
An Object-Oriented Framework for Parallel

Simulation of Ultra-large
Communication Networks?

Dhananjai Madhava Rao and Philip A. Wilsey

University of Cincinnati, Cincinnati, OH, USA

Abstract. Communication networks have steadily increased in size and
complexity to meet the growing demands of applications. Simulations
have been used to model and analyze modern communication networks.
Modeling and simulation of networks involving thousands of nodes is
hard due to their sheer size and complexity. Complete models of the ultra-
large networks need to be simulated in order to conduct in-depth studies
of scalability and performance. Parallel simulation techniques need to be
efficiently utilized to obtain optimal time versus resource tradeoffs. Due
to the complexity of the system, it becomes critical that the design of
such frameworks follow well established design principles such as object
oriented (OO) design, so as to meet the diverse requirements of portabil-
ity, maintainability, extensibility, and ease of use. This paper presents the
issues involved in the design and implementation of an OO framework to
enable parallel simulation of ultra-large communication networks. The
OO techniques utilized in the design of the framework and the appli-
cation program interfaces needed for model development are presented
along with some experimental results.

1 Introduction

Communication networks coupled with the underlying hardware and software
technologies have constantly increased in size and complexity to meet the ever
growing demands of modern software applications. The Internet, a global data
network, now interconnects more than 16 million nodes [1]. Modeling and study-
ing today’s networks with their complex interactions is a challenging task [1,2].
Simulation has been employed to aid the study and analysis of communica-
tion networks [2]. Parallel simulation techniques have been employed in large
simulations to meet the resource requirements and time constraints. The net-
work models are critical components of simulation analyses that should reflect
the actual network sizes in order to ensure that crucial scalability issues do not
dominate during validation of simulation results [1]. Many networking techniques
that work fine for small networks of tens or hundreds of computers may become
impractical when the network sizes grow [1]. Events that are rare or that do not
? Support for this work was provided in part by the Defense Advanced Research

Projects Agency under contract DABT63–96–C–0055.

S. Matsuoka et al. (Eds.): ISCOPE’99, LNCS 1732, pp. 37–48, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

38 Dhananjai Madhava Rao and Philip A. Wilsey

even occur in toy models may be common in actual networks under study [1].
Since today’s networks involve a large number of computers ranging from a
few thousands to a few million nodes, modeling and simulating such ultra-large
networks is necessary.

Parallel simulation of ultra-large networks involves complex interactions be-
tween various components and places high demands on system resources — es-
pecially system memory. Hence, the data structures used in the system must be
optimally designed with robust interfaces to enable efficient exchange of control
and data in the distributed system [3]. To ease modeling, verification, simula-
tion, and validation of ultra-large networks, well defined design principles such
as object oriented (OO) design must be employed. In order to meet these diverse
needs, an OO framework for simulation of ultra-large communication networks
was developed. The framework is built around warped [3], an optimistic parallel
simulation kernel. The framework is implemented in C++ and utilizes the OO
techniques of inheritance, virtual functions, and overloading to develop efficient
and robust interfaces.

The issues involved in the design and implementation of the framework along
with a compendium of OO techniques used are presented in this paper. In Sect. 2
some of the related work in large scale network simulations are presented. Sec-
tion 3 contains a brief description of warped. A detailed description of the
framework and the application program interface (API) along with the OO
techniques employed in their design and implementation are presented in Sect. 4.
Some of the experiments conducted using the framework are presented in Sect. 5.
Section 6 contains some concluding remarks.

