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ABSTRACT
The growth in many-core CPUs has motivated development of

shared-memory, multithreaded solutions to minimize communi-

cation and synchronization overheads in Parallel Discrete Event

Simulations (PDES). Analogous capabilities, such as Cross Memory

Attach (CMA) based approaches have been added to Message Pass-

ing Interface (MPI) libraries. CMA permits MPI-processes to directly

read/write data from/to a different process’s virtual memory space

to exchange messages. This paper compares the performance of

CMA capable, MPI-based version to our fine-tuned multithreaded

version. The paper also discusses implementation and optimization

of the multithreaded infrastructure to elucidate the design alter-

natives being compared and assessed. Our experiments conducted

using 2–28 threads and a fine-grained (time per event 0.7 µs) ver-
sion of PHOLD benchmark shows that message-passing outperforms

multithreading (by 10%–20%) in many scenarios but underperforms

in others. The complex performance landscape inferred from our

experiments suggest that more in-depth analysis of model character-

istics is needed to decide between shared-memory multithreading

versus message-passing approaches.
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1 INTRODUCTION
Modern computational platforms are continuing to trend towards

high density architectures with compute nodes having 2 or more,

many-core CPUs. In these architectures, the main memory is shared

between CPUs. Accordingly, shared-memory approaches for Paral-

lel Discrete Event Simulation (PDES), often accomplished via multi-

threading, are gaining momentum [1, 3, 5, 11]. The primary advan-

tage of shared-memory design stems from eliminating overheads of

message-passing for intra-node communication by directly sharing

events between threads. Prior investigators have reported good

performance improvements using shared-memory multithreading

approaches over message-passing designs [2, 10, 11]. Analogous

optimizations have also been incorporated into the infrastructure

of message-passing libraries. For example, Cross Memory Attach

(CMA) capabilities, discussed in Section 1.1, have been added to

the Linux kernel and Message Passing Interface (MPI) libraries to

further reduce message-passing overheads.

Recently, in our cluster (details in Section 2) the number of

CPU-cores per node more than doubled from 8 to 28 cores (with

hyperthreading disabled). Consequently, we have significantly re-

vised our MPI-based, optimistically synchronized PDES framework

(discussed in Section 3) to operate in multithreaded mode. The

overarching objective of multithreaded PDES is to realize better

performance when compared to our message-passing design. Our

multithreaded design, detailed in Section 4, uses decentralized pend-

ing event set design due to its advantages [1, 2] – i.e., each thread

has its own pending event queue and scheduler. Furthermore, we

have explored several design alternatives to maximize multithread-

ing performance, including: ❶ sharing-events between threads vs.

exchanging copies, ❷ NUMA-aware memory allocation for events,

and ❸ Lock-based vs. lock-free inter-thread queues. Section 5 com-

pares and contrasts our designs to those proposed by other inves-

tigators. The objective is to identify and use the most performant

design solution from the aforementioned alternatives.

Literature survey supported our hypothesis that multithreaded

PDES would yield performance improvement over MPI-based im-

plementations [1, 2, 11], particularly in fine-grained applications.

However, experiments using fine-grained (time-per-event < 0.7

µsec), PHOLD benchmark revealed a more complex performance

landscape, with MPI version (with CMA-capability) conspicuously

outperformingmultithreaded simulations and vice versa. The exper-

iments discussed in Section 6 highlight the complex landscape with

no clear winner. The results lead us to conclude that a comprehen-

sive analysis of application characteristics (future work) is needed

in order to choose between message-passing and multithreading

designs.
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1.1 CMA & Open MPI’s vader BTL
Cross Memory Attach (CMA) is a mechanism to directly transfer

data between the virtual memory space of two processes running

on the same compute node – i.e., intra-node Inter-Process Commu-

nication (IPC). CMA enables data transfer without passing through

kernel space. CMA has been added to the Linux-kernel starting with

version 3.2 (Jan 2012 release). In Linux, CMA is accomplished via

two system calls, namely process_vm_readv and process_vm_-
writev. CMA enables processes to accomplish “zero copy” intra-

node data transfers. Note that in Linux parlance “zero copy” implies

using a single copy of data (or messages) and avoiding overheads

of requiring extra copies.

Starting with Open MPI version 1.8.4 (early 2015), the CMA

capabilities of Linux have been used to develop a Byte Transfer

Layer (BTL) subsystem called vader [9]. The vader BTL improves

small message latency via “zero copy” transfers, typically via the

process_vm_readv CMA system call [9]. The BTL has also shown

to have substantially better throughput than traditional shared

memory BTL, in multi-CPU nodes [9]. An experimental comparison

of CMA-based vader BTL versus conventional shared memory BTL

is discussed in Section 3

2 EXPERIMENTAL PLATFORM
The experiments reported in this paper have been conducted using

shared-memory compute nodes with two (dual socket) Intel Xeon
®

CPUs (E5-2680 v4) with hyperthreading disabled. Each CPU has 14

cores and 35 MiB of shared L3 cache between the cores. Each core

has 64 KiB L1 (i.e., 32 KiB instruction + 32 KiB data split cache) and

256 KiB of L2 cache. The 128 GB of DDR4 RAM (64 GB per CPU) in

Non-Uniform Memory Access (NUMA) configuration as detailed

in Figure 1. The cores on the two CPUs are logically interleaved.

Memory access time or distances is 10 units between cores on the

same CPU but more than doubles to 21 units for cross-CPUmemory

access. The compute node runs Red Hat Enterprise Linux (kernel

version 3.10.0-514) that supports Cross Memory Allocation (CMA).

The simulation software and benchmarks were compiled using Intel

C++ Compiler (ICC) version 16.0 at -O3 optimization level. Open

MPI version 2.1.2 with vader BTL that utilizes CMA capabilities

(also compiled using ICC 16.0) has been used for inter-process

communication.

