive
strategies, DCS transformations are scheduled at the cur-
rent simulation time or in the past. Proactive strategies are
easier to implement but identifying scenarios for proactive
triggering can be complicated. In contrast, reactive DCS is
much easier to trigger, but it is more complex to support and
it may incur additional overheads during simulation [13].
Note that a combination of proactive and reactive strategies
may be employed in a single model. In this study, only the
proactive DCS transformation strategy has been utilized.

The primary objective of applying DCS is to enable a
more optimal tradeoff between several interrelated model-
ing and simulation related parameters. DCS transforma-
tions may be performed statically or dynamically. Static
DCS transformations occur just before simulation com-
mences while dynamic DCS transformations occur during
the course of simulation. The latter subset of transforma-
tions provide a mechanism to continuously adapt the model
to the dynamic scenarios in the simulation. Typically, dy-
namic DCS is used to abstracts parts of a model that are
inconsequential to a given study in order to improve simu-
lation performance [13]. A more detailed description of the
strategy for applying DCS is discussed in Section 6

5. WESE

This section presents a brief overview of a Web-based
Environment for Systems Engineering (WESE) and its in-
frastructure for DCS [14, 15]. WESE provides a compo-
nent based modeling language, a framework for developing
a web-based repository of components, and the infrastruc-
ture for distributed simulation. WESE is an asynchronous,
distributed environment in which the WESE Server plays
a central role in orchestrating the various activities. All
interactions with the WESE Server are performed through
suitable modeling and simulation interfaces. Model devel-

opment in WESE involves two phases. First, a set of com-
ponents involved in the model are developed using WESE’s
API and deployed as WESE factory. A WESE factory is a
repository of components with added capability for sequen-
tial and parallel simulation. In the second phase, the actual
models are developed by suitably interconnecting the com-
ponents using a hierarchical modeling language called the
System Specification Language (SSL).

The specification of a model or a SSL design file consists
of a set of interconnected modules. Each module consists of
three main sections, namely: (i) the component definition
section that contains the details of the components to be
used to specify a module (such as the Universal Resource
Locator (URL) of a factory and name of the source object
along with initial parameters); (ii) the component instanti-
ation section that defines the various components constitut-
ing the module; and (iii) the netlist section that defines the
interconnectivity between the various instantiated compo-
nents. SSL permits an equivalent component to be associ-
ated with each module. DCS is performed by replacing the
module with its equivalent component or vice versa.

The WESE server performs the task of collaborating with
the distributed factories and coordinating the simulations.
The server has several coordinated, loosely coupled sub-
systems that perform the various tasks in setting up a dis-
tributed simulation. Once the simulation commences, the
simulation subsystems of each WESE factory involved in
the simulation handle further processing. The simulation
subsystem of a WESE factory has been developed using the
WARPED simulation kernel. WARPED is an API and im-
plementation for a general purpose discrete event simula-
tion [12]. WESE utilizes the Time Warp [12] based simu-
lation kernel of WARPED. A WARPED simulation is orga-
nized as a set of interacting logical processes (LP). Accord-
ingly, in WESE each component is mapped to a WARPED

LP. Furthermore, the API provided by WARPED is used for
exchanging events, optimistic synchronization, and garbage
collection.

In conjunction with SSL, the simulation subsystem of
WESE provides the infrastructure for triggering and auto-
matically carrying out DCS transformations to a model.
The WESE server contains a DCS Analyzer module that
is used to extract model information for DCS (such as re-
lated sets of components at various levels of abstraction)
through static analysis of the SSL description. In WESE,
an event-driven mechanism has been employed to sequence
the various phases involved in DCS. This approach makes
the DCS implementation immune to the idiosyncrasy of the
synchronization mechanism. A component can trigger DCS
by merely scheduling an appropriate kernel event. WESE
also provides an API for mapping states of components dur-
ing DCS. A more detailed description of DCS and WESE is
available elsewhere [12, 14, 15].
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6. Model & Strategy for DCS

As described in Section 2, the primary challenge in this
model is to track any possible interactions between mice
and ticks that may occur in a large area of a given Eco sys-
tem. As explained earlier, large areas are subdivided into
smaller subsections to minimize the overheads. In order to
dynamically change the composition of the subareas, the
space is divided into a hierarchy of subareas and DCS is
used to aggregate and disaggregate them. Figure 3 presents
an example of this approach. As shown in Figure 3, the spa-
tially explicit Lyme disease model is partitioned into a hier-
archical set of subspaces. The innermost subareas, namely
A1.1, A1.2, A1.3, and A1.4 constitute the next hierarchical
level namely A1. DCS is then used to dynamically abstract
and refine the subareas depending on the position and vicin-
ity of the mice in the model. In Figure 3(a), the vicinity of
all the mice are completely contained in a given subarea.
Consequently, retaining the space at its highest level of dis-
aggregation provides maximum performance.

