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ABSTRACT 

Recent breakthroughs in communication and software en- 
gineering has resulted in significant growth of web-based 
computing. Web-based techniques have been employed for 
modeling, simulation, and analysis of systems. The mod- 
els for simulation are usually developed using component 
based techniques. In a component based model, a system 
is represented as a set of interconnected components. A 
component is a well defined software module that is viewed 
as a “black box” i.e., only its interface is of concern and not 
its implementation. However, the behavior of a component, 
which is necessary for simulation, could be implemented 
by different modelers including third party manufacturers. 
Web-based simulation environments enable effective shar- 
ing and reuse of components thereby minimizing model 
development overheads. In component based simulations, 
one or more components can be substituted during sim- 
ulation with a functionally equivalent set of components. 
Such Dynamic Component Substitutions (DCS) provide an 
effective technique for selectively changing the level of ab- 
straction of a model during simulation. It provides a tradeoff 
between simulation overheads and model details. It can be 
used to effectively study large systems and accelerate rare 
event simulations to desired scenarios of interest. DCS 
may also be used to achieve fault-tolerance in Web-based 
simulations. This paper presents the ongoing research to 
design and implement support for DCS in A Web-based 
Environment for Systems Engineering (WESE). 

1 INTRODUCTION 

The marked growth in communication technology and soft- 
ware engineering has resulted in significant growth in the 
use of the World Wide Web (WWW) (Fishwick 1996). The 
distributed resources of the WWW have been harnessed 
together using Web-based computing methodologies (Fish- 
wick 1996, Rao et. al. 1999, Rao et. al. 2000). Web-based 
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techniques enable active interaction between interconnected 
computing systems that can be individually or collectively 
used to provide a generic set of computational resources. 
These techniques have transformed the WWW into a giant 
computational infrastructure (Rao et. al. 1999, Rao et. al. 
2000). The computational infrastructure of the WWW has 
been exploited to enable Web-based simulations (Page et. 
al. 1994, Rao et. al. 2000). Web-based simulation is an 
effective solution to address a number of issues exacerbating 
modeling, simulation, and analysis, such as: ( i )  effective 
sharing and reuse of simulation models developed by dif- 
ferent modelers (Rao et. al. 2000); (i i)  availability and 
accessibility of the models (Page et. al. 1994) without loss 
of proprietary information (Rao et. al. 2000); (iii) porta- 
bility and inter-operability of the models (Vinoski 1997); 
( iv )  capacity for large scale simulations (Page et. al. 1998, 
Rao et. al. 2000). Due to its effectiveness, web-based 
simulations are steadily growing in importance. 

In web-based simulation environments, the models for 
simulations are usually developed using component based 
modeling techniques (Pidd et. al. 1999, Rao et. al. 2000). 
In a component based model, a system is represented as 
a set of interconnected components (Rao et. al. 2000). A 
component is a well defined entity which is viewed as a 
“black box”, i.e., only its interface is of interest and not its 
implementation. A component could in turn be specified 
using a set of sub-components. During simulation, each 
atomic component is associated with a specific, well defined 
software module that implements its behavior and function- 
ality. The software modules could be those implemented 
by the modeler, available locally, or those obtained via the 
WWW from other third party model developers (Rao et. 
al. 2000). Web-based simulation environments insulate the 
user from the intricacies involved utilizing third party mod- 
els and the overheads of distributed simulation. Component 
based modeling techniques offer a number of advantages 
(Pidd et. al. 1999, Rao et. al. 2000). Components are not 
only useful modeling abstractions but are also convenient 
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units for information exchange over the WWW. Sharing and 
reuse of components considerably reduces modeling and Val- 
idation overheads. Component based modeling technique 
also eases exploration of design altematives through “plug 
and play” of components (Rao et. al. 2000). Hence, it is 
prevalently used for web-based modeling and simulation 
(Fishwick 1996, Rao et. al. 1999, Rao et. al. 2000). 