$ numactl -H
available: 2 nodes (0-1)

node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26

node 0 size: 130850 MB

node 0 free: 128020 MB

node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27

node 1 size: 131072 MB

node 1 free: 122325 MB

node distances:

node 0 1

0: 10 21

1: 21 10

Figure 1: NUMA configuration on compute node
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2.1 Normalization due to turbo boost
The nodes used for experiments have Intel

®
Turbo Boost Technol-

ogy 2.0 enabled. Consequently, the core frequency significantly

varies, from base frequency of 2.4 GHz, depending on temperature

and utilization of the node as shown in Figure 2. In our experi-

ments the CPU-core frequency varied by about 12%. Furthermore,

variations in CPU-core frequencies was also observed between suc-

cessive runs, when the same number of cores were used – e.g., with
2 cores a ±5% variation was observed. These variations in CPU

clock frequency causes runtimes to vary resulting in inconsistent

comparisons. Unfortunately, the compute cluster is a shared, state-

wide resource which makes modifications to hardware or BIOS

settings a cumbersome process.

Consequently, we have normalized all observed runtimes to

a common CPU-core frequency of 2.4 GHz using the following

equation:

tnorm =
Cyclescpu

Utilizationcpu × 2.4 × 109
(1)

where tnorm is normalized runtime, Cyclescpu is number of

CPU cycles used, and Utilizationcpu is CPU utilization averaged

over the entire run of the program. Given c cores for a run, CPU
utilization can be in the range 0 <Utilizationcpu ≤ c . The statistics
for normalization is obtained by running all of the simulations via

Linux perf and recording necessary CPU counters.

3 MPI-BASED DESIGN & OPTIMIZATION
The implementation and assessment of multithreading vs. CMA-

enabled MPI has been conducted using a Parallel Discrete Event

Simulation (PDES) framework called MUSE. It has been developed

in C++ using object-oriented approaches and the Message Passing

Interface (MPI). MUSE uses Time Warp and standard state saving

approach to accomplish optimistic synchronization of the LPs. A

conceptual overview of a parallel, MPI-based simulation is shown

in Figure 3. The simulation is organized as a set of processes that

communicate via MPI. Each process has one thread and manages

a set of Logical Processes (LPs) assigned to it. Each process uses a

centralized Least Timestamp First (LTSF) priority queue for man-

aging pending events and scheduling event processing for all local

LPs. LPs are permitted to generate events only into the future – i.e.,
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Figure 3: Overview of MPI-based PDES

the timestamp on events must be greater than their Local Virtual

Time (LVT). Consequently, with the centralized LTSF scheduler,

event exchanges between local LPs cannot cause rollbacks. Only

events received via MPI can cause rollbacks.

The Logical Processes (LPs) in a simulation are developed by

overriding necessary methods in an Agent base class. The input,

output, and state queues used for rollback operations in Time Warp

are managed by the Agent base class in coordination with the

simulation-kernel. Similarly, the MUSE provides an Event base class

that can be extended to implement custom events for use by the

model. The simulation-kernel implements core functionality asso-

ciated with LP registration, event processing, state saving, synchro-

nization, and Global Virtual Time (GVT) based garbage collection.

3.1 PHOLD benchmark
Experimental analysis of design alternatives has been conducted us-

ing different configurations of the PHOLD benchmark. The PHOLD

benchmark has been used by several investigators [2, 8, 11] for

experimental analysis because it has shown to effectively emulate

the steady-state phase of a typical simulation. Our PHOLD imple-

mentation provides a number of configuration settings to alter its

behavior thereby streamlining design of experiments. In our exper-

iments, we have used a PHOLD model with 10,000 LPs organized

in a 100 ×100 torroidal grid. The simulation commences with 20

events (40 bytes per event) per LP, resulting in a pending event set

of 200,000 events. The timestamps on the events is determined us-

ing an exponential distribution (λ=10). The destination LP for each

event is computed using two different approaches as detailed in the

following subsections. Additional details on our PHOLD benchmark

is included in supplementary materials.

3.1.1 Config #1: Fixed Inter-LP interactions (strong scaling). This
configuration reflects a typical parallel simulation experiment in

which the properties of the model do not change based on number

of processes/threads. In this mode of operation, the range of LPs to

which events are scheduled is bounded by a value specified via the

recvr-distrib command-line argument to PHOLD. Specifically,

given an LP with ID k and a recvr-distrib value of x , a destina-
tion LP d is uniformly chosen from the range k − x

2
< d < k + x

2
,

with wrap around due to toroidal space. The choice of destination

LPs is determined by value of x and does not change with parti-

tioning. In other words, the behavior of the model is independent

of the number parallel processes used, reflecting a strong scaling

configuration. However, it must be noted that, as the number of

partitions (or parallel threads/processes) are increased, the prob-

ability of Inter-Process Communication (IPC) increases, resulting

in increased synchronization overheads. In our benchmarks we

have used the following values for the recvr-distrib (i.e., x ) – 10,

100, 1000, and 10000. Note that larger values result in increased

probability of IPC.

3.1.2 Config #2: Fixed fraction of remote events (weak scaling).
Events exchanged between pairs of processes or threads are called

remote events. In our design, only remote events can trigger roll-

backs, which play an influential role on the performance of opti-

mistic PDES. In otherwords, communication characteristics strongly

influence probability of rollbacks, with increased remote events

resulting in increased probability of rollbacks [7, 11]. Accordingly,

this configuration is designed to fix the number of remote events

to assess its impact in a controlled manner. Specifically, each LP

chooses a destination such that the fraction of remote events re-
mains fixed. The fraction of remote events (in the range 0.0 to

1.0) is specified via a remote-events command-line argument to

the benchmark. Since remote events between any pair of threads

is fixed, the communication and synchronization overheads are

also bounded, immaterial of number of process/threads used. This

setting is analogous to weak scaling configurations that are often

used for performance assessments [11]. It must be noted that in

Time Warp synchronized parallel simulations, the net number of

inter-process messages may vary due to exchange of anti-messages.

In our benchmarks we have used the following fraction of remote

events, i.e., value for remote-events parameter: 0.1, 0.25, 0.5, 0.75,

and 0.9.

3.2 Selection of scheduler queue
The Least Timestamp First (LTSF) priority queue associated with

each process (or thread) plays a conspicuous role in realizing ef-

ficient and performant parallel simulation. In this study, we have

used the Three-tier Heap (3tHeap) proposed by Higiro et al [4] as
the scheduler queue rather than the Ladder Queue (ladderQ). The
3tHeapwas chosen because it yielded better performance in several

configurations, particularly in simulations with large number of

events with small differences in virtual timestamps. Comparison of

scheduler queues was performed using single process simulations

in which state saving, rollbacks, GVT, etc. are automatically turned-

off in the simulation-kernel. Single process simulations have used

for comparisons for the following reasons: ① the ladderQ has been
primary designed for use in sequential simulations. The 1 process

simulation is analogous to a sequential simulation, thereby enabling

consistent/fair comparisons; ② eliminating synchronization pro-

tocol overheads enables effectively isolating impact of scheduler

queues; and ③ assess the fine-grained nature of the benchmarks

used for further analysis.

