
A CONCURRENT MULTI-TIER PRIORITY QUEUE FOR MULTITHREADED OPTIMISTIC
PARALLEL DISCRETE EVENT SIMULATION

Matthew DePero
CSE Department, Miami University

Oxford, OH 45056, USA.
email: deperomm@miamiOH.edu

Dhananjai M. Rao
CSE Department, Miami University

Oxford, OH 45056, USA.
email: raodm@miamiOH.edu

KEYWORDS
PDES, Time Warp, Multithreading, Lockfree, Concurrent
Pending Event Set, Threadsafe Datastructure

ABSTRACT

Multithreaded Parallel Discrete Event Simulation (PDES)
conducted using emerging shared-memory many-core CPUs
presents capacity for even greater performance. However,
realizing good performance is challenging and is contingent
on the data structures used for managing pending events.
Accordingly, we propose a lightweight, thread-safe prior-
ity queue called 3tSkipMT for managing pending events.
Our design takes advantage of contemporary synchroniza-
tion primitives, including atomics and lock-free instructions
to ensure good performance. 3tSkipMT has been incorpo-
rated into a significantly redesigned version of a parallel sim-
ulator called MUSE. Our investigations identify several crit-
ical design issues and we discuss novel solutions to address
them. The effectiveness of the proposed solution has been
assessed using the standard PHOLD benchmark. The exper-
iments show that our approach outperforms other state-of-
the-art methods by achieving good, near linear speedups of
~7.5× on 8 cores.

INTRODUCTION

Discrete event simulation is an important, scientific method-
ology that is used for analysis and design in many fields. The
rapid advancement in hardware has catalyzed the widespread
use of Parallel Discrete Event Simulation (PDES). Specifi-
cally, optimistic PDES have grown in importance as they pro-
vide improved parallelism and performance over conserva-
tive simulations in many scenarios (Jafer et al., 2013). Partic-
ularly, the rapid increase in the number of CPU-cores in ma-
chines, some with as many as 72 cores, has spurred research
into enabling efficient, multithreaded optimistic PDES by
leveraging shared-memory parallelism.
Shared-memory parallelism) offers two key advantages over
conventional distributed-memory parallelism. First, it elim-
inates communication overheads associated with exchang-
ing events between parallel processes. Figure 1 presents
an example of an optimistic PDES run on one compute
node using Cross Memory Attach (CMA) enabled Open-
MPI library (Rao, 2018). CMA uses Linux-kernel capabil-

0%

20%

40%

60%

80%

100%

10 100 1000 10000

P
e
rc

e
n

ta
g

e
 o

f
in

s
tr

u
c
ti

o
n

s

Range for agents interactions
(larger values increase probability of communication)

C
o
m

m
u

n
ic

a
ti

o
n

o
v
e
rh

e
a
d

s

Probe
Recv

Send
GVT

EventQ
Rollback

St. Save
GC

Infra.
Appl.

Other

Figure 1: Communication overheads in PDES

ities to directly move data from one process to another us-
ing shared memory. Nevertheless, despite effective parti-
tioning, with increasing interaction between processes, the
communication overheads exceed 65% as shown in Fig-
ure 1. This conspicuous overhead can be significantly
reduced through shared-memory PDES realized via mul-
tithreading (Rao, 2018). Second, multithreading reduces
memory requirements by allowing a single copy of an event
to be readily shared between multiple threads.

Challenges with efficient multithreaded PDES

In practice, realizing the aforementioned advantages of mul-
tithreaded PDES is challenging due to a myriad of con-
tention, consistency, and performance issues with multi-
threading. A crucial issue is efficiently managing the Pend-
ing Event Set (PES), i.e., set of timestamped events to be pro-
cessed chronologically. The PES is the central data structure
that experiences rapid enqueue, dequeue, and cancellation
operations concurrently from many threads. Avoiding race
conditions leads to heavy contention, thereby rapidly dimin-
ishing the realized speedup. For example, even with a recent
multithreaded optimistic PDES simulator from Ianni et al.
(2018), the observed speedup was only ~3× on 8 cores, in-
stead of the expected ~8×. Consequently, designing efficient
multithreaded PES data structures for PDES is a challenge
and is an active area of research (Rao and Higiro, 2019).

Overview of proposed research

In this study, we propose and explore a novel three-tier data
structure called 3tSkipMT to enable efficient multithreaded
PDES. The key advantages of its design include: ¶ multi-
tiered concurrent skip lists for reducing contention within
the data structure and · the use of lock-free operations to

mailto:deperomm@miamioh.edu
mailto:raodm@miamioh.edu

minimize the computational overheads due to contention.
The 3tSkipMT has been incorporated into a significantly re-
designed version of a parallel simulator called MUSE, to en-
able multithreaded PDES on shared-memory platforms. Our
investigations highlight several critical design issues in en-
abling efficient PDES. The effectiveness of the proposed so-
lution has been assessed using the well-established PHOLD
benchmark. Our solution achieves close to linear speedup of
up to ~7.5× on 8 cores.

