
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

UNSYNCHRONIZE D PARALLE L DISCRETE EVENT SIMUL ATION

Dhananjai Madhava Rao
Narayanan V. Thondugulam

Radharamanan Radhakrishnan
Philip A. Wilsey

Computer Architecture Design Laboratory
P.O. Box 210030, Cincinnati, Ohio 45221–0030, U.S.A.
ABSTRACT

Distributed synchronization for parallel simulation is gen-
erally classified as being either optimistic or conservative.
While considerable investigations have been conducted
to analyze and optimize each of these synchronization
strategies, very littl e study on the definition and strictness
of causality have been conducted. Do we really need
to preserve causality in all types of simulations? This
paper attempts to answer this question. We argue that
significant performance gains can be made by reconsid-
ering this definition to decide if the parallel simulation
needs to preserve causality. We investigate the feasibility
of unsynchronized parallel simulation through the use of
several queuing model simulations and present a com-
parative analysis between unsynchronized and Time Warp
simulation.

1 INT RODUCTION

Parallel discrete event simulators are used in today’s high
performance and parallel computing world for architecture
design and application development. They are necessary
because prototypes of the applications are time-consuming
to build and difficult to modify. Whilesequential simulators
have traditionally been used for this purpose, they tend
to be slow and inadequate for detailed simulation of
large systems. Consequently, parallel processing is often
used in an attempt to speed up simulations, as well
as to meet the larger memory demands of simulated
applications. Despite its benefits, parallel simulation
requires periodic synchronization between the simulating
entities for maintaining causality in the simulation. This
synchronization introduces overheads that often dominates
simulator execution time.

The notion of causality (or synchronization) is embed-
ded in almost every aspect of traditional parallel discrete-
1563
event simulation (PDES). Most simulationists prescribe to
one of the two widely known distributed synchronization
techniques, namely optimistic (Jefferson 1985; Steinman
1991) and conservative (Bryant 1979; Misra 1986). While
optimizations to these techniques have produced a remark-
able improvement in performance, researchers have con-
stantly been faced with the problem of reducing overheads
in the simulation to improve performance (Fujimoto 1990).
Traditionally, conservation techniques have had to contend
with the overheads of lookahead and deadlock avoidance
and recovery (Misra 1986) while optimistic techniques,
such as Time Warp, have had to contend with rollback
and state saving overheads. Several of these overheads
can be attributed to the synchronization (or maintaining
causality) requirement of the simulation technique. To
overcome this problem, several researchers have proposed
methods for relaxing the strict causality requirement in
distributed simulation. Some preliminary insight into this
relaxation possibility can be found by reviewing the Time
Warp optimization called rollback relaxation (Wilsey and
Palaniswamy 1994). Rollback relaxation proposes the use
of a relaxed recovery mechanism when memoryless logical
process receive straggler events. The memoryless prop-
erty can be detected using standard optimizing compiler
techniques (live variable analysis) and results in a relaxed
definition of causality. More precisely, it redefines the
recovery process to require the re-processing of only a
subset of the events in the input queue when rollback
occurs. Similarly, logical processes representing stateless
functions mapping a single input to a single output can be
completely implemented without synchronization (Wilsey
and Palaniswamy 1994).

In this paper, we investigate the notion of ignoring
causality violations (and thereby avoiding synchronization
altogether) and study the consequences of such a step. In
particular, westudy theeffect of unsynchronized simulation
on simple queueing models in an attempt to analyze



Rao, Thondugulam, Radhakrishnan and Wilsey
and characterize the simulation outputs. To verify the
correctness of the simulation outputs, we compare the
results with results obtained from warped (Martin et al.
1995), a Time Warp based parallel discrete event simulator.
The remainder of this paper is organized as follows.
Section 2 overviews parallel discrete event simulation.
Section 3 reviews some related approaches. In Section 4,
the justification for unsynchronized parallel simulation
in distributed environments is discussed. Section 4.1
describes the design and construction of NoTime, the
unsynchronized simulator. In Section 5, we present
the queueing model, and evaluate the unsynchronized
simulator using this model. Finally, Section 6 presents
some concluding remarks.