However, as the mouse, m1 moves from subarea A1.1
toward A1.2, its vicinity spans 2 (or more) subareas and all
the mice in the subareas have to be considered for interac-
tion processing. Accordingly, as shown in Figure 3(b), the
subareas (A1.1 through A1.4) are abstracted into a larger
area (A1). Furthermore, the abstract area (namely A1)
does not account for movement of ticks, unlike the smaller
subareas (namely A1.1 · · ·A1.4) to minimize overheads.
This discrepancy in behavior does introduce some deviation
(about ±1% in our studies) which is assumed to be accept-
able for this study. deviation in the results with and with-
out DCS. However, in this study it has been assumed that
this deviation is acceptable. Conversely, when the mice are
in non-overlapping areas, the larger subarea A1 is refined
into smaller subareas to improve performance. During DCS
transformations, WESE’s state mapping API is used to pass
information about the position and life cycle status of ticks
in the area (in the form of kernel events).

The spatially explicit model of spread of Lyme disease

has been developed based on descriptions and parameters
obtained from previous studies performed by Deelman et
al [5, 6] and Ostfeld et al [11]. The model reflects the the in-
teraction cycle described in Section 2. As explained in Sec-
tion 5, the first (Mouse) and EcoArea components were
developed to capture the various interactions shown in Fig-
ure 2. As described by Deelman et al [5], the mice in the
simulation move around with a range of 400m2 per day in a
random fashion scouting for food. If a sexually active male
and female mice come in vicinity of each other, the female
mice gets pregnant. A pregnant mouse scouts around for a
nesting site and once a nest has been built, the mouse moves
back and forth to the nest looking for food. Mice give birth
to a litter (of 1-5 mice) after about 17-23 days. The babies
mature in about 10-14 days and move away from the nest-
ing site. The mother moves away from the nest once all the
babies have left the nest. A mouse has a random life time of
30 to 365 days at the end of which it dies. Birth and death of
mice is logical and a pool of inactive Mouse components is
maintained in a MouseStore component for this purpose.
The inactive Mouse components do not actively participate
in the simulation.

The EcoArea components are used to model the en-
vironment under study. The EcoArea components also
encapsulate a number of ticks that are at various stages in
their life-cycle. Since the number of ticks is large (about
1600/400m2), the ticks are not modeled as separate entities
and the EcoArea components are responsible for model-
ing the life cycle and movements of ticks. A similar ap-
proach has been previously employed by Deelman et al as
well [4, 6] to improve performance. The adult ticks in the
area move about a foot every 2 to 3 days [11]. However, it
must be noted that the abstract subareas do not perform tick
movements in order to minimize overheads. The EcoArea
components report statistics on the ticks at the end of sim-
ulation. The statistics include the number of ticks and per-
centage of infected ticks in each sub area. These statistics
are used to verify that consistent results are obtained with
and without DCS. In concordance with WESE’s API the
models were bundled into a EcoFactory for deployment
and further processing.

The interactions between mice and ticks are performed
through the EcoArea. Every mouse reports its position
to an appropriate EcoArea component. Each EcoArea
maintains the list of mice in its vicinity and provides feed-
back on proximity of mice to each other. In addition, they
check and trigger interactions with ticks in the vicinity of
a mouse. When DCS has been enabled, each EcoArea
utilizes the position of the mice to decide when to ag-
gregate and disaggregate themselves. A proactive DCS
triggering strategy has been employed as the scenarios in
which transformations need to occur can be detected apriori.
The proactive DCS transformations are triggered via API
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calls provided by WESE. Since DCS is performed using
WESE’s API, the changes to the subspace is transparent to
the Mouse components in the simulation. The EcoAreas
also generate and update their state with position of mice
whenever DCS is triggered using the state updation API of
WESE. The models for simulation have been developed by
suitably interconnecting the aforementioned EcoArea and
Mouse components.