BACKGROUND

An optimistic Parallel Discrete Event Simulation (PDES) is
organized as a set of interacting Logical Processes (LPs).
LPs are partitioned to execute on multiple threads or pro-
cesses, running on independent compute-elements such as:
compute nodes, CPU-cores, or even GPU-cores. LPs interact
with each other by exchanging virtual time stamped events.
Unlike in conservative PDES, in an optimistic PDES, the LPs
do not explicitly synchronize with each other. Instead, LPs
process events as soon as they are received, change their in-
ternal states and schedule new events into the future asyn-
chronously. This approach significantly improves concur-
rency but leads to causality errors in a PDES.

Time Warp is the most widely used synchronization proto-
col for optimistic PDES. In Time Warp, each LP maintains
its Local Virtual Time (LVT), tracking the timestamp of the
most recently processed event and saves its states keyed with
the corresponding LVT. Causal violations are detected by an
LP when it receives a straggler event, i.e., an event with
timestamp before LVT, indicating incorrect order of event
processing. The LP then rolls back to an earlier saved state,
sends out anti-messages to cancel events sent after the strag-
gler timestamp, and reprocesses events in correct timestamp
order. Anti-messages trigger rollback operations as needed
in other LPs. Rollback recovery requires maintaining states
and events which are periodically garbage collected based on
Global Virtual Time (GVT) estimates. GVT tracks the lowest
LVT to which an LP could rollback.

Pending Event Set (PES) for Time Warp

The Pending Event Set (PES) that contains events to be pro-
cessed. It strongly influences the overall performance of a
Time Warp based optimistic PDES because it is used to per-
form the following four key operations – ¶ Enqueue: This
operation adds one or more events to the pending event set, ·
Peek: Identify the LP with the lowest timestamped event to
be processed, ¸ Dequeue: In contrast to peek, this operation
removes the next events from the data structure for process-
ing by an LP, and ¹ Cancel: This operation is used as part of
rollback recovery process to remove all pending events sent
by a given LP (LPsender) to another LP (LPdest) at-or-after a
given virtual time (LV Trollback).

RELATED RESEARCH

The Pending Event Set (PES) is the primary data structure for
managing events to be processed in a PDES. Hence, there is
a breadth of literature offering a variety of PES implemen-
tations, each with its own pros and cons. One of the orig-
inal data structures used for this purpose was the Calendar
Queue (CQ) by Brown (1988). It is structured as an array
of buckets each associated with a fixed span of virtual time.
The width, or time span, associated with a bucket must be
carefully chosen, but when optimal, CQ allows for amortized
constant time enqueue of events and constant time retrieval
of the minimum timestamp event.
A popular variant of CQ is the Ladder Queue (LadderQ) pro-
posed by Tang et al. (2005). It outperforms several popular
structures, including the CQ. This is done through the reduc-
ing of bucket management overheads by allowing buckets to
be split dynamically when a bucket’s size exceeds a thresh-
old. Bucket splitting may result in a new rung to be added
to the latter queue. A key limitation of the LadderQ arises
in optimistic PDES – a complete linear scan of all events is
needed for event cancellations during rollbacks. The 2-Tier
Ladder Queue (2tLadder) proposed by Higiro et al. (2017)
addresses this issue by further subdividing a bucket. For
multithreaded optimistic PDES, Gupta and Wilsey (2014)
explore the use of lock-free queues for the bottom of the
LadderQ used for managing pending events.
The 3-tier Heap (3tHeap) was recently proposed for PES
(Rao and Higiro, 2019). This data structure conceptually
has 3-tiers, with the top tier heap sorting agents based on
their next available event, the second tier heap sorting events
for that agent into individual timestamps, and the third tier
vector holding the individual events at each timestamp. The
3tHeap has shown to achieve good performance gains over
2tLadderQ, in a broad range of settings, especially in opti-
mistic PDES with a large number of concurrent events (i.e.,
events with the same timestamp scheduled to the same LP).
Hence, in this research, we build on the multi-tiered philos-
ophy of 3tHeap. However, the 3tHeap is designed or a
single threaded operations and does not permit concurrent
operations from multiple threads. In contrast, we propose
a novel 3tSkipMT data structure that enables efficient con-
current multithreaded operations for high performance opti-
mistic PDES.
Wang et al. (2014) discuss issues of enabling effective, mul-
tithreaded PDES and show performance improvements on
a variety of CPU architectures. Multithreaded optimistic
PDES have been investigated and reported by a team of re-
searchers in Marotta et al. (2017) and Ianni et al. (2018).
Their simulator is called Ultimate Share Everything (USE),
which is similar to our proposed methodology. The USE sim-
ulator utilizes a conflict-resilient, lock-free calendar queue.
Our 3tSkipMT is similar in that it uses a lock-free approach
but in contrast, it uses a multi-tiered approach along with a
concurrent skip list. Similar to this research, every one of the
aforementioned investigations used the PHOLD performance
benchmark for assessments.

