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ABSTRACT

High resolution models of logic circuits need to be used in

simulations to accurately track logic transitions or glitches,

which contribute to the most dominant portion of VLSI

power dissipated. Unfortunately, simulating large, high

resolution models is a time consuming task. Although more

abstract models that simulate faster can be used, they are

less accurate as details of glitching activity are absent. This

study proposes an alternatively approach that dynamically

(i.e., during simulation) changes the resolution of a model to

strike a better balance between accuracy and performance.

Simulation-time resolution changes are performed using a

novel methodology called Dynamic Component Substitution

(DCS). This paper presents the issues involved in applying

DCS to accelerate parallel power simulations of digital logic

circuits. The experiments indicate that the proposed strategy

can increase performance by 3x with negligible deviations

in power estimates but consuming about 2x more memory.

1 INTRODUCTION

The steady increase in chip density and operating frequencies

has made power consumption a major issue in Very Large

Scale Integration (VLSI) devices and their design (Landman

1994). The increasing concern about power consumption

have catalyzed the development of several Computer Aided

Design (CAD) tools for power estimation (PE). A large

number of the PE methods are either modifications to sim-

ulations or involve simulations in parts of the estimation

process (Rao 2003). Simulation-based power estimation or

power simulation is one of the earliest, most straightfor-

ward, and effective way to track dynamic power dissipa-

tion (Landman 1994). Dynamic power dissipation arises

from numerous logic transitions (0 → 1 or 1 → 0) called

glitches that occur due to time varying sequences of inputs

to a logic circuit. Glitches can contribute anywhere from

20% to 70% of the total power (Landman 1994). Conse-

quently, the ability to accurately track glitches makes power

simulation an attractive solution for PE and many PE CAD

tools primarily focus on this aspect (Rao 2003). However,

these simulations need to be conduced using high resolution

or gate-level models to accurately track glitches. Unfor-

tunately, such simulations are time consuming even when

parallel simulation techniques are employed (Rao 2003).

On the other hand, more abstract or behavioral models can

be used for PE. The abstract models can be simulated much

faster but lack fidelity as the glitching characteristics are

lost (Rao 2003).

The aforementioned observations lead to the inference

that an ideal scenario would be to simulate using low reso-

lution configuration but using power dissipation from high

resolution configurations. Accordingly, this study proposes

to dynamically change the resolution of the models used in

power simulations to strike a more optimal tradeoff between

accuracy and performance. That is, the simulation strives

to proceed using abstract sub-circuits but reporting power

estimates collated earlier in the simulation from higher res-

olution configurations. However, if power dissipation for a

specific input to a sub-circuit is not known then the sub-

circuit is refined, power is estimated, and the sub-circuit

abstracted for further simulation. Such a simulation in which

the resolution of the model (or parts of the model) is changed

during simulation is called Dynamic Resolution Simulation

(DRS). Our research utilizes a novel methodology called

Dynamic Component Substitution (DCS) (Rao 2003) in con-

junction with component-based, multi-resolution models to

achieve DRS — i.e., DRS is the concept while DCS is one

specific implementation methodology. In other words, DCS

is used to abstract and refine the model during simulation

to strike a more optimal tradeoff between performance and

accuracy of power simulations.

This paper presents the issues involved in applying

DCS to accelerate parallel power simulations of digital

logic circuits. A brief background on the core topics in

this study is presented in Section 2. Section 4 presents

some related research activities. An overview of DCS

is presented in Section 3. The modeling and simulation
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environment used in this study is presented in Section 5.

Section 6 describes the the proposed DCS-based strategy

for PE in detail. The experiments conducted to evaluate

the effectiveness of the proposed approach are discussed

in Section 7. Section 8 concludes the paper summarizing

the results from this research along with pointers to future

work.

2 BACKGROUND

The topic of this paper spans the domains of modeling,

parallel simulation, and VLSI PE. Accordingly, some brief

background information on some of the pertinent topics is

presented in this section. Readers are referred to the refer-

ences for further details. Preliminaries of Time Warp (Rao

2003), the optimistic Parallel Discrete Event Simulation

(PDES) synchronization strategy used in this study are pre-

sented in Section 2.1. A short review of VLSI PE is presented

in Section 2.2.

2.1 Time Warp

This investigation utilizes parallel simulations that are syn-

chronized using a strategy called Time Warp (Rao 2003).