The chart in Figure 4(a) illustrates a comparison between our

ladderQ and 3tHeap implementations. The experiments were per-

formed on the hardware platform discussed in Section 2 using the

configuration of PHOLD benchmark discussed in Section 3.1. The to-

tal number of committed events in the simulation (the independent

axis in Figure 4(a)) was varied by increasing the simulation end
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Figure 4: ladderQ vs. 3tHeap: comparison of runtimes and in-
structions/event in a single process simulation

times. The chart plots the average runtime from 10 independent

replications at each data point along with linear regression fits. The

regression fits were very strong with R2 > 0.99 in all cases.

Linear runtimes for ladderQ with amortized O (1) runtimes is

expected, as per its design discussed by Tang et al [8]. The average
time for processing an event with ladderQ varied between 0.96–

1.06 µs (normalized to 2.4 GHz as discussed in Section 2.1), based

on 95% CI for the regression fit. The chart in Figure 4(b) shows the

distribution of average instructions per event in the model. Each

event requires about 2,374 instructions, of which 1,058 instructions

(44%) are used by ladderQ operations. The PHOLD model uses 635

instructions to process an event, of which 50% is used by random

number generation to determine future timestamps and destination

LPs for scheduling new events.

Interestingly, the 3tHeap also exhibits a linear runtime profile

for the PHOLD benchmark, as shown in Figure 4(a). We attribute

this characteristic to the constant number of events (but with differ-

ent virtual timestamps) in the simulation. Furthermore, the event

processing time decreased to 0.77–0.79 µs (also normalized to 2.4

GHz), with the 3tHeap, as it requires only 619 instruction/event

(instead of the 1,058 instructions for ladderQ). The 58% reduction

in event count enables the 3tHeap to consistently outperform the

ladderQ, but only by about 25%–27% (blue curve in Figure 4(a))

in our benchmarks. The discrepancy in speed is attributed to the

following observations – ① some operations (such as, checking

if queue is empty) requires a few additional instructions in the

case of 3tHeap which slightly increases instruction counts within

the simulation-kernel as illustrated by Figure 4(b); ② the CPU’s

instructions-per-cycle decreased slightly from 1.05 (i.e., over 1 in-
struction/cycle on a superscalar core) for ladderQ to 0.95 (i.e., a
10% decrease) with the 3tHeap. However, the CPU-cache hits per
instruction was comparable for both queues indicating that caching

was not a significant factor in performance difference. Overall, the

3tHeap provided performance improvement (when compared to

Ladder Queue) for the benchmarks reported in this paper. Conse-

quently, we have used it for all empirical analyses in this paper.

3.3 GVT-based Adaptive Time Window (ATW)
The first phase of this investigation focused on identifying effec-

tive configuration for MPI-based simulations. We have explored

the effectiveness of both standard shared-memory Byte Transfer

Layer (BTL) and CMA-based vader BTL in Open MPI. In our initial

experiments, we observed that aggressive optimism was causing

significant number of rollbacks, degrading performance. Therefore,

Algorithm 1: Adaptive Time Window algorithm

1 begin rollback(agent, event, GVT )
2 rbDist = e→recvTime - gvt;

3 adaptTW = avg(adaptTW, ∆t);

4 if adaptTW.samples > 100 then
5 timeWindow = adaptTW.mean;

6 end if
7 end adaptRollback
8 begin scheduleEvent(agent, event, GVT )
9 if timeWindow == 0 then

// time window not yet set

10 return true
11 end if
12 ∆t = event→recvTime - GVT

13 if ∆t ≤ timeWindow then
14 return true
15 else
16 adaptTW = avg(adaptTW, ∆t)

17 timeWindow = adaptTW

18 end if
19 end scheduleEvent

we have implemented a GVT-based, Adaptive TimeWindow (ATW)

algorithm summarized in Algorithm 1. It uses average rollback dis-

tance with respect to GVT to determine a “safe” time window in

which events can be optimistically scheduled. Shorter rollbacks re-

sult in decreasing the time window restricting optimism. The event

scheduler (cf., scheduleEvent in Algorithm 1) uses the adaptive

time window and GVT to schedule events. If an event’s timestamp

is within the time window then it is scheduled for processing. Oth-

erwise, the difference between GVT and the event’s timestamp is

used to grow the time window. The ATW is a fully distributed algo-

rithm in that it uses only locally available information. Moreover,

the averaging approach using by ATW enables the algorithm to be

immune to transient fluctuations in steady-state models. On the

other hand, the shortcoming of averaging is that it it hinders quickly

adaptation to non-transient changes in model characteristics. How-

ever, in this paper we have focused on steady-state benchmarks.

Consequently, as discussed in Section 3.3.1 this algorithm proved

to be effective in managing optimism.

3.3.1 Assessment of ATW for MPI-based PDES. Communication

patterns influence rollback characteristics which strongly influ-

ences the behavior of the Adaptive Time Window (ATW) algorithm

summarized in Algorithm 1. Consequently, have used Config #2
discussed in Section 3.1.2, with fixed fraction of remote events for as-

sessing impact of the ATW. The charts in Figure 5 compare runtime

(average and 95% CI from 10 replications) of the benchmark, with

different fractions of remote events, with both CMA-enabled vader
and shared memory (shown as Shr. Mem in charts) Byte Transfer

Layers (BTLs) in Open MPI. The inset charts show raw percent-

age difference in runtime with respect to CMA/vader+ATW ( × )

setting, which outperformed all other configurations. As illustrated

by the charts„ with shared memory BTL, the ATW (curve • )
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Figure 5: Performance comparison of PHOLD (Config #2 in Section 3.1.2) runtimes with different settings. In inset charts, data
points below the zero-axis correspond to results in which CMA/vader+ATW performed better.

consistently outperforms the setting without ATW (curve ♦ ) and

improves performance up to 200×, particularly in configuration

with a large fraction of remote events. However, with vader BTL,
the performance improvement with ATW (curve ■ ) was statisti-

cally negligible (< ±2%) as illustrated by Figure 5. We attribute the

lack of significant performance improvement to the low latency

communication enabled by CMA-capable vader BTL. However, in

some runs of Config #1 (see Section 3.1.1) the ATW yielded 10%

performance improvement. Consequently, we have consistently

used vader BTL with ATW in our subsequent experiments. We

have also used ATW with our multithreaded configurations (cf.,
Section 6.1), because it provided more conspicuous improvements

in several cases.