7. Experiments

The experiments were conduced by developing differ-
ent configurations of Lyme Disease models. Some of the
salient characteristics of the models used in the experiments
are shown in Table 1. The #Subareas column indicates
the number of subareas into which the total area was subdi-
vided. Note that the space was divided into a square matrix
and the number in parentheses (in the #Subareas) indi-
cates the number of rows and columns into which the areas
was subdivided. The size of each subarea was fixed to be
200 square meters . For example, the total area in Eco1
model was 0.6 square kilometers which was subdivided into
4x4 grid consisting of 16 subareas. In all the models, 4 ad-
jacent subareas were abstracted into a single, more abstract
subarea. The top level of the hierarchy consisted of a sin-
gle large area. As indicated in Table 1, the different mod-
els contained different areas and densities of mice. Eco3
model had a higher density of mice than Eco2. However,
all of the models contained 3 hierarchies of subspaces. Each
subarea contained 1600 tick eggs out of which 15% were
seeded to be infected with the bacteria. All the simulations
start at late spring and the Eco system was simulated for 2
years in terms of simulation time.

The simulations were performed using a network of
workstations. Each workstation had two Athlon MP (2.0
GHz comparable) processors with 1 Gigabyte of RAM run-
ning Linux. The workstations were networked using gigabit
Ethernet. The models were simulated using the sequential
simulation mode of WESE as well as the parallel simulation
mode. For parallel simulation, the EcoFactory was de-
ployed on multiple machines and components from various
factories were used in the simulation. The default, random
partitioning provided by WESE was used for parallel simu-
lations. Verification of the results obtained from the simula-
tions was performed by comparing the number of infected
ticks at the end of simulation and ensuring the results were
sufficiently similar. Note that deviations arise because the
abstract EcoAreas do not perform tick movements to min-
imize overheads. In our experiments the deviations were
less than ±1%.

The statistics collated from the sequential and parallel
simulations performed using the different models are tabu-
lated in Table 2 and Table 3 respectively. The data shown in
both the tables are average values computed from 3 simula-

tion runs. The statistics in No DCS column (in Table 2 and
Table 3) did not involve any DCS and are base reference
numbers for performance comparisons. The reference per-
formance statistics were collated from optimal static con-
figurations of the model to ensure fair comparison and to
highlight the effectiveness of DCS. These optimal, static
(without DCS) configurations were determined empirically
— simulations with different subarea sizes were conducted
and the configuration that ran the fastest has been used as
the reference configuration. Note that the simulation time
varies from one static configuration to another because of
overheads and tradeoffs between the following interrelated
factors: (i) tick life cycle processing; (ii) state saving over-
heads; and (iii) mouse-tick interaction processing [5].

A trend of the DCS transformations that occur in the
Eco2 Lyme disease model is shown in Figure 4. The
trend is typical and reflective of the characteristics of other
models as well. As described earlier, the subareas are ab-
stracted whenever the vicinity of a mouse spills across sub-
area boundaries. On the other hand, refinement is triggered
when all mice in a given vicinity are in independent sub-
areas. Regions in which the number of active components
is higher indicates phases of higher performance. Initially,
the model starts off at an abstract level and consequently
there is a ramp up to the optimal operating region. Fur-
thermore, it must be noted that the DCS activity never sta-
bilizes to a quiescent point because of the constant move-
ment of mice in the simulation. As a result, there are ad-
ditional DCS related events (recollect that WESE uses an
event-based mechanism to sequence various DCS related
operations) processed in the case of simulations with DCS.

As indicated by the performance gains (Speedup col-
umn) in Table 2 and Table 3, DCS approach consistently
performs better than the non-DCS case in sequential and
parallel simulations respectively. As explained earlier, the
performance gains are measured against the most optimal
static configuration. As shown by the statistics, the pro-
posed strategy provides good performance improvements
even in the Eco3 model, even though the model undergoes
a large number of DCS transformations due to the high mice
density. This observation indicates that the overhead for

Model Simulation Time Speedup
ID (in seconds)

No DCS DCS
Eco1 3672.5 3123.5 14.89%
Eco2 17756.1 12668.2 28.65%
Eco3 23670.3 16872.5 28.71%

Table 2. Statistics from sequential simula-
tions
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Model ID Eco Area Number of Mice Total
Area #Subareas Male Female Inactive No. Of

(KM2) (Row x Col) Mice Mice Mice Comps.
Eco1 0.6 16 (4x4) 10 10 20 58
Eco2 2.56 64 (8x8) 25 25 50 127
Eco3 2.56 64 (8x8) 50 50 100 266