2 BACKGROUND

In PDES, the model to be simulated is decomposed into
physical processes that are modeled as simulation objects
and assigned to a Logical Process (LP). The simulator is
composed of a set of concurrently executing LPs. The LPs
communicate by exchanging time-stamped messages. In
order to maintain causality, LPs must process messages in
strictly non-decreasing time-stamp order (Jefferson 1985;
Lamport 1978). There are two basic synchronization
protocols used to ensure that this condition is not vio-
lated: (i) conservative and (ii ) optimistic. Conservative
protocols (Bryant 1979) strictly avoid causality errors,
while optimistic protocols, such as Time Warp (Fujimoto
1990; Jefferson 1985) allow causality errors to occur, but
implement some recovery mechanism.

Conservative protocols were the first distributed sim-
ulation mechanisms. The basic problem conservative
mechanisms must address is the determination of “safe”
events. The conservative process must first determine that
it is impossible for it to receive another event with a lower
timestamp than the event it is currently trying to execute.
Such events are deduced to be safe and can be executed
without any causality violation in the system. Processes
containing no safe events must block; this can lead to
deadlock situations if no appropriate precautions are taken.
Several studies on conservative mechanisms and optimiza-
tions to conservative protocols have been presented in the
literature (Bryant 1979; Misra 1986).

In a Time Warp simulator, each LP operates as a
distinct discrete event simulator, maintaining input and
output event lists, a state queue, and a local simulation
time(called Local Virtual Timeor LVT). Each LPprocesses
events optimistically and moves ahead in LVT. As each
LP simulates asynchronously, it is possible for an LP to
receive an event from the past, a straggler (some LPs
wil l be processing faster than others and hence wil l have
local virtual times greater than others), — violating the
1564
Priority Causal Causal and Time StampReceive
Order Order Order Totally Ordered Order

Increasing Cost

Deceasing functionality

Figure 1: Message Ordering Schemes

causality constraints of the events in the simulation. On
receipt of a straggler message, the LP must rollback to
undo some work that has been done. Rollback involves
two steps: (i) restoring the state to a time preceding the
time-stamp of the straggler and (ii ) canceling any output
event messages that were erroneously sent (by sending
anti-messages). After rollback, the events are re-executed
in the proper order.

3 RELATED WORK

Parallel discrete event simulation (PDES) has gained much
attention during the last decade (Fujimoto 1990). A
reflection of this is the number of researchers who have
used either conservative or optimistic synchronization
to successfully simulate their applications. With the
extensive refinement and optimization of these techniques,
synchronization has emerged to be the single largest
overhead in a distributed simulation. The overhead of a
synchronization protocol lies in its message ordering and
delivery service (Fujimotoi and Weatherly 1996). Message
ordering characteristics specify the order and time at which
messages may be delivered. For example, in the High
Level Architecture (HLA) Time Management services,
Fujimoto (Fujimotoi and Weatherly 1996) has identified five
types of message ordering services. Figure 1 illustrates the
five different types of message orderings. These message
ordering schemes provide, in turn, increased functionality
but at increased cost. The most straightforward (least
functionality), lowest latency ordering mechanism is the
Receive Order scheme. Depending on what type of
synchronization is required, the developer can select a
message ordering category that best suits the purpose. The
approaches for alleviating the synchronization overhead
have fallen chiefly along two lines: those that work to
reducing the number of times synchronization is required
and those that work to eliminate the need to synchronize
or maintain causality.

Nicol and Heidelberger (1995) have shown that con-
tinuous time Markov chains (CTMCs) can be simulated
in parallel more efficiently than most other discrete event
systems. Their methods exploit the randomization ap-
proach for CTMCs, which allows the precomputation of
event times. Using this approach, synchronization points
are predicted a priori and this knowledge is used to in-
crease the possible parallelism. Their approach is viable



l Discrete Event Simulation

”

,
l

d

Unsynchronized Paralle

for both optimistic and conservative schemes. Buchholz
(1997) went one step further than Nicol and Heidelberger.
In addition to the precomputation of the communication
times, he overlapped numerical analysis with simulation to
improve the parallel conservative simulation of CTMCs.
Buchholz called this new technique for the analysis of
CTMCs, “hybrid simulation”.