2 Related Work

Simulation of large scale network models has received considerable attention
in the past. Various combination of techniques have been used to improve the
capacity and efficiency of large scale network simulations. Huag et al present
a novel technique to selectively abstract details of the network models and to
enhance performance of large simulations [4]. Their technique involves modifi-
cation of the network models in order to achieve abstraction [4]. Premore and
Nicol present issues involved in development of parallel models in order to im-
prove performance [5]. In their work, they convert source codes developed for
ns, a sequential simulator to equivalent descriptions in Telecommunications De-
scription language (TeD) to enable parallel simulation [5]. Coupled with meta
languages (such as TeD) [5], parallel network libraries and techniques to trans-
parently parallelize sequential simulations have been employed [4]. Relaxation
and even elimination of synchronization, a large overhead in parallel simulations,
has been explored [6,7]. The relaxation techniques attempt to improve perfor-
mance at the cost of loss in accuracy of the simulation results [6]. Fall exploits
a combination of simulation and emulation in order to study models with large
real world networks [8]. This method involves real time processing overheads and
necessitates detailed model development.

An Object-Oriented Framework for Parallel Simulation 39

In this paper, we present a technique for collating similar object descriptions
to reduce and regulate the memory consumptions of the model and the simu-
lation kernel. OO techniques have been employed to provide a robust API to
ease model development and insulate the users from the underlying details. The
API is similar to warped, the underlying simulation kernel. This enables other
networking models, such as active networking models [9], to seamlessly inter-
operate with the framework. The paper also demonstrates effectiveness of the
framework to enable ultra-large network simulations by providing experimental
results.

3 Background

The framework for ultra-large networks simulation is built around the warped
simulation kernel. warped [3] is an optimistic parallel discrete event simulator
and uses the Time Warp mechanism for distributed synchronization. In warped,
the logical processes (LPs) that represent the physical processes being modeled
are placed into groups called “clusters”. The clusters represent the operating
system level parallel processes constituting the simulation. LPs on the same
cluster directly communicate with each other without the intervention of the
messaging system. This technique enables sharing of events between LPs, which
considerably reduces memory overheads. Communication across cluster bound-
aries is achieved using MPI. LPs within a cluster operate as classical Time Warp
processes; even though they are grouped together, they are not required to op-
erate in time lockstep. A periodic garbage collection technique based on Global
Virtual Time (GVT) is used. warped presents a simple and robust OO appli-
cation program interface (API). Control is exchanged between the application
and the simulation kernel through cooperative use of function calls. Further de-
tails on the working of warped and information on its API are available in the
literature [3].

4 The Ultra-large Scale Simulation Framework (USSF)

The ultra-large scale simulation framework was developed to ease modeling and
simulation of large communication networks. As shown in Fig. 1, the primary in-
put to the framework is the topology to be simulated. The syntax and semantics
of the input topology is defined by the Topology Specification Language (TSL),
which provides simple and effective techniques to specify hierarchical topolo-
gies [9]. The topology is parsed into an OO Intermediate Format (TSL-IF).
Static analysis is performed on the intermediate format to extract and collate
common object definitions. The analyzed TSL-IF is then used to generate an
optimal simulatable network topology. The current implementation of USSF, in
conjunction with warped and the generated code, is in C++. The generated
topology includes code to instantiate the necessary user defined modules that
provide descriptions for the components in the topology. The generated code is

40 Dhananjai Madhava Rao and Philip A. Wilsey

Static Analyzer &
Code Generator

USSF
Library Library

WARPED

USSF API Compliant
Application Modules

Application

USSF Kernel

WARPED Kernel

Model

TSL-IF

TSL Parser
Simulation
Topology

+

Developed by Modeler

final executable

Fig. 1. Overview of USSF

compiled along with the USSF library, the warped library, and the applica-
tion program modules to obtain the final simulation executable. The following
sections describe the various components in detail.

4.1 Topology Specification Language (TSL)

The topology of the network to be simulated is provided to the framework in
Topology Specification Language (TSL) [9] syntax. A TSL specification consists
of a set of topology specifications. Each topology specification consists of three
main sections, namely; (i) the object definition section that contains the details
of the modules to be used to simulate the topology; (ii) the object instantiation
section that specifies the various nodes constituting the topology; and (iii) the
netlist section that defines the interconnectivity between the various instanti-
ated components. An optional label may be associated with each topology. The
label may be used as an object definition in subsequent topology specifications
to nest a topology within another. In other words, the labels, when used to in-
stantiate an object, result in the complete topology associated with the label to
be embedded within the instantiating topology. Using this technique, a simple
sub-net consisting of merely ten nodes can be recursively used to construct a
network with six levels of hierarchy to specify a million (106) node network.