Time Warp in an optimistic synchronization mechanism.

A Time Warp simulation is organized as a set of loosely

coupled, asynchronous Logical Processes (LPs) that interact

with each other by exchanging virtual time stamped events.

Each LP processes its events asynchronously, as fast as it

can in time-stamp order incrementing its Local Virtual Time

(LVT), generating new events, and periodically saving its

state. Due to the asynchronous nature of parallel comput-

ing, LPs may receive events in the past (time-stamp of the

event is less than the LVT) called straggler events, that

result in causal violations. On receiving a straggler event,

the LP triggers a rollback mechanism in which the saved

states are used to revert back to a time prior to the causal

violation, cancel messages sent earlier using anti-messages,

and reprocess messages in their correct time stamp order. A

periodic garbage collection mechanism based on Global Vir-

tual Time (GVT) is used to prune the state of the LPs. GVT

is computed such that the simulation will never rollback

below it (Rao 2003). The distributed simulation terminates

when all the events in the system have been processed in

their correct causal order.

2.2 VLSI Power Dissipation

Power dissipation of a VLSI chip depends on the type of

transistor technology used for fabrication. Since the Comple-

mentary Metal Oxide Semiconductor (CMOS) technology

is the most widely used (Rao 2003), this study uses it as the

target technology for PE. The primary power dissipation of

a CMOS transistor arises from static and dynamic power

consumption (Li, Katkoori, and Mak 2004). Small amounts

of leakage current, sub-threshold currents, and substrate in-

jection currents give raise to negligibly small static power

dissipation in CMOS transistors (Li, Katkoori, and Mak

2004; Rao 2003). On the other hand, dynamic power dissi-

pation that primarily arises from charging and discharging

parasitic capacitances in a CMOS circuit is the most dom-

inant power component (Landman 1994; Li, Katkoori, and

Mak 2004; Rao 2003). In other words, dynamic power

arises when a CMOS switch transitions or glitches. Most

PE CAD tools place heavy emphasis on dynamic power

dissipation (Li, Katkoori, and Mak 2004; Rao 2003). Ac-

cordingly, the application emphasis of this study is to track

transitions (0→ 1 or 1→ 0) occurring in digital logic mod-

els. On detecting logic transitions, the models in this study

use a suitable power dissipation factor (obtained from data

sheets published by IC manufacturers) to compute power

estimates. In practice, the power dissipation factor is set to a

predetermined value based on the target CMOS fabrication

technology and operating voltage (Rao 2003).

3 DYNAMIC COMPONENT SUBSTITUTION (DCS)

The dynamic-resolution simulations used in this study have

been achieved using hierarchical component-based mod-

els (Rao 2003) and a novel, domain-independent methodol-

ogy called Dynamic Component Substitution (DCS) (Rao

2003; Rao, Chernyakhovsky, and Wilsey 2000). DCS en-

ables changes to the resolution of a model by replacing a

module (a set of components with well defined interface and

functionality) with an equivalent component or vice versa.

Substituting a module with its equivalent component or

vice versa is synonymous to abstracting or refining a model

respectively. The equivalent component of a module must

satisfy the following criteria: (i) Interface equivalence: it

must have an interface that is identical to that of the module;

and (ii) Functional equivalence: its exposed functionality

must be the same (or within some acceptable error margin

as defined by the modeler) as that of the original module. A

more detailed discussion on equivalent components along

with notions of functional equivalence are available in the

literature (Rao 2003).

For example, consider a digital logic FullAdder cir-

cuit shown in Figure 1(a). The structural gate-level circuit

can be substituted with more abstract, but functionally equiv-

alent counterparts as shown in Figure 1(b) and Figure 1(c).

For simulation, each logic gate is modeled as an independent

component. The sub-circuits (like Exclusive-Or) are

modeled as modules by appropriately interconnecting the

components. The modules are tagged with their correspond-

ing equivalent components in the model. The overall circuit

is then modeled in a hierarchical fashion by suitably inter-

connecting modules (which can be viewed as an abstract

component) and components. As indicated in Figure 1,
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Figure 1: A Digital Logic FullAdder Circuit at Different Levels of Abstraction

during simulation, DCS is triggered to substitute a module

with its equivalent component (or vice versa) to change the

resolution of the model, thereby enabling dynamic resolu-

tion simulation. Note that, as illustrated in Figure 1, the top

level interface (consisting of A, B, Cin, Sum, and Cout)

to the FullAdder circuit does not change. DCS also in-

volves appropriately mapping the states of the components

participating in the transformation. The specifics regarding

implementation of DCS in the simulation environment used

in this investigation are discussed in Section 5.

