
Relaxing Causal Constraints in PDES�

Narayanan V. Thondugulam, Dhananjai Madhava Rao,

Radharamanan Radhakrishnan, and Philip A. Wilsey

Department of ECECS, University of Cincinnati,

P.O. Box 210030, Cincinnati, Ohio 45221, U.S.A.

Abstract

One of the major overheads that prohibits the wide
spread deployment of parallel discrete event simula-
tion (PDES) is the need to synchronize the distributed
processes in the simulation. Considerable investiga-
tions have been conducted to analyze and optimize the
two widely used synchronization strategies, namely the
conservative and the optimistic simulation paradigms.
However, little attention has been focussed on the de�-
nition and strictness of causality. Does causality need
to be preserved in all types of simulations? Previ-
ously, we had suggested an answer to this question.
We had argued that signi�cant performance gains can
be achieved by reconsidering this de�nition to decide if
the parallel simulation really needs to subscribe to the
preservation of causality. In this paper, we investigate
this issue even more closely. An in depth analysis using
several example simulation models is presented in this
paper. In addition, a comparative analysis between un-
synchronized and Time Warp simulation is presented.

1 Introduction

Despite its bene�ts, parallel simulation introduces
the need to periodically synchronize the simulating en-
tities for maintaining causality in the simulation. The
synchronization needed for parallel simulation intro-
duces overheads that often dominate simulator execu-
tion time. The notion of causality (or synchroniza-
tion) is embedded in every aspect of traditional paral-
lel discrete-event simulation (PDES). The distributed
synchronization techniques chiey fall under two cat-
egories, namely optimistic [5] and conservative [1].
While optimizations to these techniques have produced
a remarkable improvement in performance, researchers

�Support for this work was provided in part by the Advanced

Research Projects Agency under contracts J{FBI{93{116 and

DABT63{96{C{0055.

have constantly been faced with the problem of re-
ducing overheads in the simulation to improve per-
formance [3]. Traditionally, conservation techniques
have had to contend with the overheads of lookahead
and deadlock avoidance & recovery [4] while optimistic
techniques, such as Time Warp, have had to contend
with rollback and state saving overheads [12]. Several
of these overheads can be attributed to the synchro-
nization (or maintaining causality) requirement of the
simulation technique.

In our earlier work [13], we motivated the need for
studying unsynchronized simulation. We investigated
the notion of ignoring causality violations (and thereby
avoid synchronization altogether) and studied the con-
sequences of such a step. We had conducted a prelim-
inary analysis and had presented our early results. In
this paper, we presented an in depth study of the ef-
fect of unsynchronized simulation on queuing models
and computer network models to analyze and charac-
terize the simulation outputs. To verify the correctness
of the simulation outputs, we compare the results with
results obtained fromwarped [11], a Time Warp based
parallel discrete event simulator. The remainder of this
paper is organized as follows. Section 2 overviews par-
allel discrete event simulation. In Section 3, the moti-
vation for studying unsynchronized parallel simulation
in distributed environments is discussed. In Section 4,
we present the models developed to evaluate the unsyn-
chronized simulator. Finally, Section 5 presents some
concluding remarks.

2 Background

In this section, a brief overview of PDES[3] is pre-
sented. In PDES, the model to be simulated is de-
composed into physical processes that are modeled as
simulation objects. Each simulation object is assigned
to a Logical Process (LP); the simulator is composed
of a set of LPs concurrently executing their simulation
objects. Simulation objects communicate by exchang-



ing time-stamped messages through the LPs. Thus,
each LP (which can be associated with multiple sim-
ulation objects) receives messages from other LPs and
forwards them to the destination objects. In order
to maintain causality, LPs must process messages in
strictly non-decreasing time-stamp order [5, 7]. There
are two basic synchronization protocols used to ensure
that this condition is not violated: (i) conservative and
(ii) optimistic. Conservative protocols [1, 9] strictly
avoid causality errors, while optimistic protocols, such
as Time Warp [5] allow causality errors to occur, but
implement some recovery mechanism.