The input topology configuration is parsed by a TSL-Parser into an OO TSL
Intermediate Format (TSL-IF). The current implementation of the TSL-Parser is
built using the Purdue Compiler Construction Tool Set (PCCTS) [10]. TSL-IF is
designed to provide efficient access to related data from the various TSL sections.
Each component of the grammar is represented by a corresponding TSL-IF node
(or object). Every node in TSL-IF is built from the same basic building block; in
other words, every node is derived from the same base class. The intermediate
format is composed by filling in the appropriate references to the different nodes
generated by the parser. Since composition is achieved via base class references,
each node can refer to another node or even a sub network. This mechanism
provides an efficient data structure for representing and analyzing hierarchical
networks.

An Object-Oriented Framework for Parallel Simulation 41

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

M
em

or
y

co
ns

um
ed

 (
K

B
)

Number of network nodes

OO TSL-IF
Non-OO TSL-IF

Memory consumption

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000

T
im

e
(s

ec
)

Number of network nodes

OO TSL-IF
Non-OO TSL-IF

Time for parsing

Fig. 2. Quantitative comparison between object-oriented (OO) and non-OO
techniques used to construct TSL-IF

Prior to such an OO implementation of the IF, references to sub networks
were replaced by their definitions; that is, “elaboration” was performed by

42 Dhananjai Madhava Rao and Philip A. Wilsey

cloning (or duplicating) the sub networks every time nested topologies were
encountered during parsing. Every node and sub-sub network were recursively
cloned, new netlists were constructed, and merged with the outer topology.
The elaboration is necessary in order to enable static optimizations and code-
generation. This technique provided a simple mechanism to elaborate (or flat-
ten) nested topologies and worked fine for small networks. As the network size
increased, the time and memory requirements grew exponentially. In order to
circumvent this bottleneck TSL-IF was developed. A quantitative comparison of
the the two techniques is shown in Fig. 2. The data was collected on a work-
station with dual Pentium II processors (300MHz) with 128MB of main mem-
ory running Linux (version 2.1.126). The memory consumption of the parsing
routines was monitored by overloading the new and delete calls of C++. As
illustrated in the figure, the OO representation dramatically out performed the
traditional technique employed earlier. The OO nature of TSL-IF enabled de-
velopment of a seamless interface with the static analysis and code-generation
module, considerably reducing development overheads. The OO representation
also enabled “just-in-time” elaboration (or a lazy elaboration) of the sub net-
works without any change to the other components, thus reducing time and
resource consumptions. Analysis of topologies consisting of a million nodes was
not feasible with the earlier technique as the system would run out of memory.
Failure of the front end to meet the fundamental requirements proved a hurdle
for further system development. Using the OO representation efficient analysis
of ultra-large topologies, without incurring redevelopment costs, was possible.
This is an excellent example to highlight the importance of the OO paradigm.
The techniques provided an effective and efficient solution to enable analysis of
ultra-large topology specifications. The generation of configuration information
in TSL format can be automated to generate different inter-network topologies.
Further details on TSL is available in the literature [9].

4.2 Static Analysis and Code-Generation Modules

The static analysis and code-generation modules of USSF play an important
role in reducing the memory consumed during simulation. TSL-IF generated by
the TSL parser forms the primary input. The static analyzer collates informa-
tion on the modules repeated in the topology. Using this information, duplicate
object descriptions are identified and subsumed to a single entry in the vari-
ous internal tables. Having a single entry rather than a few hundred thousands
dramatically reduces their memory consumption. It also reduces the processing
overheads of the data structures during simulation. The code-generator module
uses the analyzed intermediate format to generate the final simulation topology.
The generated code is compiled and linked with the USSF library, the warped
library, and the USSF API compliant user developed modules to obtain the final
executable. Although the generated code is currently in C++, in compliance
with the implementation of warped and USSF, the techniques employed are
independent of the implementation language.