Table 1. Model characteristics

Model # Of Simulation Time Network Msgs. Rollbacks Speedup
ID CPUs (in seconds) (in millions) (in millions)

No DCS DCS No DCS DCS No DCS DCS

Eco1 2 5872.5 5177.6 25.44 19.21 4.5 3.97 11.84
4 6872.3 6342.7 29.43 22.71 6.1 4.93 7.71%

Eco2 2 40942.2 38047.3 91.45 72.9 38.66 17.97 7%
4 42944.5 39153.4 99.4 78.1 44.71 23.42 8.82%

Eco3 2 19827.4 16733.4 99.1 78.4 13.4 8.24 15.6%
4 18227.4 15987.8 102.1 82.3 11.2 6.37 12.28%

Table 3. Statistics from parallel simulations
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Figure 4. DCS trends in Eco simulation

DCS transformations is compensated by the performance
gains accrued by dynamically minimizing the model over-
heads. The DCS-based approach provided greater perfor-
mance improvements in the sequential case primarily be-
cause of the reduction in the computational time complexity
as described earlier.

On the other hand, the performance gains in parallel sim-
ulations were modest because of the following three fac-
tors: (i) when multiple CPUs were used, the computations
were distributed across the CPUs thereby mitigating the
gains of reducing the time complexity; (ii) a large number
of events were dispatched over the network (indicated by
the Network Msgs. column) increasing communication
overheads; and (iii) a large number of rollbacks that occur

due to the nature of the model. Note that the simulations
were throttled to control the number of rollbacks that oc-
cur. In fact the Eco2 and Eco3 models do not simulate
on more than two CPUs without throttling. However, the
inherent characteristics of the model which require events
to be scheduled well into the future (with respect to current
simulation time) prevented aggressive throttling. As shown
in Table 3, the smaller models, namely Eco1 and Eco2 did
not benefit from parallel simulation because the overheads
of parallel simulation outweighed the benefits. Conversely,
the larger model Eco3 had sufficient parallelism and work
load to benefit from parallel simulations. In this context, it
must be noted that the objective of this study is not to com-
pare the effectiveness of sequential and parallel simulations
but compare DCS versus non-DCS approaches. Further-
more, our experiments suggest that as the size of the model
increases, the benefits accrued by employing parallel simu-
lations and DCS increases. As indicated by the experimen-
tal results, the proposed DCS-based approach accelerates
the simulations by 7% to 28%.

8. Conclusion

This paper presented an alternative methodology for
accelerating simulations of spatially explicit Lyme dis-
ease models by dynamically changing the resolution of
the model at simulation runtime. The proposed approach
improves performance by minimizing computational over-
heads and trading off some fidelity (less than ±1%).
Changes to the resolution of the models were performed
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by applying Dynamic Component Substitution (DCS). The
DCS transformations proactively changed the spatial res-
olution to minimize the overheads of simulating interac-
tions between the entities in the model without significant
loss in fidelity, thereby improving performance. The paper
described the hierarchical, multi-resolution models devel-
oped as a part of this study. An overview of the modeling
and simulation environment used to develop and simulate
the models was also presented. The paper presented the
statistics obtained from sequential and parallel simulations
to highlight the effectiveness of the proposed approach.

The results collated from the experiments were presented
as empirical evidence to highlight the gains accrued by ap-
plying the proposed approach. The gains accrued in sequen-
tial simulations were more prominent than the gains from
the parallel simulations. Examination of the results indi-
cate that the overheads of parallel simulations mitigate the
benefits. The primary source of overheads were large vol-
umes of events that need to be exchanged over the network
between the workstations participating in the parallel simu-
lations. A dynamic process migration strategy may be used
to address this bottleneck and is a good candidate for future
investigations.

The results obtained from this study indicate that the pro-
posed strategy holds promise for accelerating the simula-
tions of other spatially explicit models. More specifically,
dynamic changes a model’s resolution can be used to accel-
erate simulations of spatially explicit models which the time
complexity of computing the interactions between n given
entities is O(n2) or greater. For example the proposed strat-
egy maybe suitably adapted and applied to simulation of
spatially explicit models of wireless ad-hoc networks. Fur-
thermore, the general purpose nature of this approach opens
up a number exciting opportunities to improve the overall
efficiency of simulations in several application domains.
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