Martini, Rümeskasten and Tölle(1997) proposeanovel
synchronization protocol called “tolerant synchronization
in which aconservative synchronization protocol is allowed
to optimistically process events that are within a tolerance
level. As the protocol optimistically processes events,
causality violations may occur but these violations are
ignored and no recovery process is initiated to rectify the
errors. In detailed simulations of interconnected computer
networks, Martini et al noted that although the introduction
of optimistic execution without recovery in aconservatively
synchronized simulation introduces errors in the results,
the errors are almost negligible and for certain cases
the error can be recalculated with the help of statistica
methods.

4 UNSYNCHRONIZE D SIMUL ATION

Is synchronization overrated? This is precisely the question
we seek to investigate and study. Nicol (Nicol and Liu
1997) reminds us of the dangers of allowing “risk” when
synchronizing a parallel discrete event simulation. While
Nicol (Nicol and Liu 1997) reports how this problem may
occur and the damage it may cause, this paper presents
a different spin to this problem. What if the modeler
was aware of the occurrence of inconsistent messages in a
simulation and chose to ignore them? This is particularly
true if the modeler was more interested in quick and less
accurate results as opposed to highly accurate results. This
is, of course, dependent on the application being simulated
and the type of results that are monitored. Martini,
Rümeskasten and Tölle(1997) experiment with the notion
of relaxing causality in their simulations of interconnecte
computer networks. In their experiments, optimistic
execution is performed within intervals of a conservatively
synchronized simulation and no recovery scheme is invoked
when a causality violation is encountered. While this
exposes the simulation to erroneous computations, Martini
et al. argue that the advantages of “tolerant or relaxed
synchronization” heavily outweigh the disadvantages of
such an approach. Specifically, they mention that the error
in the simulation results is low and very often within the
range of the confidence intervals. In addition, Martini
et al. report that the simulation execution times can
be significantly reduced with the introduction of tolerant
synchronization and this reduction in execution time is a
very “practical” advantage of tolerant synchronization.
1565
Simulation
Object

Simulation
Object

Logical
Process

Simulation
Object

Logical
Process

Simulation
Object

Simulation
Object

Simulation
Object

Message Passing
Interface

Inter LP
Communication

Figure 2: Architecture of NoTime

In this paper, we investigate the notion of relaxing
causality in more detail and study the effects of ignoring
causality in simulations. For this purpose, an unsynchro-
nized simulator (NoTime) was developed along with a
library of queuing models. The following subsections
detail the architecture of the simulator and the queuing
model library.

4.1 The NoTime Unsynchronized Simulator

The NoTime simulation kernel provides the function-
ality to develop applications modeled as discrete event
simulations. The standard programming interface of
warped (Martin et al. 1995) was adopted to pro-
vide an uniform interface to the application. It keeps the
underlying mechanisms of different simulators transparent
to the modeler. In NoTime, objects are grouped into
entities called logical process or LPs (Figure 2). Processor
parallelism occurs at the LP level and each LP is respon-
sible for communication management and scheduling the
simulation objects that it contains. In addition, communi-
cation between simulation objects within the same LP is
performed by direct insertion of the event into the input
queue of the receiving object. Communication between
nonlocal objects is achieved through the use of the Message
Passing Interface (MPI) (Gropp et al. 1994). MPI was
chosen to keep the system portable so that shared memory
systems as well as a network of workstations can be used.
Since the parallelism occurs at the LP level, simulation
objects that execute relatively independent of each other
can be placed on different LPs to maximize parallelism
(Figure 2). Conversely, simulation objects that frequently
communicate with each other should be placed on the
same LP to benefit from fast intra-LP communication.
The NoTime system is composed of a set of C++ classes
and libraries which the user accesses using inheritance or
method invocation.

An LP, in the NoTime system, acts as a wrapper to
a set of simulation objects. Each simulation object has
a notion of an “input queue” and a set of state variables



Rao, Thondugulam, Radhakrishnan and Wilsey
that are associated with each object. The structure and
interface of the state class that uses asimple C++ class to
wrap state variables is provided. To optimize the activities
associated with scheduling the objects and handling intra-
LPcommunication, thedifferent input queuesof theobjects
on a LP are combined together into a single structure.
The common input queue, is a simple First in First output
(FIFO) data structure used to hold the unprocessed events
of all simulation objects1.