3 Why Unsynchronized Simulation?

Is synchronization overrated? This is precisely the
question we seek to investigate and study. Nicol [10]
reminds us of the dangers of allowing \risk" when syn-
chronizing a parallel discrete event simulation; a sim-
ulation code that runs correctly on a serial machine
may, when run in parallel, fail catastrophically. This
can happen when Time Warp presents an \inconsis-
tent" message to an LP, a message that makes abso-
lutely no sense given the LP's state. Failure may result
if the simulation modeler did not anticipate the possi-
bility of this inconsistency. While the problem is not
new, there has been little discussion on how to deal
with this problem; furthermore the problem may not
be evident to new users of parallel simulation.

While Nicol [10] reports how this problem may oc-
cur and the damage it may cause, this paper presents
a di�erent approach to this problem. What if the
modeler was aware of the occurrence of inconsistent
messages in a simulation and chooses to ignore them?
This is particularly true if the modeler was more in-
terested in quick and less accurate results as opposed
to highly accurate results. This is, of course, depen-
dent on the application being simulated and the type
of results that are monitored. Martini, R�umeskasten
and T�olle [8] experiment with the notion of relaxing
causality in their simulations of interconnected com-
puter networks. In their experiments, optimistic exe-
cution is performed within intervals of a conservatively
synchronized simulation and no recovery scheme is in-
voked when a causality violation is encountered. While
this exposes the simulation to erroneous computations,
Martini et al argue that the advantages of \tolerant or
relaxed synchronization" heavily outweigh the disad-
vantages of such an approach. Speci�cally, they men-
tion that the error in the simulation results is low and
very often within the range of the con�dence intervals.
In addition, Martini et al report that the simulation
execution times can be signi�cantly reduced with the

introduction of tolerant synchronization and this re-
duction in execution time is a very \practical" advan-
tage of tolerant synchronization.

In this paper, we investigate this notion of relax-
ing causality in more detail and study the e�ects of
ignoring causality in simulations. Only the systems
that exhibit stochastic behavior were considered for
unsynchronized simulation. In particular, we looked
at discrete queuing network applications which form a
vast majority of real life systems. For this purpose,
an unsynchronized simulator (called NoTime) was de-
veloped along with a library of queuing models and
computer network models. A detailed description of
the architecture of the NoTime simulation kernel is
available in the literature [13].

4 Analysis

Unsynchronized simulation can be applied to ob-
serve lumped properties of a number of discrete-time
Markov chains which are easy to conceptualize and un-
derstand [6]. Queuing systems can be considered as a
case of feedback networks, where the feedback path
results from the server interacting with the queue to
select the next customer. The feedback nature of a net-
work makes it more di�cult to perform distributed syn-
chronization. In addition, unsynchronized simulation
has a greater probability of yielding inaccurate results.
However, the stochastic nature of the queuing model
makes it an interesting case for simulation using un-
synchronized simulation. Queuing systems are a sub-
set of birth-death processes. The arrival of a customer
to a queue can be represented as a birth in the system.
When a customer leaves a queue (before or after being
serviced) can be modeled as a \death". Queuing sys-
tems play a central role in a number of important phys-
ical systems. Simulation has often been employed when
mathematical analysis of complex queuing systems be-
comes intractable. The queueing model we consider is
a very general queueing G=G=m system [6]. This is
a system whose inter-arrival time distribution is com-
pletely arbitrary and whose service time distribution is
also arbitrary (all inter-arrival times are assumed to be
independent of each other). The system has m servers
and order of service is also quite arbitrary (in particu-
lar, it need not be �rst-come-�rst-serve). The queuing
library developed is based on these queuing systems.
A number of parameters of the queuing system can
be speci�ed in the library. The parameters that can be
evaluated using these models are average of wait times,
average queue length, average of server idle times and
average server utilization.