MULTITHREADED PARALLEL SIMULATOR

In this study we have enabled multithreaded, Time Warp
synchronized PDES by significantly redesigning an exist-
ing simulator called MUSE Rao (2018). We have adopted
the approach of enhancing MUSE because of several rea-
sons. First, MUSE already provides a well-designed Applica-
tion Program Interface (API) for modeling. Adhering to its
API enables reusing existing models, including the PHOLD
benchmark thereby easing verification and validation. Sec-
ond, MUSE’s simulation-kernel already provides the infras-
tructure for distributed, consistent, and verifiable execution
of optimistic PDES. Reusing this functionality minimizes
development overheads. Lastly, but importantly, MUSE al-
ready includes 3tHeap which is currently one of the fastest
data structures for managing Pending Event Set (PES). Even
though 3tHeap is designed for single-threaded operation,
it is still an excellent “point of reference” for performance
comparisons.
Figure 2 illustrates an overview of a multithreaded MUSE
PDES. The simulation consists of a given number of
simulation-kernel threads. The number of threads is spec-
ified as a command-line argument. There is inherently no
upper limit on the number of threads. However, for best per-
formance, the number of threads should be no more than the
number of CPU-cores. Each kernel thread is responsible for
enabling a Logical Process (LP) to operate on its next set of
events. The threads operate using a shared scheduler-queue
called 3tSkipMT that manages the PES. The 3tSkipMT is
centralized (i.e., manages events for all LPs) and enables
multiple threads to concurrently operate on independent LPs.
The next section presents details on the 3tSkipMT.

1
Pr

oc
es

s
w

ith
k

th
re

ad
s

3tSkipMT: Centralized PES priority queue

…LPLP LPLP

Kernel
Thread
(thread 1)

LPLP

…In
pu

t
Q

ue
ue

State Queue
…

… O
ut

pu
t

Q
ue

ue

LP

Kernel
Thread
(thread 2)

Kernel
Thread
(thread k)

…

LP

Figure 2: Overview of multithreaded MUSE PDES

Each simulation-kernel thread dequeues an LP with the next
lowest timestamped event from 3tSkipMT and process it.
Since dequeue removes the LP and the operation is thread-
safe, each thread acquires exclusive access to process an LP.
Note that at any given time each thread operates on only one
LP. However, each thread can concurrently enqueue future
events into the 3tSkipMT to any LP. Once an LP completes
processing events, the thread enqueues the LP back and pro-

ceeds to process the next LP. This scheme provides an inher-
ent load balancing scheme between the threads as opposed to
fixed partitioning of LPs to threads. Moreover, it reduces the
inherent time differences between LPs, thereby decreasing
the probability of causal violations. Nevertheless, concur-
rent processing of events can cause rollbacks during PDES.
The cancel operation on the 3tSkipMT enables efficiently
performing the necessary rollback operations. MUSE’s LP
API provides the necessary functionality for state saving and
rollback-based causality restoration using suitable input and
output event queues as shown in Figure 2.

Global Virtual Time (GVT) computation

In an optimistic PDES, states saved to enable rollback are
garbage collected based on GVT. With our multithreaded
simulations, we maintain a thread-local estimate of GVT. Pe-
riodically, the minimum of per-thread estimate is used to esti-
mate GVT. This approach is straightforward and efficient, but
the GVT can be underestimated, resulting in a slight increase
in memory footprint. Each thread uses the GVT estimate to
independently perform garbage collection in parallel.

Design for parallel garbage collection
In our proposed multithreaded PDES scheme, a single copy
of an event is shared between sending and receiving LPs.
Sending LPs maintain a reference for use during rollbacks.
Consequently, garbage collection of events needs to be cog-
nizant of concurrent use of events by two different LPs. Con-
sequently, we have implemented a Dual Reference Counter
(DRC) approach shown in Figure 3 to facilitate garbage col-
lection. The sending and receiving LPs update two separate
counters, thereby avoid race conditions. An event is deleted
only when both counters are zero, indicating no thread is
holding a reference to the event.