The simulation cycle on each LP proceeds in the
traditional fashion. The scheduler (present at the LP level)
checks and schedules simulation objects depending on the
events present. Scheduling is based on the order in which
eventsarriveinto thequeue. In essence, thescheduler’sdata
structure is asimpleFIFO queue, consistent with that of the
simulation object. The NoTime simulation kernel uses a
simple termination detection algorithm whereby a token is
circulated between the LPs to collect information on each
LP’s status. Leader election is arbitrary. The termination
detection assumes the underlying communication system
is FIFO (which is guaranteed by MPI). In addition, a
simple interactive simulation environment was built to
help monitor the progress of the simulation on the various
LPs.

4.2 Queueing Library

A reconfigurable queueing library with the essential com-
ponents needed to model queueing systems was built on
top of the NoTime simulation kernel. The queueing
library consists of source, queue, server and statistics
collector objects. The model and the various parameters
of the source, server and queue objects can be set by
the modeler through simple configuration files. Different
scenarios can be modeled by specifying the desired layout
in the configuration file. A number of such models were
used to experiment and analyze the results and evaluate
the performance of NoTime. Since aconsistent interface
was used, the same models were simulated on warped, a
Time Warp simulator, and the results obtained were used
for comparisons. The models used and the results obtained
are illustrated in the following section.

5 ANALYSIS

Unsynchronized simulation can be applied to observe
lumped properties of a number of discrete-time Markov
chains which are easy to conceptualize and under-
stand (Kleinrock 1975). A set of random variables,
Xn forms a Markov chain if the probability that the next
value (or state) is Xn+1 depends only upon the current

1In a Time Warp based simulation kernel, the input queue is
required to be a sorted list of events.
1566
Cn Cn+1

Cn+1Cn

Cn Cn+1

Cn+2

Cn+2

Cn+2

n+1t
n+1t

wn
xn xn+2xn+1

sn

Cn-1

is

Source

Queue

Server

Time

Figure 3: Time-diagram Notation for Queues

value (or state) Xn and not upon any previous values. The
term “memoryless processes” are attributed to systems with
this property and is required of all Markov chains. One of
the most important and interesting subset of these Marko-
vian chains are the Birth-Death processes. Birth-Death
processes can be imagined as random processes where
the birth & death (or arrival & departure) of the different
elements are random processes. Queueing systems are a
subset of birth-death processes. The arrival of a customer
to a queue can be represented as a birth in the system.
When a customer leaves a queue (before or after being
serviced) can be modeled as a “death”. Queueing systems
play a central role in a number of important physical
systems. Many of the systems that we often encounter can
be modeled using queueing theory. Simulations have often
been employed when mathematical analysis of complex
queueing systemsbecomes intractable. Many mathematical
analysis techniques use the inherent memoryless property
of the queueing models to approximate their behaviors,
a classic example being Little’s Law. We exploit this
property of the queueing systems in our unsynchronized
simulations.

5.1 The Queueing Model

Thequeueing model weconsider is avery general queueing
G/G/m system (Kleinrock 1975). This is asystem whose
inter-arrival time distribution A(t) is completely arbitrary
and whose service time distribution B(x) is also arbitrary
(all inter-arrival times are assumed to be independent of
each other). The system has m servers and order of service
is also quite arbitrary (in particular, it need not be first-
come-first-serve). The queueing library developed is based
on these queueing systems. A number of parameters of the
queueing system can be specified in the library. Figure 3
illustrates the important parameters used in modeling the
systems. Let Cn represent the nth customer in the



Unsynchronized Parallel Discrete Event Simulation
Table 1: High Server Utilization Configuration(Source : Poisson distribution with mean 15, 9 Servers each using a Normal
service time distributions with mean 150 and variance of 15) with an average utilization = 0.9924

S.No Clients No. Avg. Queue Length % Error Avg. Waiting Time % Error
LPs TW NoTime TW NoTime

1 20000 1 1180.4 1141.1 3.33 17664 17137 2.98
2 1187.6 1143.0 3.75 17768 17149 3.48
3 1144.8 1114.5 2.64 17185 17762 -3.35