4 MULTITHREADING DESIGN & TUNING
In conjunction with this paper, we have extended our simulation

framework to enable multithreaded PDES. The multithreading capa-

bilities reuse our existing Application Program Interface (API). Con-

sequently, existing models and benchmark can be readily reused.

Figure 6 presents an overview of our multithreaded PDES infrastruc-

ture. The design of our multithreaded infrastructure mirrors several

key elements from the MPI-based design discussed in Section 3.

A multithreaded PDES is organized as a collection of interacting

threads. Each thread is synonymous to an MPI-process (see Fig-

ure 3). Each thread manages lifecycle activities of LPs partitioned

to it, including: scheduling events, state saving, rollback recovery,

and GVT-based garbage collection. We have retained the API, de-

sign, and model-specific characteristics from our MPI-based design.

Consistency in API and design enables effective reuse of existing

models by isolating it from the underlying framework’s operational

modes. Moreover, it enables consistent comparison of performance

of different framework features and optimizations.

The design of event scheduling and pending event management

also similar to our prior MPI-based design. Each thread uses an

independent local scheduler queue (e.g., a 3tHeap) for managing

pending events. The internal framework design is identical to the

MPI-design thereby enabling reuse of existing priority queue im-

plementations. In this study, we have used the Three-tier Heap data

structure proposed by Higiro et al as discussed in Section 3.2.

As illustrated by Figure 6, the multithreaded design uses decen-

tralized scheduler queues – i.e., one scheduler queue per thread to

manage pending events. Each thread has its own GVT manager

(reused from our MPI-based implementation) that uses Mattern’s

GVT algorithm. Currently, the scheduler queues operations do

not involve any locking or lock-free instructions; i.e., they are not

designed to be thread-safe. On the other hand, implementation,

optimization, and validation of the queues is relatively straightfor-

ward when compared to their concurrent counterparts. Most of the

design is similar to our MPI-based implementation making them

comparable. However, certain key aspects differ and are discussed

in detail in the following subsections.
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Figure 6: Overview of multithreaded PDES

4.1 Inter-thread Event Queues (ITEQs)
In our framework, all inter-thread communication is accomplished

via exchange of conventional pointers (we currently do not use

std::shared_ptr, std::unique_ptr etc.) through one or more

Inter-thread Event Queues (ITEQs). In our design, the ITEQs of one

thread are accessible by any other thread. Given k ITEQs per thread,



when an event e (or kernel message) is to be sent from thread ta to

tb , an ITEQ iteqi (0 ≤ i < k ) in the destination thread tb is chosen

via bit-wise-and (&) operation – i.e., iteqi = recvr(e) & ITEQ
mask

,

where ITEQ
mask

= 2
⌊loд2k ⌋ − 1 and recvr(e) is the destination LP’s

unique ID (an integer value). In other words, ITEQ
mask

is the near-

est, lower power of 2 minus 1 so that all of its least-significant-bits

set to 1. The mask covers the full set of ITEQs when k is an integral

power of 2, but a smaller subset in other cases. We use bit-wise-and

over modulo to ensure maximum performance. Note that, in our de-

sign, the selection of ITEQ is based on the destination (or receiving)

LP’s ID because it generally varies the most between consecutive

events exchanged between pairs of threads. The variation helps

to distribute events between different ITEQs to further minimize

thread contention.

Since ITEQs are the only source of contention between threads,

we have assessed the following two different types of ITEQs to

ensure a performant implementation:

❶ Lock-based ITEQ: As the name suggested, lock-based ITEQ use

standard std::mutex (from C++11) to serialize concurrent op-

erations on it. Each ITEQ is just a standard std::vector which

contains a list of conventional pointers to the queued events.

Locking/unlocking of the mutex is performed at individual ITEQ

level to ensure finer-grained locking. Events are always appended

to the queue and involve locking/unlocking the mutex. However,

dequeue operations are performed in bulk – i.e., all queued events
are removed as a batch to reduce mutex overheads. The dequeue

events are moved into a temporary list that is used for further

thread-local processing.

❷ Lock-free ITEQ: Lock free data structures take advantage of

special atomic instructions to enable concurrent, thread-safe

operations without any direct interaction with the operating

system. Lock-free operations are guaranteed to finish in a finite

number of steps, with some operations taking longer depending

on contention. We have used boost::lockfree::queue from

the BOOSTC++ library for implementing lock-free ITEQ. In order

to fully realize its efficiency, we have used a fixed size queue. In

BOOST, fixed size queues are implemented using arrays rather

than linked lists thereby improving cache performance. We have

used a fixed size of 2048 entries. This value is a balance between

memory use (as number of ITEQs grow) versus cost of retries if

queue is full. In our experiments, this limit was seldom reached.

Unlike bulk operation in the lock-based version, in lock-free

ITEQs entries are dequeued one at a time as necessitated by its

lock-free implementation.

4.1.1 ITEQ processing periodicity. Each thread periodically pro-

cesses events in its ITEQs at the end of processing a batch of events

for each LP, similar to our MPI-based implementation. In our experi-

ments, varying the periodicity did not have a statistically significant

impact on simulation performance. Consequently, we have used a

periodicity of 1 in our experiments – i.e., poll for incoming events

after each LP completes processing events at a given virtual time.

4.1.2 Choice and number of ITEQs. The number of ITEQs per

thread (i.e., k) is a balance between thread contention and overheads
of processing each ITEQ. Fewer ITEQs increase contention but

reduce iterations required to process each queue. This subsection
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Figure 7: Comparison of lock-based vs. lock-free Inter-
thread Event Queues (ITEQs)

discusses experiments conducted to identify effective choice of

ITEQs and the value for k , i.e., the number of ITEQs per thread. The

experiments have been conducted using Config #2 (weak scaling

mode) of PHOLD, discussed in Section 3.1.2, with 50% of the events

being exchanged between threads. Full set of charts is included in

supplements.