In component based simulation models, one or more 
components can be substituted by functionally equivalent 
set of components without altering the basic characteris- 
tics of the model. Substituting one or more components 
with a single component and vice versa is synonymous to 
varying the level of abstraction of the model. For example, 
in the case of logic simulations, a structural model of a 
component could be substituted by its behavioral model and 
vice versa to change the levels of abstraction. Substitution 
of components may be done statically, prior to simulation, 
or dynamically, during the course of simulation. Static 
component substitution has been employed to address ca- 
pacity and performance of large scale simulations. Huang 
er. al. present techniques for selectively abstracting differ- 
ent components of network models to improve performance 
and capacity of network simulations (Huang et. al. 1998). 
Rao et. al. aggregate components that utilize a common 
implementation, increasing the capacity of simulators, to 
enable ultra-large scale simulations (Rao and Wilsey 1999). 
Levelized code compilation techniques, that selectively re- 
place parts of combinatorial logic circuits with equivalent 
behavioral descriptions, are widely used to improve perfor- 
mance of circuit simulations (Wang and Maurer 1990). The 
primary drawback of these techniques is that, functionality, 
observability, and model details cannot be altered during 
simulation. However, observability and model details are 
crucial for effectively studying large scale systems. 

On the other hand, substituting components during sim- 
ulation provides a dynamic tradeoff between model details 
and performance of the simulation. Dynamic Component 
Substitution (DCS) not only encompasses the utility of its 
static counterpart but also provides a number of other use- 
ful features. DCS enables effective “What-if‘’ analyses and 
exploration of design alternatives to be carried out during 
the life time of a simulation. DCS is a novel approach for 
simulation of “multiple futures” (Hybinette and Fujimoto 
1999). It is an alternative approach for fast simulations 
and provides an attractive solution to accelerate rare event 
simulations (Altamirano and Altamirano 1994). It is an 
effective technique for debugging and validating large sim- 
ulations. The technique can also be used to dynamically 
alter the tradeoffs between resource consumption and model 
details during simulation. DCS can be used to selectively 
abstract parts of a model thereby enabling simulation and 
analysis of large systems in reasonable time frames. The 
technique can also be used to achieve better fault-tolerance 
in web-based simulations. However, implementing support 
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for DCS in optimistically synchronized simulations, Time 
Warp simulations in particular, is a complicated task. This 
paper presents the issues involved in implementing support 
for DCS in a Web-based Environment for Systems Engi- 
neering (WESE). A brief background on the distributed 
synchronization mechanism and the simulation kernel used 
in WESE is presented in Section 2 .  An overview of WESE is 
presented in Section 3. The issues involved in implemented 
DCS in WESE are presented in Section 4. Some of the 
experiments conducted using the DCS feature of WESE are 
presented in Section 5. Section 6 presents some concluding 
remarks along with pointers to future work. 

2 BACKGROUND 

The distributed simulation capabilities of WESE have been 
enabled using WARPED, a parallel optimistic simulator. 
WARPED uses the Time Warp (Jefferson 1985) paradigm 
to achieve distributed synchronization. A Time Warp syn- 
chronized simulation is organized as a set of communicating 
asynchronous logical processes (LPs). The LPs communi- 
cate between each other by exchanging discrete virtual time 
stamped events (Jefferson 1985). Virtual Time is used to 
model the passage of time and define a total order on the 
events in the system. Each LP processes its events incre- 
menting its local virtual time (LVT), changing its state, and 
generating new events. The LPs must be synchronized in 
order to maintain the causality of the simulation; although 
each LP processes local events in their correct time-stamp 
order, events are not globally ordered. Causal violations 
may occur due to the optimistic nature of Time Warp. 
Causality violations are detected by a LP when it receives 
an event with time-stamps lower than its LVT (a straggler 
event). On receiving a straggler, a rollback mechanism is 
invoked to recover from the causality error. The rollback 
process recovers the LP’s state prior to the causal violation, 
canceling the erroneous output events generated by send- 
ing out anti-messages, and re-processing the events in their 
correct causal order (Jefferson 1985). Each LP maintains a 
list of state transitions along with lists of input and output 
events corresponding to each state to enable the recovery 
process. A periodic garbage collection technique based on 
Global Virtual Time (GVT) is used to prune the queues by 
discarding history items that are no longer needed. The 
distributed simulation is deemed to have terminated when 
all the events in the system have been processed in their 
correct causal order. 