2 40000 1 2342.5 2290.2 2.23 35092 34379 2.02
2 2349.4 2305.0 1.88 35144 34563 1.65
3 2278.2 2275.3 0.12 34217 34169 0.14

3 80000 1 4647.3 4573.1 1.59 69649 68630 1.46
2 4694.9 4606.6 1.88 70298 69077 1.73
3 4573.7 4510.4 1.38 68618 67775 1.22

4 100000 1 5805.2 5711.2 1.61 87013 85730 1.47
2 5851.4 5767.0 1.44 87685 86448 1.41
3 5722.2 5640.8 1.42 85847 84739 1.29
system. The parameter tn+1 represents the inter-arrival
time of the customers. This parameter is modeled using a
distribution (which can be specified by the source object).
The parameter xn (specified with a random distribution)
models the time taken to serve a customer. Some of
the parameters of interest are the average of wait times
(average of wns), average queue length, average of server
idle times (average of iss) and average server utilization.

5.2 Experiments and Results

The queueing library developed for NoTime was used
to model different queueing systems. A generic example
of a queueing system having a source feeding a simple
FIFO queue served by a number of servers was used in
the experiments. A self activating source that schedules
itself based on a random distribution is used to generate
the arrival of customers into the system. The queue
manages the en-queueing and dequeuing of the customers
as they arrive and are serviced by the servers. The queue
maintains a table of busy/idle servers in the system. The
servers communicate the processing times to the queue for
the various customers. The processing time of different
customers by the different servers is modeled using a
probabilistic distribution. The flow of customers in the
system iscommunicated to thestatisticsclass that generates
the statistics of the system at the end of simulation.
Table 1 and 2 tabulate results obtained from simulating
some of the models. The readings of the simulation were
taken on a Sun Sparc Shared Memory Multi-Processor
(SMP) machine with 4 processors, running SunOS version
5.6. Experiments are conducted on NoTime as well as
warped, the Time Warp based parallel simulation kernel.
1567
The following subsection presents a comparative analysis
between the statistics obtained from the two simulators.

5.3 Statistics

Table 1 tabulates the data obtained from asaturated queue-
ing system run on one, two and three LPs configurations
where server utilization is close to 100%, and the Queue
length does not stabilize (average of three separate runs
is shown). It keeps growing as the demand is more than
what the servers can handle. This is an unstable queueing
system which does not reach a steady state as the inflow
is more than the outflow. Since the average service time is
lower than the inter-arrival times of clients, this is expected.
This kind of a queue would be helpful to study queue
overflows. Such queueing systems are simulated with a
fair degree of accuracy by NoTime (the error as compared
to Time Warp as shown in Table 1). The interesting thing
to note in such a system, is that NoTime is much faster
than warped due to the overhead paid in terms of state
saving in Time Warp. Also as illustrated in Figure 4,
NoTime is quite scalable for such configurations. Finally,
the tables establish the accuracy with which NoTime can
simulate such a system. For single LP cases, it is very
accurate (as it is pretty much a sequential execution). But
when we simulated in parallel, we observed that NoTime
is sensitive to load changes on the machine. As long as
the load remained consistent, the simulation results were
consistent. When the load changed during simulation, the
data got skewed. Figure 4 present a comparative picture
of the time taken by NoTime and warped to simulate
the models (the average of three separate runs is shown).



Rao, Thondugulam, Radhakrishnan and Wilsey
0

50

100

150

200

250

300

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e 
(s

ec
)

Number of Clients

Warped
NoTime

Single LP

0

50

100

150

200

250

300

350

400

450

500

550

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e 
(s

ec
)

Number of Clients

Warped
NoTime

Two LPs

0

100

200

300

400

500

600

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e 
(s

ec
)

Number of Clients

Warped
NoTime

Three LPs

Figure 4: Timing information obtained with High Server Utilization Configuration (Source : Poisson distribution with
mean 15, 9 Servers each using a Normal service time distributions with mean 150 and variance of 15)
Table 2 tabulates the results obtained from a configu-
ration, where the server utilization is not high (The average
of three separate runs is shown). NoTime is roughly 3
times faster for single LP case but for the 3 LP case,
warped and NoTime are equally good. This is due
to high communication overheads of MPI that dominate
simulation time.