The charts in Figure 7 provide a comparison of normalized run-

time for different simulation configurations with lock-based and

lock-free ITEQs (additional charts in supplements). The 14 thread

runs used only one CPU (14 cores/CPU) while 28 thread runs used

two CPUs. The charts in Figure 7 show that the lock-based queues

generally outperform their lock-free counterparts. In all cases, the

net number of events (including anti-messages) exchanged between

threads was comparable. The net number of events slightly in-

creased by about 6% with increase in threadsdue to 10% increase

in rollbacks (charts in supplements). Nevertheless, the poor perfor-

mance of lock-free queues was counter-intuitive to the putative

understanding of lock-free implementation in the scientific com-

munity. Consequently, we conducted more detailed analysis using

Linux perf profiler.

The charts in Figure 7 also provide a comparison of the total

number of instructions executed by each thread in the different con-

figurations. Perplexingly, the lock-free implementation generally

executes fewer instructions than its lock-based counterpart and is

yet slower. The lower number of instructions is expected because

lock-free operations are accomplished in user-space using special

instructions. In contrast, lock-based operations require interaction

with the operating system, thereby generally requiring more in-

structions. Further analysis of the profiler data showed that the root

cause in degraded performance of lock-free queues arises from from

two key factors summarized in Figure 8 – ① the number of com-

mitted Instructions per CPU-clock cycle (Instr./cycle) is degraded

for lock-free queues – i.e., 0.7± 0.16 (lock-based) vs. 0.0.65±0.18

(lock-free) or 7.7% degradation. This degradation is attributed to the

atomic instructions which require additional coordination between

CPU cores. The degradation in Instr./cycle is most pronounced with

28 threads at 11% (cf., Figure 8). ② A small but consistent degrada-

tion was observed in Last Level Cache (LLC) hits reported by Linux

perf as shown in Figure 8. The slight increase in cache misses is

expected with atomic instructions as CPU has to maintain cache

coherence across the cores. However, the cache miss rate is small
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and does not have a significant impact as illustrated by the 8 and 14

thread configuration in which cache miss rates were comparable

and yet the runtimes are slower due to degradation in Instr./cycle.

In summary, these experimental analysis enabled us to identify

the following settings for Inter-thread Event Queues (ITEQs) for

further empirical analysis: ❶ the lock-based ITEQs are a better

design alternative as they provide consistently better performance

than the lock-free queues in a broad range of settings; and ❷ Lowest

runtimes were generally observed when the number of ITEQs (k)

was half the number of threads – i.e., k = n
2
, where n is number of

threads.

4.2 Shared vs. non-shared events
Our multithreaded infrastructure supports two different strategies

for exchanging events (as conventional pointers) between threads –

① non-shared mode where copies are exchanged for all inter-thread

events, and ② shared mode in which a single copy of an event is

shared by two threads. These two modes are primarily a tradeoff

between overheads of an extra copy versus the overheads of releas-

ing the event during event cancellation or garbage collection. Freed

events are recycled to minimize memory management overheads

as discussed in Section 4.3. Furthermore, these two approaches also

impact CPU-cache performance.

Non-shared events incur copy overheads but releasing the event

for recycling is straightforward and is accomplished using a simple

reference counter (a byte) in each event. A simple reference counter

is necessary and sufficient because because an event is stored lo-

cally on a thread. Consequently, only one thread ever modifies the

reference counter streamlining recycling of events.

On the other hand, shared events do not have copy overheads

but incur some garbage collection overheads. In the case of shared

events, two separate reference counters are maintained per event,

one for the sending thread and another one for the receiving thread.

The dual-counter design eliminates concerns of race conditions

and thread-safe operations. However, when one thread releases an

event, it cannot be immediately recycled because another thread

may still be holding the pointer. Consequently, with shared-events,

GVT-based garbage collection requires two phases. First, when the

reference counter for the sending process reaches zero, the events

are not immediately recycled but stored in a temporary list. This

list is processed in subsequent garbage collection cycles and only

events where both counters are zero are recycled. The intermediate

list can be large (millions of event pointers) depending on number

of inter-thread events. Therefore, processing this list adds garbage

collection overheads that are absent in the non-shared mode.

4.3 NUMA-aware Memory Management
Non-Uniform Memory Access (NUMA) is the most commonly ar-

chitecture for high density compute nodes. The compute nodes

used for experiments in this paper also have a NUMA configuration

as summarized in Figure 1. NUMA-aware Memory Management

(NMM) has shown to improve performance in several multithreaded

simulation studies [5, 11]. Consequently, we have included NMM for

events in our multithreaded simulation framework. The NMM layer

can be enabled or disabled at runtime and can be used with both

shared or non-shared event modes (cf., Section 4.2). Our NMM is de-

signed as a static object with thread local storage – i.e., each thread

gets its own unique, global instance of the NMM. Consequently,

thread contention or synchronization is not an issue. Operations

of this layer is transparent to the model. The NMM layer provides

two key functionalities. It enables NUMA-aware recycling of events

to minimize memory management overheads. In addition, it also

acts as a lower-level memory management layer as discussed in

the following subsections.

4.3.1 NUMA-aware memory recycling. When NMM is enabled,

memory for events is allocated on the NUMA-node associated with

the destination thread where the brunt of event processing oc-

curs. Each event allocation is routed to the NMM layer which first

attempts to recycle previously freed events allocated on the des-

tination NUMA-node. The event recycling infrastructure is rela-

tively straightforward. For each NUMA-node, a hash map called

RecycleMemMap of free events is maintained. The key into the

RecycleMemMap is the size (in bytes) requested and each entry con-

tains a list (implemented using std::stack) of memory chunks that

can be reused. A stack is used here to increase probability of effec-

tive cache use. If a given size entry is found in the RecycleMemMap
it is popped from the stack and returned. Otherwise, a request for

memory is dispatched to the lower-level NUMA-memory layer. In

order to enable correct recycling upon deallocation, the recycler

reserves the first 4 bytes to store the NUMA-node number (an int).
Then a memory aligned (alignment of events and messages is at 8

byte boundary) pointer is returned. Conversely, deallocation results

in the freed chunk being pushed onto the appropriate stack in the

RecycleMemMap, using the NUMA-node number stored just before

the event. Note that all memory management operations occur

using conventional pointers and C++’s in-place new operator.