The WARPED kernel presents an interface to build 
logical processes based on Jefferson’s original definition 
of Time Warp (Radhakrishnan et. al. 1998). The kemel 
provides an application program interface (API) to build 
different LPs with unique definitions of state. The basic 
functionality for sending and receiving events between LPs 
using a message passing system is supported by the kernel. In 
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WARPED, LPs are placed into groups called "clusters". LPs 
on the same cluster communicate with each other without 
the intervention of the message passing system, which is 
faster than communication through the message system. 
Although LPs are grouped together into clusters they are 
not coerced into synchronizing with each other. Control 
is exchanged between the application and the simulation 
kernel through cooperative use of function calls. Further 
details on the MI and working of WARPED is available 
in the literature (Radhakrishnan et. al. 1998). 

3 WESE 

The Web-based Environment for Systems Engineering 
(WESE) was developed to ease modeling and simulation 
of systems over the WWW (Rao et. al. 2000). In WESE 
the model of a system is represented using a set of inter- 
connected components. A component is treated as a "black 
box" with a set of inputs and outputs; i.e., only the inter- 
face specification of the component is of concern and not 
its implementation. The actual implementation of a com- 
ponent could be developed by the modeler or by other third 
party designers. Accordingly, WESE provides a component 
based modeling language, a framework for developing a 
web-based repository of components, and the infrastructure 
for distributed simulation. An overview of WESE is shown 
in Figure 1. As shown in Figure 1, the environment provides 
a Hyper Text Markup Language (HTML) interface and a 
text based frontend that can be used to interact with the 
WESE Server. The server forms the core of WESE and 
orchestrates the various parallel and distributed activities of 
the system. The input to WESE is the model of the system 
described using the System Specification Language (SSL). 
The Backus Normal Form for SSL grammar is shown in 
Figure 2. As shown in Figure 2,  the specification of a model 
or a SSL design file consists of a set of interconnected mod- 
ules. Each module consists of three main sections, namely; 
( i )  the component dejinition section that contains the details 
of the components to be used to specify a module (such 
as the Universal Resource Locator (URL) of a factory and 
name of the source object along with initial parameters); ( i i )  
the component instantiation section that defines the various 
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Figure 1: Overview of WESE 
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Figure 2: BNF for SSL Grammar 

components constituting the module; and (iii) the netlist 
section that defines the interconnectivity between the var- 
ious instantiated components. SSL permits a label to be 
associated with each module. The label may be used as a 
component definition in subsequent module specifications 
to nest a module within another. In other words, the labels, 
when used to instantiate a component, result in the complete 
module associated with the label to be embedded within the 
instantiating module. This technique can be employed to 
reuse module descriptions and develop hierarchical speci- 
fications. As shown in Figure I, the input SSL source is 
parsed into an object oriented (00) in-memory intermedi- 
ateform (SSL-IF) using the SSL parser. Hierarchical SSL 
models are elaborated or "flattened" at the end of parsing by 
the elaborator (Rao et. al. 1999). Elaboration is a recursive 
process that flattens a hierarchical model by substituting 
each module reference (made through the use of labels) 
with an unique instance of the module. As shown in Fig- 
ure 1, the elaborated model, which is also represented using 
SSL-IF, forms the primary input to all the other modules 
of WESE. 

The WESE Server also performs the task of collab- 
orating with the distributed factories and coordinating the 
simulations. As shown in Figure 1, the simulation manager 
performs the activities associated with coordinating with 
the object factories (via the factory manager) to setup a 
distributed simulation. The factory manager performs the 
tasks of interacting with the distributed factories using a 
predefined protocol. It not only provides a uniform inter- 
face to communicate with different object factories but also 
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insulates the other modules of the server from the intricacies 
of the underlying protoco!s. The information manager is 
responsible for interacting with the factories (via the factory 
manager) and constructing the formal specifications used 
by WESE’s formal framework. The current implementa- 
tion of WESE is geared to generate formal specifications 
in PVS, a higher order logic specification language. The 
PVS specification can be used to formally verify different 
attributes of the system by using a mechanized theorem 
prover. 