The intuition about the consistency and accuracy of
the results obtained from unsynchronized simulation is
presented in Figure 5. In accordance with the Strong law
of large numbers, the various random parameters of the
queueing system smoothen out and convergeto theexpected
values as the simulation progresses. The deviations from
the mean value (mainly due to causal violations) cancel
out each other, thus stabilizing the observed data. Figure 6
provides insight into how thestandard deviations in thedata
obtained decreases as the length of simulation increases.
The deviations were obtained by simulating the model a
number of times and maximum and minimum values of
the parameters are plotted. The data is representative of a
“stable” queueing system. By a “stable” queueing system
we mean that the rate of service is proportional to the rate
of arrival.

Clearly, unsynchronized simulation can be useful in
situationswherequick and lessaccurateresultsarepreferred
to time-consuming and highly accurate simulation results.
Considering that NoTime is approximately three times
faster than an optimized Time Warp simulator, it is clear
that NoTime wil l be helpful in making fast and more
general simulation studies to find the most promising
design alternatives without simulating them in great detail.
1568
0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000
Number of Events

Server Utilization
Expected Server Utilization

Average Queue Length
Expected Average Queue Length

Figure 5: Stabilization of parameters

3

4

5

6

7

8

9

100 200 300 400 500 600

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Number of Events

Max. Observation
Expected Value

Min. Observation

Figure 6: Deviations in observed data



Unsynchronized Parallel Discrete Event Simulation
Table 2: Low Server Utilization Configuration (Source : Poisson distribution with mean 15, 7 Servers each using a
Normal service time distributions with mean 100 and variance of 15) with an average utilization = 0.94

S.No Clients No. Avg. Queue Length % Error Avg. Waiting Time % Error
LPs TW NoTime TW NoTime

1 20000 1 7.28 7.16 1.64 108.9 107.5 1.28
2 7.26 7.22 0.55 108.7 108.4 0.27
3 7.15 7.33 -2.51 107.4 109.6 -2.05

2 40000 1 7.23 7.20 0.41 108.4 108.2 0.18
2 7.29 7.23 0.82 109.1 108.4 0.64
3 7.16 7.17 -0.14 107.5 107.7 -0.18

3 80000 1 7.22 7.21 0.13 108.3 108.2 0.09
2 7.24 7.21 0.41 108.4 108.3 0.09
3 7.18 7.23 -0.69 107.7 108.7 -0.93

4 100000 1 7.21 7.21 0.00 108.1 108.2 -0.09
2 7.22 7.21 0.13 108.2 108.3 -0.09
3 7.18 7.33 -2.08 107.7 110.2 -2.33
6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the benefits of relaxing
(or completely doing away with) strict causal adherence
in the parallel and distributed simulation of queueing
systems. We have argued that it is not always necessary
to synchronize and incur the overheads of synchronization.
While we have just started to scratch the surface of this
problem, recent research focus has started moving in this
direction as is evident from the literature.

The results presented in this paper clearly show the
advantages of ignoring causality in simulations to be
(i) The simulation execution times can be considerably
reduced, (ii ) The memory consumption is a fraction of
what is needed for Time Warp simulation (as states are
not saved), (iii ) The data obtained from unsynchronized
simulation closely follow the data obtained from a Time
Warp synchronized simulation (error rate is less than 2%
on the average for our experiments) and (iv) There is no
change in the modeling paradigm for such systems.

Of course, the unsynchronized simulations introduces
errors in the simulation results. But our results show that
this error is very small in many cases, sometimes even
within thelevel of confidencefor thecorrect results. Studies
to control asynchronism and to reduce sensitivity to load
variations are currently ongoing. Statistically techniques
to recover from errors are also being investigated.

ACKNOWLEDGEMENTS

Support for thiswork wasprovided in part by theAdvanced
Research Projects Agency under contracts J–FBI–93–116
and DABT63–96–C–0055.
156
REFERENCES

Bryant, R. E. (1979). Simulation on a distributed system.
In Proc. of the 16th Design Automation Conference,
pp. 544–552.

Buchholz, P. (1997). A distributed numerical/simulative
algorithm for the analysis of large continuous time
markov chains. In Proc. of the 11th Workshop on
Parallel and Distributed Simulation (PADS 97), pp.
4–11. Society for Computer Simulation.