4.3.2 Lower level NUMA memory management. The lower-level
memory management operation is analogous to custom memory

management accomplished by operator new in C++ – the memory

manager allocates large, fixed-size blocks from which it allocates

smaller chunks of varying sizes. The memory manager allocates

large, fixed-size blocks of memory via call to numa_alloc_onnode
library call. The block size is currently set to 64 KiB, but configurable

at compile time. The memory manager tracks the blocks on various

NUMA nodes to eventually free the memory blocks at the end of

simulation (via calls to numa_free). Upon receiving a request from



the event recycling layer, it returns the next chunk of memory.

If sufficient memory is unavailable, then a new block of NUMA

memory is allocated and returned.

4.3.3 Rebalancing of recycled memory chunks. With our NUMA-

aware memory recycling strategy we observed significant imbal-

ances in recycler performance based on simulation scenario. In

several cases, the recycler hit rate (i.e., ratio of successful reuse of

events) would degrade from the desirable 90% or higher hit rate

down to about 50%. The imbalance also causes memory growth

which in long running simulations would eventually result in mem-

ory exhaustion. The source of the imbalance arises primarily from

event interaction patterns and such imbalances have also been

reported by prior investigations [11].

Accordingly, our NMM checks and redistributes recycled mem-

ory chunks to rebalance memory usage across the threads. Redistri-

bution is triggered at end of GVT-based garbage collection and only

when the unused recycled memory is 2× times greater than the

memory actually allocated by that thread. The extra unused chunks

are evenly redistributed to all of the other threads. Redistribution of

events is a necessary aspect of NMM without which long running

simulations would experience memory exhaustion [11]. As a side

effect, it also enables to maintain high recycler hit rates and thereby

reducing overall NMM overheads.

5 RELATEDWORK
A key aspect of this paper relates to design and assessment of

shared-memory multithreaded approaches for optimistic, Parallel

Discrete Event Simulation (PDES). The use of shared-memory ap-

proaches for PDES have a rich and long running history, for both

optimistic and conservative PDES, since early 1990s. Nevertheless,

due to space constraints, this section focuses onmore recent, closely

related optimistic PDES investigations, while referring readers to

references therein.

Chen et al [1] propose a global schedule mechanism based on dis-

tributed event queues to improve performance of shared-memory,

multithreaded Time Warp PDES. Our multithreading design also

uses distributed event queues, i.e., one per thread. However, we do
not use a global schedule mechanism and also account for NUMA

in our memory management design. Dickman et al [2] explore
the effectiveness of single versus multiple scheduler queues for

multithreaded optimistic PDES. Their single vs. multiple Least-

TimeStamp-First (LTSF) queues is comparable in design to the Inter-

Thread Event Queues (ITEQ) used for exchanging events. However,

in our design each thread has a single thread-local scheduler queue

– i.e., the ITEQs are not the scheduler queues. Even so, consistent

with our experimental results, Dickman et al also conclude that

using multiple queues improve performance. In a follow-up work

to Dickman et al, Gupta et al [3] explore the use of lock-free queues
for bottom of the Ladder Queue used for managing pending events.

They report about 20%–30% performance improvement. Gupta et
al’s use of lock-free queues for ITEQs is similar to our lock-free

ITEQ implementation.

Wang et al [11] explore issues of enabling effective, multithreaded

PDES and show performance improvements of 3× on Core i7, 1.4×
on AMD Mangy-Cours (4 CPUs, 12 cores/CPU) , and 2.8× on the

Tilera Tile64. Similar to their work, this paper also explores single

and multiple CPU configurations, explores NUMA-aware memory

management, and effectiveness of multiple inter-thread queues.

They compare against MPI-based ROSS simulator that uses a cus-

tom shared-memory inter-process message queue. In contrast, we

compare against a more recent Cross Memory Attach (CMA) ca-

pable MPI implementation, albeit on one hardware platform. In

addition, we also explore the effectiveness of lock-free implementa-

tion for ITEQs.

Vitali et al [10] explore the effectiveness of dynamically reas-

signing CPU-cores to different simulation-kernel threads to maxi-

mize performance. They propose a split design with the top-half

focusing on per-LP operation while bottom-half managing inter-

LP operations. Our design is monolithic with tight coupling be-

tween LP and the simulation-kernel. Pellegrini et al [5] propose a
Linux-based NUMA-allocator that allows management of per-LP

memory consisting of disjoint sets of pages while supporting both

static and dynamic bindings. In contrast, our NUMA-awareMemory

Management (NMM) layer operates purely in user-space. Recently,

Pellegrini et al [6] propose fine-grained preemption and dynamic

scheduling of high priority tasks to improve performance of multi-

threaded PDES. In our design LP operations are not preempted and

currently we uses polling to process incoming messages. However,

in our experiments we found that 90% of the time we had incoming

messages to process, due to the low latency of both CMA-capable

MPI and multithreaded ITEQs.

Importantly, it would be remiss not to stress that, similar to this

research, every one of the aforementioned investigations also used

PHOLD for assessments.

6 EXPERIMENTS & DISCUSSIONS
The experiments in this study focus on comparing the performance

of CMA-capable MPI versus comparable multithreading solutions.

The objective is to identify better of the two approaches, in terms

of performance, so as to inform design choices for optimistic paral-

lel simulations from a more generic context. In our analyses, the

runtime characteristics of the CMA-capable MPI implementation

has been used as the reference. Our multithreaded framework in-

volves two major design alternatives, namely: use of shared events

discussed in Section 4.2 and use of NUMA-aware Memory Manage-

ment (NMM) discussed in Section 4.3. Accordingly, comparisons

with multithreaded simulations has been conducted using the fol-

lowing four configurations: ❶ Shr.Evt+NUMA: Shared Events with

NUMA-aware Memory Management (NMM), ❷ Shr.Evt/No NUMA:
Shared Events without NMM, ❸ No Shr.Evt/NUMA: Shared events

are not used and copies of events are exchanged between threads.

However, this mode uses NMM, and ❹ No Shr.Evt/No NUMA: In
this mode the use of shared events and the NMM are disabled.

