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Circuit simulation has proven to be one of the most important computer
aided design (CAD) methods for verification and analysis of, integrated
circuit designs. A popular approach to modeling circuits for simulation pur-
poses is to use a hardware description language such as VHDL. VHDL has
had a tremendous impact in fostering and accelerating CAD systems devel-
opment in the digital arena. Similar efforts have also been carried out in the
analog domain which has resulted in tools such as SPICE. However, with the
growing trend of hardware designs that contain both analog and digital
components, comprehensive design environments that seamlessly integrate
analog and digital circuitry are needed. Simulation of digital or analog cir-
cuits is, however, exacerbated by high-resource (CPU and memory) demands
that increase when analog and digital models are integrated in a mixed-mode
(analog and digital) simulation. A cost-effective solution to this problem is
the application of parallel discrete-event simulation (PDES) algorithms on a
distributed memory platform such as a cluster of workstations. In this paper,
we detail our efforts in architecting an analysis and simulation environment
for mixed-technology VLSI systems. In addition, we describe the design
issues faced in the application of PDES algorithms to mixed-technology VLSI
system simulation. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Recent advances in integrated circuit (IC) fabrication technology have allowed
designers to integrate a larger number of transistors onto a microchip than ever
before. The pace of technological advancement and the market demand for such
technological innovations has, however, put software/hardware vendors under
constant pressure to build efficient and more reliable systems. In order to succeed in
such volatile environments, hardware manufacturers must focus their efforts on



improving three major characteristics of their systems: correctness, reliability, and
time to market. While all three of these factors play a major role, correctness
and reliability are especially critical for the success of a product. As a result, a
time- and cost-efficient testing strategy is a vital part of the system life cycle.
Since designing and fabricating the hardware is a time-consuming and expensive
process, a designer usually first models the hardware in software. This is a
quick and inexpensive method for analyzing and testing the design. The model
of the system is usually developed using a hardware description language (HDL).
The model is then tested by exercising it with a set of input vectors and studying
its behavior during the test. HDLs are essentially programming languages that
provide special language constructs that can be used to model hardware systems. In
addition, since a hardware system is inherently parallel (i.e., all the components of
the system execute simultaneously), the HDL used to model the hardware must also
provide constructs for modeling these parallel characteristics. The VHDL hardware
description language [24] is one such hardware modeling language. In addition to
basic programming language features, VHDL also provides hierarchical design
capabilities. This allows the modeling of systems at various levels of abstraction.
Once the system model has been constructed, the model can be simulated according
to the semantics specified in the VHDL Language Reference Manual (LRM) [24].
The simulation model can then be used to analyze and verify the design.

The capacity and throughput of software-based hardware simulation tools has
not kept pace with the growth of modern designs. The capacity limits of existing
sequential simulation technology have already been exceeded and circuit designers
cannot, in general, simulate a complete circuit design. The circuit design must be
subdivided into smaller subassemblies to allow simulation and verification. This
leads to difficulties in ensuring that the complete system will actually perform as
expected. Furthermore, even when a system is organized as a set of smaller subas-
semblies, simulation times are long and frequently result in abbreviated simulation
test schedules. However, the issues of capacity and large execution times can be
addressed through the innovative use of parallel processing—either through special-
purpose parallel hardware [3] or by deploying parallel software algorithms execut-
ing on large general-purpose multiprocessor machines or clusters of workstations
[7, 10, 42, 44]. While special-purpose accelerators operate well, providing excellent
speedup, their extreme cost makes software solutions on general-purpose hardware
a much more attractive alternative. Specifically, the increased computing resources
available in a parallel computing system (such as a cluster/network of worksta-
tions) can be utilized to help overcome the time and space burdens of hardware
simulations. In addition, parallel discrete-event simulation techniques can be
employed to perform a synchronized distributed simulation on the distributed exe-
cution platform. However, the application of parallel discrete event simulation
(PDES) techniques to enhance the performance of circuit simulation has met with
limited success. This is due to the fact that the time taken to execute an event (event
granularity) is typically very small and, in general, each event that is processed will
generate one or more events that must be communicated to other parallel processes
(resulting in a very high communication-to-computation ratio) [5, 44].
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In this paper, the process of constructing an environment for analyzing and
simulating VLSI circuit designs written in a hardware description language such as
VHDL is described. Specifically, we detail the issues involved in architecting and
implementing a VHDL compiler (savant’s scram compiler), a VHDL simulation
kernel (TyVIS), and a general-purpose distributed simulation support system
(warped) required for large-scale simulations of VHDL logic circuit designs. In
addition, we analyze the reasons for the less-than-satisfactory results of previous
attempts at applying PDES techniques to distributed circuit simulation. These
issues and others served as the motivation for the design of several optimizations
(which we will describe in this paper). We have implemented these optimizations as
part of the analysis and simulation environment. The remainder of the paper is
organized as follows. Section 2 describes in greater detail the domain of parallel
discrete-event simulation (focusing on digital logic simulation in particular) and
briefly summarizes the large amount of related work in this area. Section 3 intro-
duces and describes in detail the architecture of the VHDL analysis and simulation
environment. After the environment is introduced, Section 4 describes how PDES
techniques are used in performing parallel VHDL simulation. Section 5 introduces
and describes optimizations (along with some experimental results) for improving
the performance of the parallel logic simulator. Section 6 describes how this envi-
ronment has been extended to simulate mixed-signal (analog and digital) circuit
designs and presents the unique design challenges the mixed-signal domain presents
to the simulation tool developer. Finally, Section 7 presents some concluding
remarks.