A computer network model is an example of a feed-



forward network where messages are exchanged be-
tween two arbitrary nodes through some intermediate
nodes. The stochastic nature of a computer network
model makes it suitable for unsynchronized simulation.
The messages are generated randomly based on some
random distributions e.g., Poisson or Normal. The
network model consists of sets of nodes connected to
routers. The number of nodes and routers and their
interconnections can be speci�ed in the con�guration
�le. The network tra�c can be adjusted by varying the
message generation rate � at each of the nodes. The
other parameters that can be �ne-tuned are the service
times and bu�er sizes of routers and the network prop-
agation delays. The routing algorithm is static which is
evaluated once the network topology is known. Perfor-
mance characteristic of the network can be monitored
by observing the average message latencies and router
utilization.

Several experiments were conducted using the devel-
oped models to evaluate the accuracy and performance
of the NoTime kernel. The simulations were per-
formed on dual Pentium-Pro(x686) workstations run-
ning Linux version 2.0.33. The experiments conducted
can be divided into two categories (i) those performed
to assess the accuracy of NoTime and (ii) those per-
formed to evaluate the performance of NoTime.

4.1 Accuracy of NoTime

The �rst question that comes to mind while consid-
ering unsynchronized simulation is the accuracy of un-
synchronized simulations. The limits of the kernel were
explored towards answering this issue. The primary
factors a�ecting the accuracy of simulation are proces-
sor speeds, communications latencies, granularity, par-
titioning and execution time of simulations (in terms
of events processed). The �rst two factors (processor
speeds and communication latency) are not within the
control of the simulator. Hence, granularity, partition-
ing, and length of simulations were varied to study their
e�ects on accuracy. Since the simulation environment
consisted of only dual Pentium-Pro workstations run-
ning Linux, the processor speeds were uniform except
when the work load assigned to each machine was dif-
ferent.

In the �rst set of experiments, di�erent partitioning
schemes were devised to assess their e�ects on accu-
racy. As expected, the simulation results were quite
sensitive to partitioning. Table 1 shows a comparison
of the results of di�erent partitioning strategies and
their deviations from desired result. A general exam-
ple of a queuing system encountered in banks or airline
reservations counters, with a source feeding a simple

Clients Real LPs Avg Qlen/Partition
Qlen 1 2 3

10000 45.0 2 829.2 34.1 27.4
3 848.5 205.1 46.1

4 1270.0 461.6 39.8
50000 129.3 2 8809.8 120.7 83.0

3 6381.5 1457.8 70.0
4 8650.5 2667.4 89.6

100000 204.5 2 2483.2 224.0 166.3
3 12650.7 2361.8 145.2
4 177218 5790.8 193.4

300000 392.4 2 16251.1 541.3 445.4

3 31449.5 7528.6 509.1
4 123265 14116.8 485.8

500000 663.3 2 34510.1 854.9 750.4

3 56052.8 12529.6 799.6
4 132783 28495 784.8

Table 1. Effect of 3 different partitions

FIFO queue served by a number of servers was used.

In the �rst partitioning scheme, the simulation ob-
jects were evenly distributed across the processors.
e.g., if there are nine servers and three CPUs then each
processor would be allocated 4 objects since the to-
tal number of simulation objects equals twelve. In the
second partitioning strategy, source, queue and sink
objects were assigned one processor and the servers
were evenly distributed across the remaining proces-
sors. In the third strategy, the source and the queue
object were assigned one processor while the server and
sink objects were evenly distributed across remaining
processors. It is clear from the table that the third
partitioning strategy is the most e�ective and the re-
sults are fairly accurate for any number of processors.
Several con�gurations of the queuing model were sim-
ulated with varying processor loads, to test the sta-
bility of the third partitioning scheme. In a majority
of the test cases results were fairly accurate indicating
the feasibility of unsynchronized simulation under suit-
able partitioning schemes. In the second set of exper-
iments, the granularity of the events were varied. The
granularity of the events(customers) was increased in
order to make the time spent in communicating events
a small fraction of the event processing time. As ex-
pected, the results were far more accurate and the de-
pendency of simulation on communication latency and
on partitioning could be eliminated. Beyond a certain
granularity it was noticed that the simulation results
tend to stabilize. In accordance with the strong law of
large numbers, the various random parameters of the
queuing system smoothen out and converge to the ex-