To ease design, development, and use of components 
WESE provides a framework for constructing web-based 
object factories. An object factory can be viewed as a web- 
based repository of components with an added capability 
for simulating them. The object factories play a pivotal role 
in providing a framework for management of components 
and the infrastructure for distributed simulation. Figure 3 
illustrates the layout of a WESE factory. The initial handle 
to a factory is provided by the gateway module. The module 
hooks on to a specified IP (Internet Protocol) address via the 
communication backbone and processes the initial requests 
from different simulation managers. This IP address that 
should be specified in the configuration file to locate and 
communicate with a factory. The task of interacting with 
a simulation manager to create components and to set up a 
simulation is handled by the session manager module. The 
session manager also handles some of the specific semantics 
of the simulation engine. The conjguration manager tailors 
the components generated by the factory to meet the user’s 
specifications. The simulation sub-system constitutes the 
actual simulation engine of the factory. A WESE factory 
is built from sub-factories and object stubs. The object 
stubs are the atomic components of a factory. Object stubs 
contain attributes of the physical component (such as cost, 
size, and speed) along with the formal specifications for the 
component. The object factories collaborate with the WESE 
Server to enable web-based simulations. WESE provides a 
simple, yet robust application program interface (API) for 
developing simulation models. Further details on the API 
and WESE are available in the literature (Rao et. al. 2000). 

Figure 3: A WESE Factory 

4 IMPLEMENTING DCS IN WESE 

DCS may be achieved by replacing a given LP, or a set of 
LPs, in a simulation with a functionally equivalent LP, or a 
set of LPs. Some of the scenarios that could arise in DCS are 
illustrated in Figure 4. The “I to I ” case, shown in Figure 4, 
in which one L P  is replaced by another, is the simplest 
instance of DCS. As shown in the figure, the “ N  to 1” 
scenario, where in a set of LPs are replaced with a equivalent 
LP, arises when a compound component, consisting of a set 
of sub-components, is replaced with an atomic component. 
This scenario is equivalent to abstracting a part of the model. 
The “ N  to M ”  instance is one where in a set of LPs ( N  LPs) 
are replaced with a equivalent set of LPs (M LPs). This 
scenario arise when a compound component, is replaced with 
another compound component. However, this instance can 
be viewed as sequence of atomic component substitutions. 
An atomic component may be replaced with a compound 
component, reducing the level of abstraction, causing a 
single LP to be replaced with a set of LPs. The “I to N ”  
scenario, shown in Figure 4, illustrates this case. To enable 
modeling of the different scenarios and effectively utilize 
support for DCS, modifications to the modeling language 
and simulation infrastructure are required. Consequently, to 
enable DCS in WESE, modifications to SSL, the SSL parser, 
SSL-IF, elaborator, and the simulation infrastructure were 
carried out. The issues involved in the implementation of 
these modifications along with the tradeoffs in their design 
are discussed in the following subsections. 