The approaches used for triggering DCS are broadly cat-

egorized into proactive and reactive strategies. Approaches

in which DCS transformations are scheduled to occur in

the future (with respect to simulation time) are classified

as proactive strategies. Proactive strategies are used when

the scenarios for triggering DCS are already known during

model development or can be identified during simulation.

On the other hand, in reactive strategies, DCS transfor-

mations are scheduled at the current simulation time or in

the past. Reactive strategies may require rolling back the

simulation to an earlier time in addition to performing the

desired transformation. Proactive strategies are easier to

implement but identifying scenarios for proactive triggering

can be complicated. On the other hand, triggering reactive

DCS is much easier. However, it is more complex to im-

plement and it typically incurs additional overheads during

simulation (Rao 2003). Note that a combination of proac-

tive and reactive strategies for abstraction or refinement

may be employed in a single model. In this study proactive

abstraction and reactive refinement have been utilized. A

detailed discussion of the strategy for DCS is presented in

Section 6.

4 RELATED RESEARCH

The topic of this paper involves two mature and active

areas of research, namely Dynamic-Resolution Simulation

(DRS) and VLSI PE. Unfortunately, a detailed literature

survey of these broad areas is beyond the scope of this

paper. Consequently, only a short survey of very closely

related research activities in the aforementioned domains is

presented in the following subsections. Readers are directed

to the references and literature for further details.

4.1 Dynamic-Resolution Simulation (DRS)

The proposed strategy involves dynamic (i.e., during simu-

lation) changes to the resolution of a model. A simulation in

which the resolution of of a model changes dynamically is

called a Dynamic Resolution Simulation (DRS). DRS maybe

achieved via different techniques using multi-resolution,

variable-resolution, or cross-resolution models (Rao 2003).

In this study DRS has been achieved using a methodology

called Dynamic Component Substitution (DCS). Lee and

Fishwick discuss a taxonomy for abstraction of dynamic

systems through structural simplifications, behavioral ap-

proximations, and data abstraction (Lee and Fishwick 1996).

Their study focuses on selecting suitable configurations to

represent a dynamic system in different operating condi-

tions. They change the interface and functionality of the

system during simulation. Alternatively, in DCS the over-

all functionality and interface of the model is preserved.

Natrajan, Reynolds, and Srinivasan (1997) propose the use

of Multiple Resolution Entities (MRE) to achieve DRS. In

MRE all desired levels of resolution are active through-

out the simulation. Contrarily, in DCS only one level of

abstraction is active at any given point in simulation time

with explicit concept of proactive and reactive resolution

changes. A MRE typically has multiple interfaces at differ-

ent levels of resolution. Conversely, in DCS only a single

interface is used for the units undergoing transformations.

4.2 VLSI Power Simulation

Power simulation is a widely used approach for Power

Estimation (PE). VLSI power simulations can be broadly

classified based on the level of abstraction of the model used,

in to the following categories: algorithmic or behavioral

tools, Register Transfer Logic (RTL) or architectural level,

and circuit or gate level tools. This study deals with circuit
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or gate level power estimators. Accordingly, only some

of the earlier research in circuit-level power simulation

is presented in this section. Readers are referred to the

literature and references for more detailed discussions on

VLSI power estimation (Rao 2003). Circuit-level refers to

that level of abstraction for which the transistor or a logic

gate is the most atomic element in the model. Many of the

power estimation tools and techniques operate at this level

of abstraction because accurate estimates can be generated.

One of the earliest tools for power estimation at the device-

level is SPICE (Nagel 1975) which provides one of the most

accurate power estimates. Several power estimators have

been developed by applying approximations to the models

used by SPICE (Landman 1994). Event driven algorithms

and relaxation techniques are used to reduce analysis times

in SPICE (Deng 1994). Alternatively, Vanoostende et al.

(1993) present the use of a hierarchy of simulators to improve

performance. In a recent article, Chinosi et al. present

a dynamic spatio-temporal circuit partitioning technique

for identifying and selectively simulating sub-circuits for

detailed simulation (Chinosi, Zafalon, and Guardiani 1999).