Messages AML LPs AML Error(%)
(actual) (observed)

1500 2794.6 2 2853.4 2.10
3 2801.8 0.25
4 2826.1 1.12

3000 5506.6 2 5532.7 0.47
3 5517.2 0.19
4 5537.4 0.55

6000 10917.8 2 10968.0 0.45
3 10946.5 0.26
4 10978.5 0.55

9000 16325.9 2 16370.6 0.27
3 16370.6 0.27
4 16374.6 0.29

12000 21744 2 21770.2 0.12
3 21777.4 0.15
4 21782.8 0.17

15000 27159.4 2 29106.6 7.16
3 27196.9 0.13
4 27184.4 0.09

18000 32564.3 2 33751.6 3.64
3 32611.2 0.14
4 32594.4 0.09

Table 2. Average Message Latency (AML)

pected values as the simulation progresses. The various
deviations from the mean value (mainly due to causal
violations) cancel out each other, thus stabilizing the
observed data.

Table 2 shows a comparison of the actual versus
the observed average message latency (AML) obtained
by simulating the computer network model with No-

Time. The NoTime kernel simulates to a high degree
of accuracy as can be noticed from the table. The
feed-forward nature of the model makes it suitable for
unsynchronized simulation. For arriving at fast and
approximate solutions, NoTime is certainly e�cient.
One of the limitations with the NoTime kernel is in
case of bounded bu�er sizes of routers where the re-
sults tend to be less accurate.

4.2 Performance of NoTime

One of the compelling reasons for experimenting
with an unsynchronized simulator was to achieve sig-
ni�cant performance gains over the synchronous sim-
ulators. Synchronization costs for distributed simula-
tion forms a major overhead with the result sequen-
tial simulation is faster than parallel simulation. This
is especially true for �ne grained applications where
the communication and synchronization costs are high
Several experiments with varying granularity and mes-

sage tra�c were performed to characterize the perfor-
mance of the NoTime simulation kernel. The results
obtained were compared against the warped kernel.
The warped kernel was con�gured with infrequent
state saving [2] for all the simulations to minimize the
time taken. This con�guration reduces the memory re-
quirements drastically especially for high message traf-
�c networks.

Figures 1 and 2 shows a comparison of the time
taken for the simulation of a simple queuing model
in NoTime and warped kernels. It can be noticed
from the graph that the scalability of the NoTime ker-
nel is almost linear. On the other hand, the warped
simulator take almost a quadratic/exponential time.
The memory requirements of Time Warp simulators
increases exponentially with the size of the applica-
tion. This is especially true for some con�gurations of
the queuing model where the system is unstable. A
queueing system is said to be unstable when the net
inow into the system is more than the net outow,
resulting in a queue overow. In such cases the state
of the queue object is very large and the performance
of time warp simulator degrades rapidly due to state
saving costs.

Figures 3 and 4 shows a comparison of the time
taken to simulate the computer network model with
the NoTime and warped kernels. Again the speed up
achieved is signi�cant. The con�guration for which the
readings are shown, is a case of a high tra�c network
where router utilization is high. For such con�gura-
tions, optimistic simulators pay heavy synchronization
costs in terms of state saving and rollbacks. This set
of experiments demonstrate the fact that for fast, ap-
proximate solutions, NoTime is ideal. In addition, for
large simulations, Time warp simulators run into mem-
ory exhaustion problem as compared to NoTime which
is highly scalable. The graphs for timing information
clearly depict the fact that NoTime makes large scale
simulation feasible.

5 Conclusions and Future Work

In this paper, we have presented the bene�ts of re-
laxing (or completely doing away with) strict causal ad-
herence in parallel and distributed simulation of queue-
ing systems. We have argued that it is not always nec-
essary to synchronize and incur the overheads of syn-
chronization. In our earlier study [13], we introduced
the idea of unsynchronized simulation. In this paper we
have added more experiments to demonstrate the feasi-
bility of unsynchronized simulation. The experiments
show the suitability of unsynchronized simulation to
stochastic models.