Fujimoto, R. (1990). Parallel discrete event simulation.
Communications of the ACM 33(10), 30–53.

Fujimotoi, R. M. and R. M. Weatherly (1996). Time man-
agement in the dod high level architecture. In Proc. of
the 10th Workshop on Parallel and Distributed Sim-
ulation (PADS 96), pp. 60–67. Society for Computer
Simulation.

Gropp, W., E. Lusk, and A. Skjellum (1994). Using MPI:
Portable Parallel Programming with the Message-
Passing Interface. Cambridge, MA: MIT Press.

Jefferson, D. (1985). Virtual time. ACM Transactions on
Programming Languages and Systems 7(3), 405–425.

Kleinrock, L. (1975). Queueing Systems. New York, NY:
John Wiley & Sons.

Lamport, L. (1978). Time, clocks, and the ordering of
events in a distributed system. Communications of
ACM, 558–565.

Martin, D. E., T. McBrayer, and P. A. Wilsey (1995).
warped: A time warp simulation kernel for analysis
and application development. (available on the www
at http://www.ece.uc.edu/˜paw/warped/ ).

Martini, P., M. Rümekasten, and J. Tölle (1997). Tol-
erant synchronization for distributed simulations of
interconnected computer networks. In Proc of the
9



Rao, Thondugulam, Radhakrishnan and Wilsey
11th Workshop on Parallel and Distributed Simula-
tion (PADS 97), pp. 138–141. Society for Computer
Simulation.

Misra, J. (1986). Distributed discrete-event simulation.
Computing Surveys 18(1), 39–65.

Nicol, D. and X. Liu (1997). The dark side of risk (what
your mother never told you about time warp). In Proc.
of the 11th Workshop on Parallel and Distributed
Simulation (PADS 97), pp. 188–195.

Nicol, D. M. and P. Heidelberger (1995). A comparative
study of parallel algorithms for simulating continuous
time markov chains. ACM Transactions on Modeling
and Computer Simulation 5, 326–354.

Steinman, J. S. (1991). SPEEDES: A unified approach
to parallel simulation. In 6th Workshop on Parallel
and Distributed Simulation, pp. 75–84. Society for
Computer Simulation.

Wilsey, P. A. and A. Palaniswamy (1994). Rollback
relaxation: A technique for reducing rollback costs
in an optimistically synchronized simulation. In
International Conference on Simulation and Hardware
Description Languages, pp. 143–148. Society for
Computer Simulation.

AUTHOR BIOGRAPHIES

DHANANJAI MADH AVA RAO is a Ph.D. student in
the Department of Electrical and Computer Engineering
& Computer Science at the University of Cincinnati. He
received his Bachelor’s degree in Computer Science and
Engineering from the University of Madras in 1996. His
research interests include parallel discrete event driven
simulation, parallel processing, and web-based simulation
of active networks.

NARAYANAN V. THONDUGULA M is an MS student
in the Department of Electrical and Computer Engineering
& Computer Science at the University of Cincinnati. He
received a B.Tech degree in Electrical and Electronics
Engineering from the Indian Institute of Technology,
Madras in 1996. His research interests include parallel
discrete event simulation, computer architecture, and
unsynchronized simulation of discrete queuing models.

RADHARAMA NAN RADHAKRISH NAN is a Ph.D
student in the Department of Electrical and Computer
Engineering & Computer Science at the University of
Cincinnati. He received a BE degree in Computer Science
and Engineering from the University of Madras in 1993.
His current research interests include parallel discrete event
driven simulation, adaptive control, parallel processing,
application of formal methods to distributed systems and
active networks.
1570
PHILI P A. WILSE Y is an Assistant Professor in the
Department of Electrical and Computer Engineering &
Computer Science at the University of Cincinnati. He
received PhD and MS degrees in Computer Science from
the University of Southwestern Louisiana and a BS degree
in Mathematics from Illinoi s State University. His current
research interests are parallel and distributed processing,
parallel discrete event driven simulation, computer aided
design, formal methods and design verification, and
computer architecture. He is a member of both the
IEEE Computer Society and the ACM.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