CreateNewEvent

Thread t1 Thread t2

tim
e

S
ha

re
d

S
ch

ed
ul

er
 Q

ue
ueoutputRef++

EnqueueEvent

e1e*1

FinishedWithEvent e*1

inputRef- -

e*1 DequeueEvent

ProcessEvent

inputRef++

outputRef- -
FinishedWithEvent

if (inputRef == 0 && outputRef == 0) recycle(event)

Figure 3: Dual Reference Counters approach used for con-
current garbage collection

DESIGN AND IMPLEMENTATION OF 3tSkipMT

The data structure used to manage the Pending Event Set
(PES) is called a scheduler-queue. It strongly influences the
overall performance of a Time Warp synchronized PDES. As
discussed in the BACKGROUND section, there are 4 key
operations that are performed on a scheduler-queue, namely:
enqueue, peek, dequeue, and cancel. These 4 operations have
very different temporal, spatial, and concurrency character-
istics. Consequently, as shown by our prior research (Rao
and Higiro, 2019), an efficient approach for developing a
scheduler-queue is to use a combination of different data
structures organized into independent tiers. Specifically, ins-
pried by the 3tHeap, we propose a 3-tiered, concurrent data
structure based on skip lists called 3tSkipMT.
An overview of the three tiers constituting 3tSkipMT is
shown in Figure 4. The first tier is a priority queue of LPs,
with priority being determined by the lowest timestamp event
to be processed. That is, the LP with the earliest timestamp
has the highest priority. This tier consists of a fixed number
of LPs, but their order continuously changes as events are
enqueued and dequeued in lower tiers. The second tier con-
sists of a list of buckets, ordered based on the timestamp of
events in a bucket. Each bucket contains a set of concurrent
events, i.e., events at the same timestamp, constituting the
third tier. The third tier is implemented using a standard C++
std::vector while the other two tiers use a concurrent skip
list is discussed next.

3
11

2
13

5
14

1
17

6
18

4
19

Agent ID:
Next Timestamp:

14

15

18

21

Tier-1: Agents

Tier-2: Timestamps

Tier-3: Events

14 14 14 14

15 15

21

18 18 18

Figure 4: Overview of 3 tiers in 3tSkipMT

Concurrent Skip List (for tiers 1 & 2)

In a multithreaded PDES, the first two tiers of the 3tSkipMT
will experience a significant number of concurrent opera-
tions, especially when event granularity is small. Conse-
quently, we have adapted a skip list proposed by Lindén and
Jonsson (2013) as the backing implementations for the first
two tiers. This skip list has shown to have particularly good
performance under very high contention conditions, yet are
relatively simple to implement. By making balancing deci-
sions for the search tree that are agnostic to the state of the
queue, skip lists are particularly useful in concurrent struc-
tures where contention for shared state is the primary bottle-
neck on performance.

Figure 5 illustrates the overview of our Concurrent Skip List
(CSL) adapted from Lindén and Jonsson (2013). Our CSL is
designed to handle simultaneous insert and delete operations
without data loss, duplication, or inaccuracy. There are two
important regions of the CSL: ¶ the upper level next[i] (i
> 0) skip links, are used to reduce search complexity when
traversing the queue top-to-bottom and · the bottom level
next[0] represents the true priority order of events in the
queue. The “height” of a level (l) for a single node is chosen
probabilistically (p(l)) via a geometric distribution p(l) =
0.5 · p(l − 1). Starting with a 100% probability of reaching
the bottom level, for a given level (l), the likely hood of a
node reaching the level above it is reduced by half. Hence,
traversing links from the top down creates an effective binary
search for long lists.

Head

-∞timestamp

next[0]

5 8 9 11 14 18

Tail

∞

deleted deleted Top

0

1

2

••
•

Le
ve

ls
 in

 s
ki

p
lis

t

next[1]

next[2]

••
•

Figure 5: Concurrent Skip List (CSL) used for tiers 1 & 2 of
3tSkipMT

Enqueue, Peek, & Dequeue operations
As a result of the CSL design, we can concurrently insert and
delete while maintaining causality by manipulating pointers
on level-0. Next, the higher levels are suitably restructured
to decrease search time but without impacting lower levels.
These operations are performed using the next[] pointer
while allowing for the detection of conflicting inserts and
deletes on the same node using atomic compare-and-swap
(CAS) instructions. Specifically, if a thread attempts to insert
a new node directly before a node that is also being modified
(by another thread), or if a thread attempts to delete the same
node as another thread, the CAS instruction will detect a con-
flict. Conflicts due to concurrent modifications cause opera-
tions on one of the threads to fail, prompting those threads to
then retry the operation.

Cancel operations: Issues & implementation
A novel modification that has been introduced in our CSL is
the ability to delete an arbitrary key from the middle of the
queue. Deleting arbitrary keys is required for event cancella-
tions associated with rollbacks in a Time Warp PDES. In ad-
dition, event cancellations also require re-prioritizing events
and LPs in two different tiers of 3tSkipMT. Accordingly,
implementation of event cancellation has been accomplished
by introducing a second atomic operation during event dele-
tion – i.e., in addition to flipping a deleted-bit on the next[]
pointer, we also clear the event pointer contained in the node
as part of the atomic CAS instruction. Flipping the deleted-
bit is performed to detect conflicting dequeue operations and
repeat them as part of lock-free operations. In addition, we

add the requirement that the thread must also set the value
reference to null, thereby logically deleteing the node to
successfully complete the operation.
This enhancement allows threads to logically delete an ele-
ment from the middle of the queue. However, these nodes are
not immediately deleted but are allowed to naturally prop-
agate to the top of the CPQ where they are detected and
deleted. Consequently, the memory footprint of the CPQ
slightly increases due to these logically deleted nodes. On
the other hand, this approach eliminates race conditions that
arise when two different threads attempt to insert a new node
immediately before the node being deleted. Importantly, it
enables us to reduce contention and improve scalability as
highlighted by our experimental results.