0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

T
im

e
 T

a
k
e
n
 (

s
)

No. Customers

NoTime
Warped

Figure 1. 2 LPs

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

T
im

e
 T

a
k
e
n
 (

s
)

No. Customers

NoTime
Warped

Figure 2. 3 LPs

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 T

a
k
e
n
 (

s
)

No. Messages

NoTime
Warped

Figure 3. 2 LPs

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 T

a
k
e
n
 (

s
)

No. Messages

NoTime
Warped

Figure 4. 3 LPs

The results presented in this paper clearly show the
advantages of ignoring causality in simulations. Specif-
ically, they are as follows: (i) faster simulation execu-
tion times, (ii) memory consumption is a fraction of
what is needed for Time Warp simulation (as states
are not saved), (iii) data obtained from unsynchronized
simulation closely follow the data obtained from a Time
Warp synchronized simulation (error rate is less than
2% on the average for our experiments), and (iv) no
change in the modeling paradigm is required for such
systems.

Of course, the unsynchronized simulation introduces
errors in the simulation results. But our results show
that this error is very small in many cases, sometimes
even within the level of con�dence for the correct re-
sults. The simulation is sensitive to the partitioning
strategy which when carefully devised can overcome
the dependence of simulation on load variations. In
addition, by increasing the event granularity, the de-
pendence on communication latencies can be reduced.
More studies to control asynchronism and to reduce
sensitivity to load variations is currently ongoing. Sta-
tistical techniques to recover from errors are also being
investigated.

References

[1] K. M. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computations.
Communications of the ACM, 24(11):198{206, Apr.
1981.

[2] J. Fleischmann and P. A. Wilsey. Comparative anal-
ysis of periodic state saving techniques in Time Warp
simulators. In Proc. of the 9th Workshop on Parallel
and Distributed Simulation (PADS 95), pages 50{58,
June 1995.

[3] R. Fujimoto. Parallel discrete event simulation. Com-
munications of the ACM, 33(10):30{53, Oct. 1990.

[4] B. Groselji and C. Tropper. A deadlock resolution
scheme for distributed simulations. Transactions of the
Scociety for Computer Simulation, 6(2):89{132, Apr
1989.

[5] D. Je�erson. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems, 7(3):405{425, July
1985.

[6] L. Kleinrock. Queueing Systems. John Wiley & Sons,
New York, NY, 1975.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of ACM,
21(7):558{565, July 1978.

[8] P. Martini, M. R�umekasten, and J. T�olle. Toler-
ant synchronization for distributed simulations of in-
terconnected computer networks. In Proc of the
11th Workshop on Parallel and Distributed Simulation
(PADS 97), pages 138{141. Society for Computer Sim-
ulation, June 1997.

[9] J. Misra. Distributed discrete-event simulation. Com-
puting Surveys, 18(1):39{65, Mar. 1986.

[10] D. Nicol and X. Liu. The dark side of risk (what
your mother never told you about Time Warp). In
Proc. of the 11th Workshop on Parallel and Distributed
Simulation (PADS 97), pages 188{195, June 1997.

[11] R. Radhakrishnan, D. E. Martin, M. Chetlur, D. M.
Rao, and P. A. Wilsey. An Object-Oriented Time
Warp Simulation Kernel. In D. Caromel, R. R. Olde-
hoeft, and M. Tholburn, editors, Proceedings of the
International Symposium on Computing in Object-
Oriented Parallel Environments (ISCOPE'98), vol-
ume LNCS 1505, pages 13{23. Springer-Verlag, Dec.
1998.

[12] R. Rajan, R. Radhakrishnan, and P. A. Wilsey. Dy-
namic cancellation: Selecting Time Warp cancellation
strategies at runtime. VLSI Design, 1999. (forthcom-
ing).

[13] D. M. Rao, N. V. Thondugulam, R. Radhakrishnan,
and P. A. Wilsey. Unsynchronized parallel discrete
event simulation. In Proceedings of the 1998 Winter
Simulation Conference, Dec. 1998.