Our research uses a combination of high resolution and

low resolution model configurations to strike an optimal

tradeoff between accuracy and performance. The changes

in resolution are performed dynamically, during the course

of power simulation an unique aspect that distinguishes the

proposed strategy from all of the aforementioned methods.

5 MODELING & SIMULATION ENVIRONMENT

This section presents only a brief description of WESE, the

web-enabled modeling and simulation environment used in

this study. An overview of WESE’s infrastructure for DCS

is also presented. Readers are referred to the literature for

detailed descriptions (Rao 2003; Rao and Wilsey 2000; Rao,

Wilsey, and Carter 2001). WESE provides a component-

based modeling language, a framework for developing a

repository of components, and the infrastructure for parallel

simulation. Model development in WESE involves two

phases. First, a set of components involved in the model

are developed using WESE’s API and deployed as WESE

factories. A WESE factory is a repository of components

with additional capability for parallel simulation. In the next

phase, models are developed by suitably interconnecting the

components using a hierarchical modeling language called

the System Specification Language (SSL). Figure 2 shows a

snippet of the SSL specification for the FullAdder circuit

illustrated in Figure 1.

As shown in Figure 2, the specification of a model or a

SSL design file consists of a set of interconnected modules

(such as: xorGate in Figure 2(a)). Each module consists

of three main sections, namely: (i) the component definition

section that contains the details of the components to be

used to specify a module, including the Universal Resource

xorGate(2, 1) : HardwareFactory.XorGate ”delay=15ns” {
ComponentDefinitions {

andGate(2, 1) : HardwareFactory.AndGate ”delay=5ns”;

orGate(2, 1) : HardwareFactory.OrGate ”delay=5ns”;

notGate(1, 1) : HardwareFactory.NotGate ”delay=5ns”;

}
ComponentInstantiations {

notG1 : notGate; notG2 : notGate;

andG1 : andGate; andG2 : andGate;

orG1 : orGate;

}
Netlists {

notG1(IN, 1) : xorGate(IN, 1); notG2(IN, 1) : xorGate(IN, 2);

notG1(OUT, 1) : andG1(IN, 1); andG1(IN, 2) : xorGate(IN, 1);

notG2(OUT, 1) : andG2(IN, 1); andG2(IN, 2) : xorGate(IN, 2);

andG1(OUT, 1) : orG1(IN, 1); andG2(OUT, 1) : orG1(IN, 2);

orG1(OUT, 1) : xorGate(OUT, 1);

}
}

(a) XorGate Model

include “XorGate”

include “Mux2”

fullAdder(3, 2) : HardwareFactory.FullAdder ”delay=30ns” {
ComponentDefinitions { }
ComponentInstantiations {

xorG1 : xorGate;

xorG2 : xorGate;

mux : mux2;

}
Netlists {

xorG1(IN, 1) : fullAdder(IN, 1); xorG1(IN, 2) : fullAdder(IN, 2);

mux(IN, 1) : fullAdder(IN, 1); mux(IN, 3) : fullAdder(IN, 3);

xorG1(OUT, 1): mux(IN, 2) xorG2(IN, 2);

mux(OUT, 1) : fullAdder(OUT, 1);

xorG2(IN, 1) : fullAdder(IN, 3);

xorG2(OUT, 1): fullAdder(OUT, 2);

}
}

(b) FullAdder Model

Figure 2: Hierarchical Description for FullAdder Circuit

Shown in Figure 1

Locator (URL) of a factory, name of the source object, and

parameters; (ii) the component instantiation section that de-

fines the various components constituting the module; and

(iii) the netlist section that defines the inter-connectivity be-

tween the various instantiated components. Modules may be

nested within each other in a hierarchical fashion by simply

using a module as a component definition. In Figure 2(b),

this technique is used to build the fullAdder module

using two xorGate modules. As shown in the figure,

SSL permits an equivalent component to be associated with

each module. In WESE, DCS is performed by replacing

the module with its equivalent component or vice versa.

A WESE server performs the task of collaborating with

the distributed factories and coordinating the simulations.

Once the simulation commences, the simulation sub-systems

of each WESE factory (involved in the simulation) handle

further processing. The simulation sub-system of a WESE

factory has been developed using the WARPED simula-

tion kernel. WARPED is an API for a general purpose

discrete event simulation kernel with different implementa-

tions (Radhakrishnan et al. 1998). WESE utilizes the Time

Warp (Radhakrishnan et al. 1998) based simulation kernel

of WARPED.