An Object-Oriented Framework for Parallel Simulation 43

Data

State

Process
Logical

USSF ClusterUSSF Cluster USSF Cluster

WARPED Cluster WARPED Cluster

USSF Cluster USSF Cluster

Data

State

Process
Logical

Data

State

Process
Logical

Message Passing Interface (MPI)

cached states
cached data

cached data

Fig. 3. Layout of an USSF simulation

4.3 USSF Kernel

The core functionality to enable simulation of ultra-large networks is provided
by the USSF kernel modules. The kernel is built on top of the warped simu-
lator and presents a similar application program interface (API) to the model
developer. The core of the USSF kernel is the USSF cluster. The USSF cluster
module represents the basic building block of USSF simulations. A USSF cluster
performs two important functions; namely (i) it acts as an LP to warped; and
(ii) it acts as a cluster to the application programmer. As shown in Fig. 3, the
USSF cluster is used to group a number of LPs that use the same description
together. A single copy of an user process is associated with different data and
states to emulate its various instances. In order to enable this feature, the data
associated with the different model descriptions need to be decoupled. The USSF
API employs standard OO techniques to insulate the model developer from such
implementation intricacies. The USSF cluster uses file caches to maintain the
data and states of the various processes. The caching helps in regulating the
demands on main memory. Separate data and state caches are maintained to
satisfy concurrent accesses to data and state spaces and to reduce cache misses.
A Least-Recently-Used (LRU) cache replacement policy is used. OO techniques
have been used to decouple the various memory management routines from the
core. This design not only provides a simple mechanism to substitute various
memory management algorithms, but also insulates the USSF cluster from their
implementation details.

The USSF cluster is responsible for scheduling the various application pro-
cesses associated with it. The cluster appropriately translates the calls made
by the warped kernel into corresponding application process calls. It is also
responsible for routing the various events generated by the application to the
warped kernel. The warped kernel permits exchange of events between the

44 Dhananjai Madhava Rao and Philip A. Wilsey

USSF clusters. To enable exchange of events between the various user LPs, the
framework cluster translates the source and destination of the various events to
and from USSF cluster ids. In order for the USSF kernel to perform these activ-
ities, a table containing the necessary information is maintained by the kernel
modules. The table is indexed using the unique process ids that need to be asso-
ciated with each user LP. To reduce the number of entries in this table, a single
entry is maintained for a group of LPs sharing a process description. The static
analysis phase assigns contiguous ids to processes constructed using the same
simulation objects. This fact is exploited to efficiently construct and maintain
the table. The framework cluster also maintains a file based state queue in or-
der to recover from rollbacks [3] that can occur in a Time Warp simulation. An
simple incremental state saving mechanism with a fixed check-pointing interval
is used for this purpose. Since the state of the USSF cluster consists of merely
the offsets into this file, the memory overheads of state saving are considerably
reduced. A simple garbage collection mechanism triggered by the garbage collec-
tion routines in warped is used to prune the state queues. Access to the various
methods in the framework kernel is provided via a set of simple application
program interface (API). The API is illustrated in the following subsection.

4.4 USSF Application Program Interface

The USSF API closely mirrors the warped API [3]. This enables existing
warped applications to exploit the features of the framework with very few
modifications. The USSF Kernel presents an API to the application developer
for building local processes (LPs) based on Jefferson’s original definition [3] of
Time Warp. The API has been developed in C++ and the OO features of the lan-
guage have been exploited to ensure it is simple and yet robust. The API plays
a critical role in insulating the model developer from the intricacies involved
with enabling ultra-large parallel simulations. The interface has been carefully
designed to provide sufficient flexibility to the application developer and enable
optimal system performance.