1 To 1 

0- 

~~~ ~ 

Figure 4: Scenarios in DCS 

4.1 Modifications for modeling DCS 

The initial phase of implementing support for DCS in WESE 
involved extending SSL to include additional constructs for 
modeling the different scenarios illustrated in Figure 4. 
Care was taken to ensure that the extensions were minimal 
so that the language continues to be simple, flexible, and 
easy to process. The primary extension was to permit an 
auxiliary module or component dejnition to be associated 
with a module. The BNF of the modified grammar rule 
for a module is shown in Figure 5. When DCS for a 
module is requested, the set of components contained by 
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Figure 5: Modified BNF for SSL Module 

the module are substituted using the auxiliary module or 
component deJnition and vice versa, as the case may be. 
Modeling the "N to I " ,  the "N to M", and the " I  to N" 
scenarios (illustrated in Figure 4) using this extension is 
straightforward. In WESE, DCS can be performed only at 
a module level. However, a module can contain a single 
component and it can be replaced it with an auxiliary 
component. This feature can be exploited for modeling the 
" I  to I " DCS scenario. The semantics of the netlist was 
also extended to include references to the auxiliary module 
and component definitions. 

SSL-IF was also extended to correspondingly reflect the 
changes to the grammar. The elaborator was also modified 
to account for the auxiliary components. The elaborator 
also flattens auxiliary modules and component definitions. 
It results in the creation of unique instances of the auxiliary 
components. The auxiliary components are an integral part 
of the elaborated SSL-IF and are identified using special 
flags in the various data structures. The elaborator was 
extended to identify primary input and output components, 
i.e., components that are directly connected to the input 
and output ports of the enclosing module. This information 
is utilized during simulation to update netlist entries when 
components are substituted with other components. The 
elaborator also collates information on the set of components 
contained by each module. This information is utilized to 
identify a set of components that need to be replaced when 
DCS is initiated. The data collated by the elaborator is 
embedded into the corresponding SSL-IF nodes generated 
during elaboration. The data is passed on to the simulation 
modules of WESE that utilize them for enabling efficient 
DCS. Modifications to the simulation infrastructure ofWESE 
to enable DCS are presented in the following subsection. 

4.2 Simulation infrastructure for DCS 

The process of dynamically substituting components during 
simulation (as shown in Figure 4) involves the following 
steps: triggering DCS in the simulation, creation of new 
LPs that model the components, updation of states and 
events of the LPs, and updation of kernel information. In 
Time Warp synchronized simulations, additional care must 
be exercised to implement these phases in the presence of 
rollbacks that could occur in a Time Warp synchronized 
simulation. A number of modifications were carried out to 
the simulation modules of WESE to enable DCS. The most 
significant change was a modification to the structure and 
API of a LP. The API was modified to utilize object oriented 
(00) techniques to completely disassociate a user-defined 

LP from the simulator core, as shown in Figure 6. In the 
earlier API, the UserDefined Object class would be 
directly inherited from the Kernel Object class. As 
illustrated in the figure, the Kernel Object and User 
Ob j ec t are linked using pointer references. The User 
Ob j ec t translates the API function calls to corresponding 
Kernel Object methods while the Kernel Object 
translates WARPED API function calls to corresponding 
User Object methods. The API presented by the User 
Ob j ec t class is similar to the earlier API of WESE. Hence, 
the changes required to the existing components of WESE 
were minimal. 

This design is motivated primarily by two factors. The 
primary issue being that the WARPED kernel does not 
support creation and deletion of LPs during simulation. 
In other words, the WARPED kernel does not permit the 
structure and composition to change once simulation com- 
mences. However, DCS involves changes in structure and 
composition during simulation. This issue is resolved by 
using the class hierarchy, shown in Figure 6, wherein the 
Kernel Objects are static (i.e., they do not change during 
simulation) while the User Ob j ec t class hierarchy is dy- 
namic (i.e., it can change during simulation). The Kernel 
Ob j ec ts provide the static interface to the WARPED kernel, 
while different UserDef ined Objects can be plugged 
into the Kernel Ob j ect during simulation. This tech- 
nique enables dynamic substitution of components while 
adhering to the specifications and semantics of the WARPED 
kernel. However, this design does not provide an effective 
technique for creating new components that may be neces- 
sary during DCS. Hence, in WESE, the auxiliary components 
that could potentially be used during simulation are also 
created. However, these components merely as place hold- 
ers and do not perform any activity until they are activated 
through DCS. 

The second motivation for the design is that the Kernel 
Ob j ec t class provides a convenient spot for implementing 
support for DCS by utilizing the simulation infrastructure 

Structure of a WESE LP 

Figure 6: Modified Structure of a WESE LP 
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of WARPED. The WARPED kernel insulates the Kernel 
Objects from rollbacks which considerably reduces the 
complexity and overheads involved in implementing DCS. 
Also, with this design, the overheads and process of DCS is 
transparent to the components. This solution is independent 
of the underlying synchronization mechanism. Accordingly, 
in WESE, an event driven approach has been adopted for 