All of the experiments in this section have the following common

settings to minimize variables and streamline further analyses:

• Each configuration was run on a dedicated node, even if it did

not utilize all of the resources. For example, a 2-thread run was

conducted on a compute node with all 28 cores reserved. The ten

replications for each configuration were run on the same node

(one after another and not simultaneously). This setup was used

to enable full utilization of caches and to minimize issues with

turbo boost side effects.



• Runs with 14 or fewer cores/threads were conducted on a single

CPU. Threads were pinned to the CPUs using Linux’s numactl
tool. Similarly process affinity was enforced for MPI-processes

using --cpu-set feature available in Open MPI.

• All of the configurations were run with Linux perf to record

CPU usage characteristics (account for Turbo Boost as discussed

in Section 2.1) and CPU-cache performance.

• The MPI runs used event recycling and Adaptive Time Window

(ATW) as discussed in Section 3.

• All of the multithreading runs used event recycling (immaterial

of NUMA-awareness) and Adaptive Time Window (ATW). The

number of Inter-Thread Event Queues (ITEQs) was set of half

the number of threads, based on the calibration results discussed

in Section 4.1.2.

The experiments have been conducted using PHOLD benchmark

with 10,000 LPs, each generating 20 (pending event set of 200,000

events) with exponential distribution (λ=10) of time stamps val-

ues. As elaborated in Section 3.1, two different communication

configurations has been used, namely: ① Config #1: Fixed Inter-LP

interactions (strong scaling) and②Config #2: Fixed fraction of inter-

process events (weak scaling). Results from the experiments for

these two configurations are discussed in the following subsections.

6.1 Effect of Adaptive Time Window (ATW)
with Multithreading

First, we have assessed the effect of using our GVT-based ATW

algorithm, discussed in Section 3.3, using the experimental pro-

cedure discussed in Section 3.3.1. The charts in Figure 9 provide

a comparison of runtimes of the 4 multithreading configurations

with and without ATW. For example, the purple curve ( • ) shows

percentage difference between simulations with ATW versus with-

out ATW, when using shared events and NUMA-aware Memory

Management (NMM). Data points below the zero-axis correspond

to results in which ATW performed better. With multithreading,

overall the ATW provided performance improvements of up to

10%. In some cases it was a 2% slower which we conjecture was

due to throttling of optimism. Nevertheless, since the ATW overall

improved performance, we have consistently used ATW in our

subsequent experiments, in an identical manner to our MPI-based

simulations.

6.2 Config #1: Fixed Inter-LP interactions
The charts in Figure 10 illustrate a comparison of the observed

runtime for CMA-capable MPI version versus the 4 different multi-

threaded configurations. The charts show mean and 95% CI from

10 replications. The inset charts show raw percentage difference

in runtime with respect to the MPI version. In the inset charts,

data points above the zero-axis correspond to configurations in

which the given multithreaded configuration outperformed the

MPI version. As illustrated by the charts in the figure, among the

4 multithreaded configurations, the No Shr.Evt/No NUMA con-

figuration ( ▲ ) is generally the slowest. This is to be expected

because of additional event copies as well as NUMA overheads.

As expected, the NUMA-aware Memory Manager (NMM) layer

reduces the overhead (cf., ♦ ), particularly when more than one

CPU is used.
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Figure 11: Config #1: Messages & Rollbacks.

The shared-events configurations, Shr.Evt+NUMA ( • ) and Shr.
Evt/No NUMA ( ■ ) outperform the non-shared versions. This

is expected because sharing events eliminates overheads of cre-

ating an extra copy of the events. However, the Shr.Evt+NUMA
configuration with NUMA-awareness slightly under-performs the

Shr.Evt/No NUMA configuration, particularly in single CPU set-

tings by about 5%. The performance degradation is proportional to

the slightly increased increased number of rollbacks experienced

with Shr.Evt+NUMA as shown in Figure 11. However, the slight

increase in rollbacks causes the net number of instructions (due to

rollback recovery operations) to increase as illustrated by Figure 12.

The inset charts in Figure 12 show raw percentage difference in

number of instructions for crossvalidation. In these simulations, re-

balancing operations used by NMM to redistribute unused memory

(discussed in Section 4.3.3) that could impact performance, did not

occur.

The runtime performance of CMA-capable MPI based runs ( × )

are competitive with the multithreaded version in many instances

as illustrated in Figure 12. The “zero copy” capabilities of CMA-

based MPI generally outperforms the No Shr.Evt. configura-

tion as it eliminates the need to copy messages. In the lowest

Inter-Process Communication (IPC) communication scenario with

receiver range set to 10, the MPI-version experiences fewer roll-

backs than the threaded version (cf., Figure 11(b)) and consequently
outperforms all of the threaded runs. However, with the receiver
range setting of 100, the MPI version experienced a conspicuous

increase in number of rollbacks as shown in Figure 11(b) which

degraded overall performance. Interestingly, in these high rollback

scenarios, the superscalar capabilities of the CPUs were effectively

utilized as illustrated by Figure 13. The number of instructions

retired per CPU-clock cycle more than doubled from about 0.6 to
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Figure 12: Config #1: Instructions executed. Inset charts
shows percentage difference versus MPI, with larger posi-
tive values corresponding to fewer instructions.

about 1.4 instructions/cycle. We conjecture that this improvement

occurs because rollback recovery operates on consecutive events

in batches, which improves speculative execution. Full set of charts

are included in supplementary materials.

6.3 Config #2: Fixed fraction of remote events
Recollect that in this configuration the fraction of inter-process

/ inter-thread events called remote events is fixed as discussed in

Section 3.1.2. The total number of remote events at remote event
settings of 10%, 25%, 50%, 75%, and 90% settings were on average

about 100.6 million, 251.7 million, 507.1 million, 762.8 million, and

917 million respectively (charts in supplements). These averages

also include additional anti-messages exchanged during rollback

recovery and show a slightly increasing trend, because probability

of rollbacks increases with increased communication.

The charts in Figure 14 illustrate a comparison of the observed

runtime for CMA-capable MPI version versus the 4 different mul-

tithreaded configurations. The inset charts show raw percentage

difference in runtime with respect to the CMA-capable MPI ver-

sion ( × ) . In the inset charts, data points above the zero-axis

correspond to configurations in which the given multithreaded con-

figuration outperformed the MPI version. The charts in Figure 15

shows the corresponding number of rollbacks. All plots curves

show mean and 95% CI from 10 replications for each data point.