The basic functionality the kernel provides for modeling LPs are methods for
sending and receiving events between the LPs and the ability to specify differ-
ent types of LPs with unique definitions of state. The user needs to derive the
LP’s description, state and data classes from the corresponding interface classes.
The USSF kernel utilizes the interface classes to achieve its functionality such as
swapping of data and states, mapping data and state with corresponding LPs,
state saving, rollback recovery, and handling interface calls from warped. Inter-
faces for creating and exchanging events are also defined. However, the user is re-
quired to override some of the kernel methods. More specifically, the initialize
method gets called on each LP before the simulation begins. This gives each LP a
chance to perform any actions required for initialization. The method finalize
is called after the simulation has ended. The method executeProcess of an
LP is called by the USSF kernel whenever the LP has at least one event to
process. The kernel calls allocateState and allocateData when it needs the
LP to allocate a state or data on its behalf. Although it is the responsibility of

An Object-Oriented Framework for Parallel Simulation 45

the modeler to assign unique ids to each LP, the static analysis modules in the
USSF perform this functionality. The USSF kernel provides all the necessary in-
terfaces needed by warped and handles all the overheads involved in a enabling
ultra-large simulations providing a simple yet effective modeling environment.

5 Experiments

This section illustrates the various experiments conducted using the ultra-large
simulation framework. The network model used to conduct the experiments was
a hierarchical network topology constructed by recursively nesting topologies.
Since the topologies are elaborated to a flat network, any random network could
have been used. In order to ease study and experimentation, a basic topology
consisting of ten nodes was recursively used to scale the network models to
the required sizes. Validation of the simulations were done by embedding san-
ity checks at various points in the model. The nodes representing the terminal
points in the network generated traffic based on random Poisson distributions.
The nodes generated packets of size 64 bytes whose destinations were chosen a
normal distribution based on the size of the topology. The models of the network
components used in the specification were developed using the framework’s API.
The TSL parser was used to analyze the hierarchical topologies and generate ap-
propriate network models. The generated models were compiled and linked with
USSF and warped libraries to obtain the final executable.

Figure 5 presents the time taken for simulating the generated topologies with
warped and with USSF. Since the APIs of warped and USSF are similar,
the models were fully portable across the two kernels. The data was collected
using eight workstations networked by fast Ethernet. Each workstation consisted
of dual Pentium II processors (300MHz) with 128MB of RAM running Linux
(version 2.1.126). The simulation time for the smaller configurations is high
due to the initial setup costs. An aggressive GVT period was used to ensure
rapid garbage collection by warped. As illustrated in Fig. 5, for smaller sized
models, warped performs better than USSF. The reductions in performance is
due to the added overheads needed to enable ultra-large simulations. As shown
in Fig. 5, the performance of warped deteriorates as the size of simulation
increases. A study indicated that the drop in performance occurred when the
memory consumptions of the parallel processes exceeded the physical memory
sizes of the machines and virtual memory overheads began to dominate.

In order to study the scalability issues of the framework, the hierarchical
topology consisting of hundred thousand nodes was used. The above mentioned
experimental platform was used; and the number of processors used was varied
between one and sixteen. Figure 5 presents the timing information obtained from
this experiment. The performance of the framework increases as the number of
processors are increased, since more computational resources are available for
the concurrent processes to use.

As illustrated by the experiments, USSF enables simulation of very large
networks, which was the initial goal of the research. The current implementation

46 Dhananjai Madhava Rao and Philip A. Wilsey

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

T
im

e
(s

ec
)

Number of network nodes

USSF Simulation Time (16 Processors)
WARPED Simulation Time (16 Processors)

Fig. 4. Simulation time

0

200

400

600

800

1000

2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
)

Number of processors

Simulation Time

Fig. 5. Scalability data

does not include a number of other proposed partitioning and load balancing
optimizations that improve performance of the Time Warp simulations [11].
Although OO design techniques incur some degradation in performance when
compared to their non-OO counter parts, the primary motivation to design an
OO framework was to develop an simple yet effective simulation environment.
Studies are being conducted to improve the performance of USSF.