carrying out the sequence of steps involved in dynamically 
substituting components. The set of kernel events used by 
WESE was extended to include events for sequencing the 
different phases of DCS. The primary drawback of this 
design is that it introduces additional state saving over- 
heads in Time Warp simulations. However, a number of 
Time Warp optimizations can be employed to minimize state 
saving overheads (Fujimoto 1990). This design also intro- 
duces additional overheads during simulation since each 
API function call involves one extra level of indirection. 
Also, maintaining the auxiliary components could prove 
to be a bottleneck for large simulations (Rao and Wilsey 
1999). However, component aggregation techniques can 
be employed to minimize the overheads (Rao and Wilsey 
1999). 

Step 1 
Trigger DCS 

r- 
V M Step 2 

Deactivate all coponent(s) 
that are going to be 
aubrtnuted by the 
auxiliary component(s) r 

V Step 3 
On receiving a DeActivate Event: 

il H is a prlmary input node then update 
information of driving componenqs) 

if il ir a primary output node then update 
inbrmatbn of the driven componenqs) 

Ai= send the updates to the 
corresponding auxiliary componenla(a) - 

Step 4 
On m i w i n g  an Update Event, appropriately 
change the fawinNanat entrya) 
In the state; reflecting the change 
in structure due to DCS. 

V 

Figure 7: Sequence of Operations During DCS 

A typical sequence of steps performed by the Kernel 
Ob j ec ts to achieve DCS are shown in Figure 7. The figure 
also illustrates the corresponding sequence of transforma- 
tions that occur to the model during the different phases. The 
kernel events that participate in DCS are also shown. The 
initial phase involves triggering DCS in the simulation by 
scheduling an Activate or a DeActivate event, as the 
case may be, to the corresponding auxiliary component(s). 
DCS could be triggered externally, by using interactive 
simulation features, or internally, by the simulation model 
based on certain application-specific conditions. On receiv- 

ing a Activate or a DeActivate event, the Kernel 
Objects initiates the process of DCS. During the second 
phase of DCS, the activated set of auxiliary components 
schedule DeAc t iva t e events to the set of components 
that they are going to substitute. The information on the set 
of components to be replaced is collated during elaboration 
and is passed onto the corresponding Kernel Objects 
by the WESE server during initialization. The server also 
passes the primary input and output component flags col- 
lated by the elaborator (as explained in subsection 4.1) along 
with the netlist data to the respective Kernel Objects. 
In the next phase, the Kernel Objects that receive the 
DeAc t ivat e Event utilize this information to schedule 
Update Events to all the related components. The re- 
lated components are those components with which a given 
component communicates. This list of related components 
is obtained from the from the netlist data of the component. 
The primary input and output components also schedule 
Update Events to the auxiliary component to provide 
the list of related components. This information is required 
to build the netlist of the new component. On receiving the 
various Update Events, the various Kernel Objects 
update their netlists reflecting the change in structure. As 
shown in Figure 7, during subsequent simulation cycles, the 
events generated would be passed on to the new components 
while the old components get deactivated. To handle the 
different scenarios that could arise during DCS (as shown 
in Figure 4, additional sub-tasks, such as instantiating new 
components in different object factories, are performed in 
the corresponding DCS phases. 

The kernel events used during the different phases of 
DCS are scheduled using WARPED’S simulation infrastruc- 
ture. The usage is similar to that of any other WARPED 
application. Hence, to ensure that the events are scheduled 
in the correct sequence, a delta delay is introduced between 
each event using a two tuple definition for simulation time. 
The use of a two tuple definition for simulation time is 
hidden from the user by the API. Since the process of DCS 
proceeds in delta cycles, it appears to occur at a particular 
instant in simulation time. The delta delays also ensure con- 
sistent recovery from rollbacks. The data pertaining to the 
component is stored in the state of the Kernel Object. 
When a rollback occurs, WARPED appropriately restores 
the state of the Kernel Object ensuring coherence of 
the different phases in DCS. The disadvantages of the event 
driven design for DCS is that a large number of events could 
be scheduled during DCS. Hence, if DCS occurs frequently, 
the performance of the simulation could deteriorate. One of 
the limitations of the current implementation is that it can 
be used to substitute only “memory less” components (i.e., 
components that do not have an explicit notion of state). In 
other words, the current implementation does not provide 
support to map the state of the old module to that of the 
new module. Research is underway to provide a support for 

, 
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mapping the state space of one module to another during 
DCS. Also, i t  must be noted that the transient events that 
were already scheduled for the old set of modules do not 
get reassigned to the new set of components. They continue 
to get processed by the substituted set of components. The 
experiments conducted using DCS in WESE are presented 
in the following section. 

5 EXPERIMENTS 

The experiments conducted to evaluate the support for DCS 
in WESE consisted of two phases. During the first phase an 
object factory consisting of a collection of logic gates was de- 
veloped. The factory contained logic gates such as two input 
and gate, two input or gate, two input exclusive-or 
gate, and not gate. More complex components, such as a 
half adder and a full adder, were included in the 
hardware factory. The factory also contained a bit pattern 