EXPERIMENTS & RESULTS

The primary objective of our research is to enable efficient
multithreaded PDES. Accordingly, we have a widely used
synthetic benchmark called PHOLD, discussed in the next sub-
section, for our experiments. Our initial set of experiments
focused on verifying that our proposed pending event set
queue 3tSkipMT was operating correctly . The next set of
experiments focused on exploring performance characteris-
tics of MUSE which are discussed in the latter subsections.
The last subsection presents some preliminary performance
comparisons with another Time Warp based simulator called
Ultimate Share-Everything (USE) by Ianni et al. (2018), to
provide a more comprehensive perspective on the scalability
of MUSE.

Experimental platform

The experiments were run on the Miami University Redhawk
Supercomputing cluster. Each node of the cluster contains
two Intel ® E5620 CPUs @ 2.4GHz providing a total of
8 cores (hyperthreading disabled) with 32 GB of RAM in
Non-Uniform Memory Access (NUMA) configuration. Tri-
als were individually run on a single dedicated compute node
with up to 8 threads (1 thread per core), with the average of
3 runs being taken per data point.

PHOLD synthetic benchmark

Proposed by Fujimoto (1990), PHOLD is widely used in
PDES investigations because it has shown to effectively em-
ulate the steady-state phase of a broad range of real world
models (Rao and Higiro, 2019). A key advantage of PHOLD is
that it includes a variety of settings that can be used to config-
ure the benchmark to mimic characteristics of different real
world models. The benchmark consists of a 2-dimensional
toroidal grid of interacting Logical Processes (LPs). The di-
mensions of the torus can be varied to reflect models of dif-
ferent sizes.
In PHOLD, the LPs exchange events between each other such
that the total number of events in the simulation remains a
constant. An event’s timestamp and destination LP are deter-

mined based on different distributions to characterize models
from various application domains. For example, a uniform
distribution is used to characterize events typically observed
in digital logic simulations. A poisson distribution is used
to reflect the properties of queuing systems and network
models. An exponential distribution is commonly used
to mimic processes in which events occur independently at a
given mean rate.

Event granularity
In real world models, event processing consumes CPU time,
which is called the granularity of an event. In PHOLD, event
granularity is characterized by performing a given num-
ber of trigonometric operations, that consume correspond-
ing amount of CPU time. From our prior research (Rao and
Higiro, 2019), we have used generalized sensitivity analysis
and we have identified that only two parameters play an influ-
ential role this research, namely: ¶ the number of LPs which
influences the net number of events in the simulation and ·
each event’s granularity. Accordingly, we explore these three
influential parameters in the following subsection for perfor-
mance assessments.

Scalability & performance results

Recently, in Rao and Higiro (2019) we presented a novel
single-threaded data structure called 3tHeap that outper-
formed other state-of-the-art datastructures for PDES. That
is, 3tHeap is currently one of the fastest datastructures
for PDES. Moreover, the 3-tier structure of our proposed
3tSkipMT is comparable to that of 3tHeap. Hence, in this
section, we compare the performance of 3tHeap to our new
3tSkipMT. However, it must be noted that 3tHeap is pri-
marily designed to operate in a single-threaded mode. Con-
sequently, we compare the scalability and performance of
3tSkipMT with respect to the single-threaded performance
of itself vs. 3tHeap.
The chart in Figure 6(a) illustrates the observed average run-
times with a different number of threads and different num-
ber of Logical Processes (LPs) in the PHOLD benchmark.
The chart also plots the average runtimes using the 3tHeap,
which is used as the reference for comparisons in this specific
analysis. As illustrated by the chart in Figure 6(a), the per-
formance of 3tSkipMT is lower than the 3tHeap by about
15% to 24%. This difference reflects two specific overheads
of the 3tSkipMT, namely: ¶ the overhead of using lock-
free instructions which are known to degrade Instructions Per
Clock-cycle (IPC) of the CPU (Rao, 2018), and · slight in-
crease in cache misses due to the use of linked lists in the
3tSkipMT. However, as the number of threads is increased,
the computation is spread across corresponding number of
CPU-cores, thereby decreasing the net runtime of the simu-
lations.
The plots in Figure 6(b) show the observed speedup real-
ized from using multiple threads. As shown by the curves,
as the number of threads are increased the performance of
the simulation proportionally increases. However, the ob-