2. BACKGROUND AND RELATED WORK

In this section a brief overview of PDES is presented. In PDES the system to be
simulated is decomposed into physical processes that are modeled as logical processes
(LPs). The simulation is composed of a set of communicating LPs that execute
concurrently. LPs communicate by exchanging time-stamped messages. In order to
maintain causality, LPs must process messages in strictly nondecreasing time-stamp
order [26, 29]. Two basic synchronization protocols are used to ensure that this
condition is not violated: (i) conservative and (ii) optimistic. Conservative protocols
[14, 31] strictly avoid causality errors, while optimistic protocols, such as Time
Warp [26], allow causality errors to occur, but implement some recovery mechanism.

Conservative protocols were the first distributed simulation mechanisms. The
basic problem conservative mechanisms must address is the determination of ‘‘safe’’
events. In order to execute an event, the conservative process must first determine
that it is impossible for it to receive another event with a timestamp lower that the
event it is currently trying to execute. If the process can independently guarantee
this, then the event is deemed to be safe and can be executed without fear of a cau-
sality violation. Processes containing no safe events must block; this can lead to
deadlock situations if no appropriate precautions are taken. In order to guarantee
that an event is safe for execution and to prevent deadlock, processes circulate null
messages to inform each other about their current simulation times. Several studies
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on conservative mechanisms and optimizations to conservative protocols have been
presented in the literature [14, 31].

In contrast, optimistic protocols such as Time Warp [26] allow causality errors
to occur, but implement some recovery mechanism. In a Time Warp synchronized
simulator, each LP operates as a distinct discrete event simulator, maintaining input
and output event lists, a state queue, and a local simulation time (called local virtual
time or LVT). The state and output queue are present to support rollback process-
ing. As each LP executes asynchronously, it is possible for an LP to receive an event
from the past (some LPs will be executing faster than others and hence will have
local virtual times greater than others)—violating the causality constraints of the
events in the simulation. Such messages are called straggler messages. On receipt of
a straggler message, the LP must roll back to undo some work that has been done.
Rollback involves two steps: (i) restoring the state to a time preceding the time-
stamp of the straggler and (ii) canceling any output event messages that were erro-
neously sent (by sending anti-messages). After rollback, the events are re-executed
in the correct causal order.

In general, parallel simulation of logic circuits is implemented by identifying each
gate of the logic circuit as a parallel activity and modeling each gate as a logical
process. Logical processes operate as individual discrete event driven simulators
that are synchronized using either (i) a centralized time distribution mechanism, (ii)
a distributed, conservatively synchronized mechanism [31], or (iii) a distributed,
optimistically synchronized mechanism [26]. Typically, the LPs are statically parti-
tioned and assigned to the parallel processes, and event information is exchanged
by time-stamped messages. Each processed event corresponds to a bit value change
and the computational requirements (for each logic gate) are minimal. This level of
division results in an extremely fine grain of parallelism. As a result, the number of
parallel tasks is extremely high. The time for a single execution of an LP simulating
a logic gate can be dwarfed by the communication, synchronization, and opera-
tional overhead of the simulation engine. With such fine-grained parallelism, the costs
of sending or receiving messages from/to other LPs can be equivalent to or even
higher than the costs of processing a event. In conservatively synchronized parallel
simulations, the sheer number of null synchronization messages that must be sent
for each event cycle can be daunting [44]. If the simulation system is synchronized
optimistically, the operational overhead burden can be of even more concern.
Specifically, an optimistically synchronized (using for example the Time Warp [26]
protocol) simulation requires each process to store history information about its
previous states, inputs, and outputs, in case of a rollback.