generation component and a bit display component. The 
pattern generator can generate all possible bit patterns of 
a given length and can be used to exercise the inputs of a 
model developed using components from the factory. The 
display component can be used to generate a set of bits as 
outputs from the simulations. The factory also contained a 
controller component that provides a convenient interface 
to trigger DCS. The second phase of the experiment con- 
sisted of developing logic models in SSL using the various 
components from the hardware factory. The characteristics 
of some of the models using the experiments is shown in 
Table 1. The models included auxiliary component speci- 
fications for the modules that had equivalent higher level 
abstractions. The number of components replaced by each 
auxiliary component in the models is also shown in the table 
(column Replaced by Aux.). For example, model M1 
was implemented using structural models of full adders. The 
structural models of also included an auxiliary specification 
to use the f ul1 adder component available in the factory. 
The full adder component substitutes nine components 
constituting the structural model. The SSL descriptions also 
used the controller components activate the auxiliary 
modules (trigger DCS) at different time points during sim- 
ulation. The simulation experiments were conducted on a 

Table 1: Models Used in Experiments 
~umhcr or comp,ncna 

4 - h l  odder 
5-hl Mux 
Cscoddcrl h;ilf..ddcrr 

M4 Cham 01 nul p i e s  70 6 
M5 Cham of not galer 330 30 

network of shared memory multi-processor (SMP) work- 
stations. Each workstation consisted of two Pentium pro 
Processors (166 Mhz.) with 128 mega bytes (MB) or main 
memory (RAM). The workstations were inter-connected us- 
ing fast Ethernet. The graph in Figure 8 presents the change 
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Figure 8: Events Versus Duration of DCS 

in the total number of events processed with respect to the 
duration of simulation time in which the auxiliary compo- 
nents were active. These statistics were collated from the 
experiments conducted using a single factory where in no 
rollbacks occur. The data points shown with zero durations 
did not involve any DCS and represent the basic number of 
events executed by each model. As illustrated by the graphs, 
for short durations during which the auxiliary component 
is active, the total number of events processed is higher. 
The increase in number of events is due to the additional 
kernel events used to activate and deactivate the components 
during DCS. However, as the duration increases the num- 
ber of events processed decreases. The number of events 
decrease since a set of components are replaced by a single 
component which results in the elimination of a number 
intermediate events used and the total number of events in 
the simulation decreases. As shown in Figure 8, the dura- 
tion of simulation time for which DCS reduces the number 
of events varies with respect to the model characteristics. 
This value plays a crucial role in the effectiveness of DCS 
to improve performance of the simulations. If the duration 
is smaller than this threshold value, then as the number of 
substitutions increases, the total number of events in the 
simulation increases and the performance of the simulation 
decreases, and vice versa. 

Figure 9 presents the time for simulating model M 5  
in parallel using a varying number of factories. These ex- 
periments were conducted by deploying the object factory 
on different workstations and modifying the SSL descrip- 
tions io choose components from the different factories. 
The components were chosen from the different factories at 
random. The timing information shown in the graph is the 
average of 10 simulation runs. As illustrated by the graph, 
the performance of the simulations increases as the duration 
during which the auxiliary components are active increase. 
As shown in Figure 8, the improvement in performance is 
due to the decrease in the total number of events that need 
to be processed. As illustrated by Figure 9, the parallel 
simulations performed using 3 factories performs better than 

1846 



0 5w 1wO 1 5 w  2oM) 

DCS Duratlon (Sirnulaton Tme) 

Figure 9: Time for Parallel Simulation 

those performed using a single factory. The performance im- 
proves since the simulation overheads get distributed across 
the three processors. In the 2 factories case the computa- 
tional overheads dominate the simulation, while in the 4 
factories case communication overheads dominate. Hence, 
in these cases the overheads dominate the gains accrued 
by employing parallel simulation and the performance of 
the simulations do not improve. As illustrated by Figure 8 
and Figure 9 the performance of parallel simulations can 
be improved through DCS. 

6 CONCLUSIONS 

Component based modeling techniques provide a effective 
means to study systems through “plug and play” of compo- 
nents. In this paper the issues involved in substituting the 
components dynamically, during simulation were presented. 
The design and implementation of the support for Dynamic 
Component Substitution in WESE was illustrated. The ex- 
periments in which DCS was used to change the level of 
abstraction of the model during simulation were described. 
The results obtained from the experiments indicate that 
considerable gains in the performance of simulation can be 
accrued by employing DCS. The technique can be used to 
accelerate simulations, rare event simulation in particular, 
to scenarios of interest. DCS can be used to replace a single 
component with multiple components and simultaneously 
study the effects of different decisions. This provides a 
novel technique for simulating multiple futures. DCS can 
also be used to selectively study parts of a large simula- 
tion thereby increasing the performance and the capacity to 
simulate large scale models over the WWW. 
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