WESE employs an event-driven approach to sequence

the various phases involved in DCS. This approach makes the
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DCS implementation immune to some of the idiosyncrasies

of the underlying Time Warp synchronization mechanism.

A component can trigger proactive as well as reactive DCS

via appropriate Application Program Interface (API) method

calls. Both types of DCS triggers result in scheduling a

suitable kernel event except that in reactive calls WESE

initially triggers an artificial rollback via WARPED API

calls. In order to enable artificial rollbacks, the GVT in the

simulation is simply throttled to lag by an user-specified

time window. The modeler must specify a suitable GVT lag

such that that the simulations never rollback below GVT.

WESE also provides an API for mapping states of compo-

nents during DCS. It is the responsibility of the modeler

to utilize the API and suitably map states of components

during DCS transformations. In WESE, all the components

(including equivalent components for each module) at dif-

ferent levels of abstraction are created during simulation

startup because WARPED currently does not support cre-

ation of LPs during simulation. Note that this purely an

aspect of the implementation and is not a requirement for

enabling DCS. The additional components are dormant and

do not participate in the simulation until they are activated

through a DCS transformation. However, in this study the

presence of additional (but dormant) components has been

exploited to optimize the implementation of the proposed

strategy. Once again, this is purely an implementation opti-

mization and is not a conceptual requirement or limitation

of DCS-based PE. A more detailed description of WESE,

WARPED, and DCS implementation are available in the

literature (Radhakrishnan et al. 1998; Rao and Wilsey 2000;

Rao, Wilsey, and Carter 2001).

6 DCS STRATEGY FOR POWER ESTIMATION

This study proposes an alternative, DRS-based approach for

VLSI PE. The primary assumption underlying the proposed

strategy is that abstract models can be simulated faster.

This is usually the case for majority of digital logic cir-

cuits (with some exceptions — see Rao 2003). Abstract

models simulate faster because a number of intermediate

components and corresponding event-based interactions are

eliminated. Reduction in events has a cascading effect of

reducing intermediate events as the inputs propagate to the

outputs. Accordingly, the proposed strategy aims to improve

performance by simulating using abstract configurations of

each module. However, the abstract configurations utilize

power estimates collated using higher resolution configu-

rations to ensure accuracy. The changes between higher

and lower resolutions are performed as needed using DCS.

More specifically, the strategy works as follows:

Step 1: Initialization: Initially the simulation starts off

at the highest resolution so that glitches can be accurately

tracked. The logic transitions for a given input is tracked and

power dissipations are computed using a modeler-specified

power factor. The power estimates and corresponding input

vectors are stored in the state of the component. This value

is used by the low resolution configuration to report accurate

power dissipation.

As an optimization, in our implementation, each com-

ponent instance reports its power dissipation to its im-

mediate higher level equivalent component, if one has

been specified in the model (see Figure 2(a)). For ex-

ample, the and, or, and not gates constituting the

xorGate module (see Figure 2(a)) report power dissi-

pation to the HardwareFactory.XorGate component.

As discussed in Section 5, equivalent components are created

during simulation startup — our implementation leverages

this fact and collates estimates directly in the equivalent

component instances.

Step 2: Proactive Abstraction: An equivalent compo-

nent gathers power dissipation from each underlying com-

ponent to determine overall power for the module. New

power values are added only if a corresponding input vector

entry does not exist in the state of an equivalent compo-

nent. On the other hand, if an entry already exists in the

state then the new estimate is ignored. If new entries are

not added for several consecutive input vectors, the equiva-

lent component triggers proactive abstraction for the given

module. Proactive abstraction is performed by scheduling a

DCS transformation to occur prior to starting the next input

cycle. Note that different modules may undergo abstraction

at different simulation times.

Step 3: Reactive Refinement: When simulating using

the equivalent component (low resolution), it uses esti-

mates saved in its state to report power dissipations based

on changes to steady state input vectors. However, the esti-

mates for certain input combinations may not be present due

to aforementioned proactive abstraction. In such a scenario,

the equivalent component triggers reactive refinement to

obtain the power estimate using high resolution configura-

tion. Reactive refinement causes the simulation to rollback

to the beginning of the input cycle, refine the module, and

reprocess the inputs to collate power estimates. Note that

different module instances undergo reactive refinement at

different times in an asynchronous manner.