 0

 10

 20

 30

 40

 50

 60

 70

 80

400 840 1600 2400 3480

R
u

n
ti

m
e
 (

s
e
c
)

Number of LPs in PHOLD

3tSkipMT: 1 Thread
3tSkipMT: 2 Threads
3tSkipMT: 4 Threads
3tSkipMT: 6 Threads
3tSkipMT: 8 Threads

3tHeap: 1 Thread

(a) Simulation runtime comparisons

 1

 2

 3

 4

 5

 6

 7

 8

 9

4
0

0

8
4

0

1
6

0
0

2
4

0
0

3
4

8
0

S
p

e
e
d

u
p

 (
o
v
e
r

3
tS

k
ip

M
T
:

1
 t

h
re

a
d

)

Number of LPs in PHOLD

2 Threads
4 Threads
6 Threads
8 Threads

(b) LPs vs. speedup

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 6 8

Note: Curves
overlap.

S
p

e
e
d

u
p

 (
o
v
e
r

3
tS

k
ip

M
T
:

1
 t

h
re

a
d

)

Number of threads

400 LPs
840 LPs
840 LPs
840 LPs
840 LPs

(c) Threads vs. speedup

Figure 6: Performance & scalability of 3tSkipMT

served speedup is below the theoretical speedup because of
contention between multiple threads that may need to oper-
ate on shared locations within the 3tSkipMT. That is, when
multiple threads operate on a shared location, the lock-free
operations succeed only on 1 thread while other threads
need to retry the operations, ensuring progress but impacting
speedups. The plots in Figure 6(c) present the same data but
from a scalability perspective. As illustrated by the relatively
linear speedup curves, the 3tSkipMT yields very good scal-
ability characteristics as the number of threads are increased.
Such scalability profile reflects the two key advantages of the
design of 3tSkipMT – i.e., ¬ reduced contention within the
data structure and the use of lock-free operations to mini-
mize the computational overheads due to contention.

Influence of event granularity

In PHOLD, event granularity characterizes the compute time
that an actual model would spend to process an event.
Note that granularity is an artificer of a model and not the
simulation-kernel or 3tSkipMT. However, it is an impor-
tant factor that indirectly influences the overall multithreaded
performance as it determines contention for shared memory
within the 3tSkipMT. Large granularity values reflect sce-
narios where threads are operating independently for longer
duration. On the other hand, small granularity values trans-
late to frequent operations on the shared 3tSkipMT from
multiple threads which increases the chance of contention.
Figure 7 plots the impact of granularity on multithreaded
simulation runtimes. The data was collected using a PHOLD

benchmark with 625 LPs, initialized with 3 events-per-LP.
The x-axis approximately (error< 0.1 µs) corresponds to the
event granularity. The slight approximation arises because
we perform a given number of trigonometric operations and
the actual CPU time taken to execute these operations varies
slightly during runtime.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

R
u

n
ti

m
e
 (

s
e
c
)

Event granularity (approximately in microseconds)

1 Thread
2 Threads
4 Threads
6 Threads
8 Threads

Figure 7: Influence of per-event granularity

As illustrated by the curves in Figure 7, the 3tSkipMT pro-
vides good multithreading performance as the event granu-
larity increases. The bottlenecks due to increased contention
are prominent only at zero granularity, where multithreaded
simulations using 2, 4, and 6 threads are slower than the
single-threaded one. The degradation in performance arises
due to high contention between threads trying to operate con-
currently and continuously on 3tSkipMT. A zero granularity
corresponds to a scenario where an actual model performs
no additional processing, other than to schedule new events.
In practice, however, every real world model performs some
operations for each event. Consequently, a zero granularity
scenario is purely a theoretical one used for empirical analy-
ses. For all practical granularities, the data structure rapidly
exhibits good performance highlighting the effectiveness of
its design – i.e., the design of 3tSkipMT is effective at min-
imizing contention, thus mitigating the overheads by using
lock-free operations.

Comparative scalability analysis

Scalability is a measure of how well a simulator is able to uti-
lize added resources, i.e., CPU cores. Scalability is important
to enable efficient multithreaded simulations, particularly on
many core CPUs. In order to determine the scalability of
3tSkipMT in a larger context, we have compared its scala-
bility to another simulator called Ultimate Share-Everything
(USE) by Ianni et al. (2018). It uses a Conflict Resilient
Calendar Queue (CRCQ) that is lock-free to enable multi-
threaded, Time Warp synchronized PDES. The design objec-
tives of CRCQ are very similar to that of 3tSkipMT. More-
over, USE has its own version of PHOLD benchmark, easing
the design of experiments.
For comparative analysis, we have configured USE to mirror
the same number of LPs, event distributions, and granular-
ity parameters used by our benchmarks. However, it must
be noted that USE is a completely different simulator when
compared to our experimental testbed. Consequently, a di-

rect comparison of the runtimes of two systems is not mean-
ingful. Instead, we only compare the relative behaviors of
the two systems from the perspective of scalability.
The charts in Figure 8 illustrate a comparison of the scala-
bility of 3tSkipMT versus CRCQ/USE for different granu-
larity settings. In these experiments, 3tSkipMT continues
to exhibit good scalability as the number of threads are in-
creased. For example, with 8 threads, 3tSkipMT provides
slightly over 7× speedup, at granularity > 50 µs. The scala-
bility profile of 3tSkipMT is substantially better when com-
pared to the scalability profile observed for CRCQ in Fig-
ure 8(b). The improved scalability profile is of 3tSkipMT
highlights one of the key benefits this novel data structure
for multithreaded PDES.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 50 100 150