An Object-Oriented Framework for Parallel Simulation 47

6 Conclusion

Modern communication networks and their underlying components have grown
in size and complexity. Simulation analysis with models built to reflect the ultra-
large sizes of today’s networks is important in order to study scalability and
performance issues. Parallel simulation techniques need to be employed in or-
der to achieve time versus resource tradeoffs. The size and complexity of such
parallel simulations requires the system to be carefully developed using stan-
dard design techniques such as OO design. Efficient and robust interfaces are
necessary to ease application and simulation kernel development. In order to
insulate the application developer from such intricacies and to ease modeling
and simulation of large networks, an OO framework for simulation of ultra-large
networks was developed. The issues involved in the design and development of
the framework were presented. The experiments conducted using the framework
were illustrated. The need for efficient OO design to enable the system was
quantitatively highlighted. From the experimental results the capacity to per-
form such large simulations in resource restricted platforms was demonstrated.
Currently, techniques to improve performance of the framework are being ex-
plored. USSF provides a convenient and effective means to model and study
ultra-large communication networks of today and tomorrow.

References

1. V. Paxson and S. Floyd. Why we don’t know how to simulate the internet. In
Proc. 1997 Winter Simulation Conference, pp. 44–50, December 1997. 37, 37, 37,
37, 38

2. A. M. Law and M. G. McComas. Simulation software for communications networks:
The state of the art. In IEEE Communications Magazine, pp. 44–50, March 1994.
37, 37

3. R. Radhakrishnan, D. E. Martin, M. Chetlur, D. M. Rao, and P. A. Wilsey. An
Object-Oriented Time Warp Simulation Kernel. In Proc. Int. Symp. Computing
in Object-Oriented Parallel Environments (ISCOPE’98), volume LNCS 1505, pp.
13–23. Springer-Verlag, December 1998. 38, 38, 39, 39, 44, 44, 44

4. P. Huang, D. Estrin, and J. Heidemann. Enabling large-scale simulations: Selective
abstraction approach to the study of multicast protocols. In Proc. Int. Symp.
Modeling, Analysis and Simulation of Computer and Telecommunication Networks,
October 1998. 38, 38, 38

5. B. J. Premore and D. M. Nicol. Parallel simulation of TCP/IP using TeD. In Proc.
1997 Winter Simulation Conference, pp. 437–443, December 1997. 38, 38, 38

6. D. M. Rao, N. V. Thondugulam, R. Radhakrishnan, and P. A. Wilsey. Unsyn-
chronized parallel discrete event simulation. In Proc. 1998 Winter Simulation
Conference, pp. 1563–1570, December 1998. 38, 38

7. P. A. Wilsey and A. Palaniswamy. Rollback relaxation: A technique for reducing
rollback costs in an optimistically synchronized simulation. In Proc. Int. Conf. on
Simulation and Hardware Description Languages, pp. 143–148. Society for Com-
puter Simulation, January 1994. 38

8. K. Fall. Network emulation in the Vint/NS simulator. In Proc. 4th IEEE Symp.
Computers and Communications, July 1999. 38

48 Dhananjai Madhava Rao and Philip A. Wilsey

9. D. M. Rao, R. Radhakrishnan, and P. A. Wilsey. FWNS: A Framework for Web-
based Network Simulation. In 1999 Proc. Int. Conf. Web-Based Modelling & Sim-
ulation (WebSim 99), pp. 9–14, January 1999. 39, 39, 40, 42

10. T. J. Parr. Language Translation Using PCCTS and C++. Automata Publishing
Company, January 1997. 40

11. R. Fujimoto. Parallel discrete event simulation. CACM, 33(10):30–53, October
1990. 46

	Introduction
	Related Work
	Background
	The Ultra-large Scale Simulation Framework (USSF)
	Topology Specification Language (TSL)
	Static Analysis and Code-Generation Modules
	USSF Kernel
	USSF Application Program Interface

	Experiments
	Conclusion