In order to enable reactive refinement, at least 2 states

(except for the initial simulation cycle) from earlier simula-

tion cycles must be available to rollback. Accordingly, the

fossil collection rate is throttled through suitable API calls

in WARPED. Only states (and events) that are more than 2

input cycles behind GVT are garbage collected. The delay

in GVT is specified by the modeler based on the timing

characteristics of the model. Noted that state saving is al-

ready performed by the Time Warp kernel to recover from

rollbacks. The negative impact of delaying fossil collection

is the increase in memory usage of the simulations.

The above process of proactive abstraction and reactive

refinement is performed until the simulation is complete. As
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the simulation progresses, the frequency of DCS transfor-

mations decreases (see Figure 3(a)) because the number of

new input vector combinations encountered by a module de-

creases. As the frequency of DCS transformations decrease,

the simulation proceeds using low resolution configurations,

thereby improving performance.

6.1 Source Of Error

The power dissipation of logic circuit is influenced by

the glitching activity in the circuit. When sub-circuits are

abstracted, they impact the glitching activity of other sub-

circuits connected to them, which in turn impacts power

dissipated. Depending on the model certain transformations

increase glitches causing higher power estimates or vice

versa. Consequently, in the proposed DCS-based approach

introduces some error in the final power estimates. However,

in practice (see Section 7), we find the positive and negative

deviations tend to cancel out each other and the overall

average errors are reasonably small.

7 EXPERIMENTS

The models used to evaluate the effectiveness of the pro-

posed strategy have been developed using the modeling and

simulation infrastructure of WESE. Note that WESE also

provides the infrastructure for DCS. In accordance with

the model development strategy (see Section 5), a set of

fundamental logic components such as: and, or, xor

gates have been developed using WESE’s object oriented

API (Rao 2003). In addition, more abstract components

such as multiplexer (Rao 2003) and fulladder (Rao

2003) have also been developed. All of the common tasks

involved in PE have been implemented in a common base

class. The base class maintains the power tables for each

component and tracks power dissipation. It also performs

the task of triggering proactive abstraction or reactive re-

finement appropriately. Each logic component customizes

the functionality of the base class just to provide the input

to output transformation. Suitable timestamped events are

used by the components to generate outputs. In addition

to the logic components, testing components such as test

vector generators and output displays have also been de-

veloped for experimentation. The logic components have

been bundled into a WESE factory and deployed on the

workstations used for parallel simulation.

Utilizing the components in the aforementioned WESE

factory, several logic circuits have been developed using

SSL. The SSL design also included appropriate higher level

components for use during DCS. Some of the salient char-

acteristics of the models are tabulated in Table 1. The

column titled Gates and Abstract (in Table 1) indi-

cates the number of basic gates and number of higher level

components in a model. For example, the 32-bit Adder

(see Table 1) consists of 32 cascading full adder modules

interconnected in a hierarchical fashion. Each full adder

contains 2 exclusive-or gate modules which in turn contains

basic gates. Each full adder and exclusive-or modules have

an abstract equivalent component specified which gives raise

to (32+ (32 ∗ 2))=96 abstract components as indicated in

Table 1. The 32-bit ALU and 32-bit Multiplier models

have been developed in a similar fashion. The multiplier

model is composed in the form of a grid which gives raise

to numerous rollbacks and a large number of glitches. The

characteristics of the model make it a “stress test” for par-

allel simulation and the proposed strategy. The pASIC

model (proposed by Navabi et al. (Navabi 1995)) is a very

asymmetric model and is relatively flat with just 3 levels

of hierarchy. It has very few components (such as 2x2

multipliers and 3-input and gates) to which DCS could be

applied and can be viewed as a worst case scenario model.

The aforementioned DCS-based models were simulated

using WESE on a varying number of workstations. The

components were randomly partitioned onto the various

workstations. Each workstation used in this study consisted

of 2 Athlon MP processors (2.0 GHz comparable) with 1

GB of main memory running Linux. The workstations were

networked using gigabit Ethernet. Note that immaterial of

the number of workstations used, the models were exercised

using the same set of unique input vectors. Consequently,

the power dissipation and DCS behavior of the models are

identical in all cases. The unique input vectors fall under

the category of Uniform White Nose (UWN) model that

is used by other researchers as well (Landman 1994). The

power dissipation of the models with and without DCS is

shown in Table 2. As shown in the table the deviation in

power estimates is reasonably small. The 32-bit multiplier

(32-bit Mul) shows more prominent deviation due to

significant glitching effects inherently present in the model.