S
p

e
e
d

u
p

 (
o
v
e
r

1
 t

h
re

a
d

)

Granularity (µs approx.)

(a) 3tSkipMT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 50 100 150

S
p

e
e
d

u
p

 (
o
v
e
r

1
 t

h
re

a
d

)

Granularity (µs approx.)

2 Threads
4 Threads
6 Threads
8 Threads

(b) CRCQ/USE

Figure 8: Influence of per-event granularity

CONCLUSIONS & FUTURE WORK

Current advances in hardware technologies are trending to-
wards high-density compute nodes with many-core proces-
sors. Commodity CPUs with 64 cores are projected to be
readily available in the next few years. The ongoing hard-
ware trends have catalyzed research into enabling efficient,
shared-memory Parallel Discrete Event Simulation (PDES)
to accelerating scientific discoveries. Multithreading is the
primary methodology used for realizing such parallel simu-
lations. In practice, realizing the aforementioned advantages
of multithreaded PDES is challenging due to a myriad of
contention, consistency, and performance issues with multi-
threading. In our preliminary studies, accomplishing opti-
mistic PDES using conventional lock-based data structures
was a challenge and we experienced large overheads.
This paper presented our efforts to enable efficient, scal-
able optimistic PDES on shared-memory platforms. The
paper presented the design and implementation of our mul-
tithreaded, Time Warp synchronized, general purpose par-
allel simulator called MUSE. The paper discussed the ratio-
nales underlying its design decisions. The cornerstone of our
multithreaded approach is a concurrent priority queue called
3tSkipMT that is used to manage the Pending Event Set
(PES). It is a shared centralized queue that manages pend-
ing events for all LPs in a multithreaded PDES. The design
permits a free thread to immediately schedule an LP to pro-

cess the next set of events. This scheme provides an inher-
ent load balancing scheme between the threads. Moreover, it
reduces the inherent time differences between LPs, thereby
decreasing the probability of causal violations.
The 3tSkipMT has been designed to be thread-safe – that
is, multiple threads can concurrently operate on it without
causing race conditions. Moreover, 3tSkipMT is designed
to maximize concurrency. Maximizing concurrency without
compromising thread safety has been facilitated using a 3-tier
design. Each tier is designed to efficiently perform a given
type of operation and to reduce contention between threads.
Furthermore, the first two tiers have been implemented using
a novel Concurrent Skip List (CSL) to minimize contention
between threads. The skip list operations use contemporary
lock-free operations to minimize contention overheads.
We have developed a novel method for logically deleting ar-
bitrary keys from the middle of the CSL. Even though the
event is tagged for garbage collection, the CLS-nodes are
not immediately deleted. Instead, we allow these nodes to
naturally propagate to the top of the CPQ where it is de-
tected and eventually deleted. Consequently, the memory
footprint slightly increases but ensures good scalability. In
addition, we have designed a dual reference counter approach
for GVT-based garbage collection. This approach enables
sharing a single copy of an event between LPs, thereby re-
ducing memory footprint. In addition, it permits threads to
perform garbage collection in parallel.
We have extensively verified and validated our multithreaded
parallel simulator using the PHOLD benchmark. In addition,
we have used PHOLD for performance assessment of our sim-
ulator. The experiments show that our methodology yields
almost linear scalability characteristic. We observed a very
good ~7.5× runtime reduction using 8 CPU-cores, particu-
larly for event granularity > 50 µs. In contrast, a recent
state-of-the-art simulator was unable to match our scalability
profile. Our experiments highlight the effectiveness of our
proposed methodology for enabling efficient multithreaded
optimistic PDES.

Future work

We are continuing our investigations to further improve the
performance of MUSE. There are a few aspects of 3tSkipMT
that can be further enhanced. First, we are exploring the pos-
sibility of minimizing pointer usage to improve CPU-cache
performance. Second, we are exploring algorithms for lock-
free restructuring of the upper tiers for faster scheduling of
LPs. We also plan to conduct experiments on higher density
compute nodes with up to 28 CPU-cores. Currently, our re-
search has focused on enabling multithreaded PDES on a sin-
gle compute node. The next major step would be to further
extend it to enable multithreaded PDES on a collection of
compute nodes. Such an extension would enable hybrid sim-
ulations involving a combination of shared- and distributed-
memory approaches. These aforementioned enhancements
would enable realizing efficient PDES on the next generation
of exascale supercomputers that are already on the horizon.