As illustrated by the charts in the figure, the performance land-

scape is similar to those from Config #1. The shared event con-

figurations perform better because extra copies of events are not

created. However, between Shr.Evt+NUMA ( • ) and Shr.Evt/No
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Figure 13: Config #1: Cache miss & instructions per cycle

NUMA ( ■ ), the NUMA-aware Memory Management (NMM) con-

figuration has slightly lower performance. The performance gap

arises due to two reasons. First, the NMMhas one additional look-up

overhead – i.e., the NMM has to look-up the NUMA node ID corre-

sponding to the receiving LP’s ID in a hash map. The NMM also

has a minor overhead when recycling events as it has to track the

NUMA ID. These operations add 90 instructions/event on average,

which is a 5% increase. Second source of performance degradation

is attributed to the slightly higher number of rollbacks experienced

by Shr.Evt+ NUMA ( • ) as illustrated by Figure 15. However, the

performance gap between Shr.Evt+NUMA ( • ) and Shr.Evt/No
NUMA ( ■ ) diminishes when cores on the second CPU are used –

i.e., core >14 in Figure 14 and Figure 15. In these configurations, the

advantages of NMM outweigh its overheads.

Similar to Config #1 results (see Figure 10), the charts in Fig-

ure 14 also highlight the complex performance landscapewhen com-

pared with CMA-capable MPI-based runs. In many cases, the MPI-

based runs outperformed the corresponding fastest multithreaded

runs by up to 20%. The performance trends are comparable to the

trends in number of rollbacks shown in Figure 15. Interestingly,

with 75% and 90% remote events, where number of rollbacks are

comparable, MPI-based runs performed better with increasing num-

ber of cores. Profiler data showed that CPU-cache performances of

MPI and the 2 shared-event configurations were comparable (charts

in supplements).

However, the number Instructions per CPU-clock cycle (Instr./cycle)

was much higher for MPI-based runs than for the multithreading

runs, similar to Figure 13(b). We conjecture that the reduced In-

str./cycle for multithreading arises from synchronization overheads.

Recollect that threads synchronize only to add/remove events from

the several shared Inter-Thread Event Queues (ITEQs). Even though

having several ITEQs decreases contention, even the short synchro-

nizations negatively impact speculative execution, decreasing In-

str./cycle and thereby degrading performance. Nevertheless, overall

the complex performance landscape poses a challenge in identify-

ing a clear winning configuration. The results suggest that further

analysis on model characteristics and model behaviors would be

needed to choose between these alternatives.

7 CONCLUSIONS
The recent, steady trend towards increased CPU-core densities

in compute nodes has stimulated investigations in using shared-

memory, multithreaded approach over message-passing alterna-

tives for Parallel Discrete Event Simulations (PDES). One of the

primary advantages of of shared-memory approaches is that they

provide opportunities to reduce communication and synchroniza-

tion overheads. Motivated by the current research trends, we have

significantly redesigned our MPI-based simulation framework to

operate using multiple threads. This paper discussed details of our

multithreaded framework, its decentralized design, implementation,

and assessment.

In our decentralized scheduler design, inter-thread interactions

were accomplished using one or more Inter-Thread Event Queues

(ITEQs). Two alternative implementations for ITEQs was proposed

and evaluated, namely: lock-based versus lock-free. Experimental

results showed that despite its novelty, the lock-free implementa-

tion underperformed the lock-based implementation. Profiler data

showed a key source of 7% performance degradation was due to

reduction in instructions per CPU-clock cycle (Instr./cycle) for the

lock-free implementation. The observation indicates that main-

taining a higher Instr./cycle is more beneficial, suggesting that a

spin-lock is a viable candidate for future assessments. The experi-

mental data showed that given k threads,
k
2
ITEQs yielded a good

performance with lock-based ITEQs. This setting provides a good

balance between thread contention versus overheads of processing

multiple queues.

This paper also discussed and assessed two key design alterna-

tives used in our multithreaded implementation, namely: shared

vs. non-shared events and NUMA vs. non-NUMA memory man-

agement. Combinations of these alternatives were assessed using

a wide range of strong-scaling and weak-scaling configuration of

PHOLD benchmark. The simulations were fine grained (time-per-

event as < 0.7 µsec), thereby emphasizing communication laten-

cies. Results from our experiments show that overall shared-events

setting in which events are shared between threads consistently

perform better than the non-shared mode. Shared-events mode

performs better because it eliminates the need to make copies of

events. The NUMA versus non-NUMA modes had a mixed result

based on configuration. When just a single CPU was used, shared-

event with non-NUMA memory management performed better.

On the other hand, NUMA-aware Memory Management (NMM)

performed slightly better with 2 CPUs. However, there is room for

fine tuning our NMM – the current implementation of our NMM

includes one hash map look-up to determine the NUMA node, given

an LP’s ID. Reducing overheads of this look-up can further improve

effectiveness of our NMM.
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Figure 14: Config #2: Comparison of normalized runtimes. Inset charts show percentage difference versus MPI, with positive
values indicating speed-up
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Figure 15: Config #2: Comparison of rollbacks corresponding to runs in Figure 14.

The performance of our multithreaded PDES framework was

compared against our existingMPI-based, distributed memory alter-

native. However, a key aspect taken into account is the Cross Mem-

ory Attach (CMA) based capability introduced in the Linux kernel

and Open MPI. CMA permits MPI-processes to directly read/write

data to a different process’s virtual memory space, thereby lowering

the latency for exchanging messages. Our experimental analysis

revealed a complex performance landscape with no clear winner –

i.e., the multithreaded, shared-memory approach performed better

only in some cases when compared to the message-passing ap-

proach. With our weak-scaling benchmarks, the MPI-based version

consistently outperformed the multithreaded version when 2 CPUs

were used.

The complex performance landscape suggests that a split de-

sign could be beneficial – i.e., multiple threads on a single CPU

and message-passing for inter-CPU interactions. Of course, we

plan to explore this design in our future work. More importantly,

the complex performance landscape suggests that a careful assess-

ment of “influential” model characteristics needs to considered to

choose between multithreading versus contemporary CMA-capable

message-passing solutions. This requires identification and ranking

of model characteristics to determine the most influential ones,

which also has considerable potential for future research.

Supplementary Material
Source code for MUSE and supplementary material available online

at http://pc2lab.cec.miamiOH.edu/muse/
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