DCS transformations influence glitching and therefore intro-

duce deviations in the estimates. Our observations suggest

that adding some additional model specific knowledge to the

DCS triggering process could reduce the deviation. We are

also exploring approaches for tracking possible deviations

due to DCS and adjusting the PE using some post-simulation

processing.

A trend of typical DCS transformations in the model

is illustrated in Figure 3(a) using the DCS activity for the

32-bit Adder model. The graph illustrates the number

of active components at various simulation times. The ac-

tive components decrease whenever abstractions occur in

the model. On the other hand the number of components

increases when refinement occurs. As indicated in the trend,

the model initially undergoes a number of DCS transforma-

tions because new input vectors are encountered by different

FullAdder modules in the model. Since power dissipa-

tion estimates for new vectors are not yet available, the

modules undergo reactive refinement followed by proac-
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Table 1: Characteristics of the Digital Logic Models

Model Number of components Number of

Name Gates Abstract Others Total Test Vectors

32-bit Adder 482 96 2 580 20,000

32-bit ALU 642 128 2 772 20,000

32-bit Mul 16360 3096 2 19458 1,200

pASIC 825 25 2 852 1,000

tive abstraction. However, as the simulation progresses, the

power estimates for various inputs are already available and

fewer refinements are needed. Note that the FullAdder

module constituting the 32-bit Adder has only 3 inputs

and therefore experiences only 8 unique input combinations.

Consequently, although the primary inputs are unique, the

FullAdder modules experience a repeating set of inputs

after sufficient number of inputs have been processed and

DCS frequency decreases. The peak memory consumption

of the simulations, with and without DCS, are shown in

Figure 3(b). The peak memory consumption of the simula-

tions involving DCS are higher because GVT updating had

to be delayed to enable reactive refinement as described in

Section 6. The memory usage is higher due to the states and

events that are maintained in memory to enable rollbacks

to earlier simulation time. When additional processors (or

workstations) are used for simulation, the overall memory

consumption gets distributed across the workstations. Con-

sequently, as shown in Figure 3(a), the peak memory usage

tappers-off.

Table 2: Error in PE Due to DCS

Model Power Dissipation (µW) Error %

No DCS With DCS

32-bit Adder 34199.66 34009.09 0.5%

32-bit ALU 45276.11 45320.0 0.096%

32-bit Mul 264935.04 255874.26 3.42%

pASIC 2173.2 2168.65 0.2%

The time taken for simulating the models without any

DCS transformations is shown in Figure 4(a). Detailed

statistics are not presented due to their large volume and

readers are referred to the literature for further details (Rao

2003). The times are average of 10 simulation runs. The

simulations using 1 processor, highlighted in Figure 4(a)

were sequential simulations. As shown in the figure, in the

case of the multiplier model, using 2 processors increases

CPU time due to introduction of parallel simulation over-

heads such as state saving and rollbacks. However, as the

number of processors are increased the overheads are su-

perseded by the advantages of parallel simulations and the

simulation time steadily decreases. In the case of the 32-bit

ALU the model immediately begins to benefit from addi-

tional processors. However, the performance improvements

tapper off because the communication overheads begin to

dominate the computational overheads of the model. A

similar trend is observed in the 32-bit Adder model except

in 3 processor case where the random partitioning resulted

in a configuration that gave raise to many rollbacks. In the

case of pASIC model, the model had many loops in the

model giving raise to numerous rollbacks. Consequently,

as shown in Figure 4(a), the pASIC model does not gain

from parallel simulation.