REFERENCES

Brown R., 1988. Calendar Queues: A Fast 0(1) Priority Queue
Implementation for the Simulation Event Set Problem. Commun
ACM, 31, no. 10, 1220–1227. ISSN 0001-0782. doi:10.1145/
63039.63045.

Fujimoto R.M., 1990. Performance of Time Warp under Synthetic
Workloads. In Proceedings of SCS Multiconference on Dis-
tributed Simulation. SCS, 1, 23–28.

Gupta S. and Wilsey P.A., 2014. Lock-free Pending Event Set Man-
agement in Time Warp. In Proceedings of the ACM SIGSIM
PADS. ACM, New York, NY, USA. ISBN 978-1-4503-2794-7,
15–26.

Higiro J.; Gebre M.; and Rao D.M., 2017. Multi-tier Priority
Queues and 2-tier Ladder Queue for Managing Pending Events
in Sequential and Optimistic Parallel Simulations. In Proceed-
ings of the 2017 ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation. ACM, ACM, New York, NY, USA,
SIGSIM-PADS ’17. ISBN 978-1-4503-4489-0, 3–14. doi:
10.1145/3064911.3064921.

Ianni M.; Marotta R.; Cingolani D.; Pellegrini A.; and Quaglia
F., 2018. The Ultimate Share-Everything PDES System. In
Proceedings of the 2018 ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. ACM, New York, NY,
USA, SIGSIM-PADS’18. ISBN 978-1-4503-5092-1, 73–84. doi:
10.1145/3200921.3200931.

Jafer S.; Liu Q.; and Wainer G., 2013. Synchronization methods
in parallel and distributed discrete-event simulation. Simulation
Modelling Practice and Theory, 30, 54–73. ISSN 1569-190X.

Lindén J. and Jonsson B., 2013. A Skiplist-Based Concurrent Pri-
ority Queue with Minimal Memory Contention. In R. Baldoni;
N. Nisse; and M. van Steen (Eds.), Principles of Distributed
Systems. Springer International Publishing, Cham. ISBN 978-
3-319-03850-6, 206–220.

Marotta R.; Ianni M.; Pellegrini A.; and Quaglia F., 2017.
A Conflict-Resilient Lock-Free Calendar Queue for Scalable
Share-Everything PDES Platforms. In Proceedings of the
2017 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation. ACM, New York, NY, USA, SIGSIM-PADS
’17. ISBN 978-1-4503-4489-0, 15–26. doi:10.1145/3064911.
3064926.

Rao D.M., 2018. Performance Comparison of Cross Memory At-
tach Capable MPI vs. Multithreaded Optimistic Parallel Simula-
tions. In Proceedings of the 2018 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. ACM, New York,
NY, USA, SIGSIM-PADS ’18. ISBN 978-1-4503-5092-1, 37–
48. doi:10.1145/3200921.3200935.

Rao D.M. and Higiro J.D., 2019. Managing Pending Events in
Sequential and Parallel Simulations Using Three-tier Heap and
Two-tier Ladder Queue. ACM Trans Model Comput Simul, 29,
no. 2, 9:1–9:28. ISSN 1049-3301. doi:10.1145/3265750.

Tang W.T.; Goh R.S.M.; and Thng I.L.J., 2005. Ladder Queue:
An O(1) Priority Queue Structure for Large-scale Discrete Event
Simulation. ACM Trans Model Comput Simul, 15, no. 3, 175–
204. ISSN 1049-3301.

Wang J.; Jagtap D.; Abu-Ghazaleh N.; and Ponomarev D., 2014.
Parallel Discrete Event Simulation for Multi-Core Systems:
Analysis and Optimization. IEEE Transactions on Parallel and
Distributed Systems, 25, no. 6, 1574–1584. ISSN 1045-9219.
doi:10.1109/TPDS.2013.193.

	INTRODUCTION
	Challenges with efficient multithreaded PDES
	Overview of proposed research

	BACKGROUND
	Pending Event Set (PES) for Time Warp

	RELATED RESEARCH
	MULTITHREADED PARALLEL SIMULATOR
	Global Virtual Time (GVT) computation
	Design for parallel garbage collection

	DESIGN AND IMPLEMENTATION OF 3tSkipMT
	Concurrent Skip List (for tiers 1 & 2)
	Enqueue, Peek, & Dequeue operations
	Cancel operations: Issues & implementation

	EXPERIMENTS & RESULTS
	Experimental platform
	PHOLD synthetic benchmark
	Event granularity

	Scalability & performance results
	Influence of event granularity
	Comparative scalability analysis

	CONCLUSIONS & FUTURE WORK
	Future work