High Resolution Region

Low Resolution Region

µ

 100

 400  500  600  700  800  900  1000  1100

#Active Components

34

Simulation Time ( sec)

A
ct

iv
e 

co
m

p
o
n

en
ts

468

(L
o
g
 S

ca
le

)

(a) DCS Trend

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9

P
ea

k
 m

em
o
ry

 u
se

d
 (

in
 M

B
)

Number of processors

No DCS

DCS 25

(b) Peak Memory Usage

Figure 3: Simulation Characteristics of 32-bit Adder

700



Rao and Wilsey

Sequential Simulation
Timings

 1000

 10000

 0  1  2  3  4  5  6  7  8  9

S
im

u
la

ti
o

n
 T

im
e 

w
it

h
o

u
t 

D
C

S
 (

S
ec

o
n

d
s)

Number of processors

32−bit Adder
32−bit ALU

pASIC
32−bit Multiplier

(a) Simulation Time without DCS

32−bit Adder
32−bit ALU

pASIC
32−bit Multiplier

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8  9

R
el

a
ti

v
e 

sp
ee

d
u

p
 w

it
h

 D
C

S

Number of processors

(b) Speedup Due to DCS
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The relative performance improvement accrued by em-

ploying the proposed DCS-based strategy is shown in Fig-

ure 4(b). The relative speedups (Patterson and Hennessy

2005) shown in Figure 4(b) have been computed by dividing

the simulation time without DCS by the simulation time with

DCS. As indicated by the graphs, all of the models benefit

from using DCS. The gains in the Adder and ALU models are

pronounced because the frequency of DCS transformations

significantly reduced as the simulation progressed. On the

other hand the multiplier model continued to exhibit a higher

frequency of DCS transformations through the simulation.

This is primarily because the number of input vectors used

were fewer. The number of test vectors for the multiplier

was kept small to ensure that the sequential simulations

completed in reasonable time frames. In the case of pASIC

model, the number of components undergoing DCS was

small. Consequently, the gains from applying DCS is not

very high. As indicated by the experiments the proposed

strategy provides good performance improvements even in

parallel simulations. However, it incurs additional memory

overheads (about 2 times). Furthermore, the deviations in

estimates is less than 3.5% for the models and lies within

the acceptable error margins used in this field.

8 CONCLUSION

Power simulations are widely used to obtain power esti-

mates for logic circuits and is an important aspect of VLSI

design. The simulations need to be conducted using high

resolution (or gate level) models in order to accurately track

logic transitions (or glitches) that constitute significant part

of VLSI power. Unfortunately, power simulations involv-

ing high resolution models is a time consuming task, even

when parallel simulation techniques are employed. On the

other hand, the simulations can be conducted using lower

resolution (or more abstract) models. However, low reso-

lution models do not yield accurate estimates as glitching

effects are lost. This paper presented an alternative approach

which aimed to leverage the accuracy of high resolution

models and the performance of low resolution (or abstract)

models. More specifically, the strategy aggressively strives

to simulate using abstract model configurations but utilize

estimates obtained using high resolution models for a given

input transition. If the power estimate for a given input

transition is not known, the strategy uses the high reso-

lution configuration to obtain accurate estimate. Once the

estimate is known the model is reverted back to the abstract

configuration to simulate rapidly.

Changes to the resolution of a model was performed

dynamically (i.e., during simulation) to adapt to the needs

of PE. Such a simulation, in which the resolution of the

model is changed dynamically is called Dynamic Resolution

Simulation (DRS). In this study, DRS was achieved using a

novel methodology called Dynamic Component Substitution

(DCS). DCS has been used to pro-actively abstract the model

to improve performance of PE. However, if the PE for a

specific input transition is not known, the model is reactively

refined and simulated to obtain accurate power estimates.

Reactive refinement involves rolling-back the model and

reprocessing the inputs. The paper presented observations

and inferences drawn from experiments conducted to evalu-

ate the effectiveness of the proposed DCS-based approach.

The experiments indicate that proposed strategy provides

notable performance improvements (1 to 3 times faster) by

trading off some (about 0.5% to 3.5%) accuracy and incur-

ring additional (about 2 times) memory overheads. The loss

in accuracy occurs due to difference in glitching activity as

part of the models are asynchronously abstracted and re-

fined. Note that the loss is accuracy is well within acceptable

margins when compared other PE techniques that typically

incur about 10% to 15% errors. Research is underway to

track and further minimize the deviations in the estimates.

The memory overheads in the simulations arise from the

need to save state to enable reactive refinement. However,

state saving is not a significant overhead because it is al-

ready performed as part of the Time Warp synchronization

mechanism used in this study. The inferences drawn from

this study indicate that parallel, DRS provide an unique
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avenue to accelerate VLSI power simulations as well as

other simulation-based PE techniques.
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