Several empirical studies have shown that the total amount of parallelism available
in low-level hardware simulations is limited. Soulé and Blank [43] investigated the
available parallelism in a model of the 8080 microprocessor, consisting of 3439
gates, or LPs. Their study showed that, at any given time segment during the simu-
lation, only 0.1–0.5% of the LPs were active and that only 10–20% of the LPs were
active during each microprocessor clock cycle. Likewise, Bailey studied the avail-
able parallelism of nine different models ranging in size from 208 to 61,600 transis-
tors [5]. In these studies, Bailey reported that the percentage of LPs active at a
given moment in simulation time (i.e., the average parallelism) ranged from 0.11%
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to 5.9%. Bailey also performed scalability studies on a selected set of models to
determine the change in available parallelism as the size of a given model increased.
The results did not illustrate any significant variation in the percentage of LPs
active at a given simulation time. However, there are two factors in these analyses
that need to be considered. First, the aforementioned numbers are parallelism per-
centages, not absolute parallelism. Even the smallest simulation described by Bailey
was measured as having an average of 9.8 LPs active at a given time. Larger models
ranged up to 540 active LPs. The second factor is that the aforementioned mea-
surements were taken on conservatively synchronized simulators. Unlike a conser-
vatively synchronized simulator, an optimistically synchronized system is not
restricted to simulating serially through simulated time; different LPs can be exe-
cuting events at different simulation times simultaneously. In defense of this idea,
Briner [10] reports that by allowing the LPs to advance asynchronously, higher
levels of parallelism are available. In certain models, he reports as much as 50 times
more parallelism is available in an optimistic simulation than in the conservative
simulation of the same model. Bauer et al. [8, 9] report similar results. The afore-
mentioned issues and results motivated the development of the analysis and simu-
lation environment described in this paper. Specifically, the parallel simulator
employs the Time Warp protocol to synchronize the distributed LPs in the simula-
tion. The following sections describe the analysis and simulation environment in
greater detail.

3. THE ANALYSIS AND SIMULATION ENVIRONMENT

In this section, we detail the design and implementation of an environment for
analyzing and simulating VLSI circuit designs written in VHDL. Key to the analysis
part of such an environment is the design compiler. A design compiler can be
broadly divided into three functional units: (a) the front-end parser (responsible for
parsing and syntax checking); (b) the semantic analyzer (responsible for validating
the semantics of the input); and (c) the back-end code generator (responsible for
generating simulator specific code). As part of the savant project, Wilsey et al.
[51] designed and developed the front-end parser and semantic analyzer (called
scram). The scram analyzer performs the parsing, the syntax checking, and the
semantic checking and transforms the source into an intermediate representation
(IR) for further processing. The back-end to this compiler is a code-generator,
which generates C++ code from the intermediate representation. In order to
correctly handle and simulate VHDL models, a VHDL simulation kernel (called
TyVIS) was developed on top of a general purpose parallel discrete-event simula-
tion kernel called warped [37].

Figure 1 illustrates the architecture of the analysis and simulation environment.
The input (model descriptions in VHDL) is transformed into a basic intermediate
representation (IR) by the scram analyzer. The IR is constructed during the syntactic
and semantic analysis phase. Complex constructs in the IR are then reduced to
equivalent simpler structures during the transmute phase. Using this reduced IR,
the code-generator generates C++ code suitable for simulating the design specified
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FIG. 1. Components of the VHDL analyzer and simulator.

by the input VHDL model. The generated code is then compiled with the TyVIS
and warped simulation libraries to obtain an executable. When this executable is
executed, it performs a parallel discrete-event simulation and produces the required
simulation output of the input VHDL model. The following subsections describe
each of the major components of the environment in greater detail.

3.1. The scram Analyzer

The front end of the analyzer is responsible for parsing the input VHDL model,
checking for semantic validity, and building the intermediate representation. The
scram analyzer (constructed by supplying the VHDL grammar to PCCTS [34])
creates a basic intermediate structure from the input VHDL. This phase identifies
all the syntactic and semantic errors in the input and generates appropriate error
messages. Once a syntactically valid VHDL input has been parsed, it is analyzed for
semantic validity.1 During this phase, the intermediate representation is semanti-

1 While the syntactic and semantic phases can be implemented as separate phases in a design compiler,
there is no clear demarcation between these phases in the scram analyzer. Both of these phases are tightly
coupled.

cally transformed to the appropriate structures. For instance, an indexed name
created by the parser may be an array object, a subprogram call with arguments, or
a subprogram call without arguments which returns an array object. Such
differences can be determined only during the semantic analysis. The intermediate
representation is transformed appropriately to reflect this semantic information.

The intermediate representation generated by the scram analyzer conforms to the
AIRE (advanced intermediate representation with extensibility) specifications [50].
This specification defines a set of interface classes for representing the correspond-
ing constructs in VHDL. The AIRE specification is hierarchically defined and our
implementation is in C++. The properties of these classes are specified by member
objects and public method interfaces. The specification may be extended to add
functionality by inserting user-defined classes into the hierarchy. The VHDL
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analyzer and code generator have been implemented as one such extension to the
AIRE specifications. Further details on the AIRE is available in the literature [50].

3.2. The Code Generator

The intermediate representation (IR) created by the analyzer is in the form of a
class hierarchy (i.e., a parse tree). The information contained in the input VHDL
source code is embedded into this representation in such a way that the code
generator can access it easily. Beginning with the design file (the top-level construct
representing the file that is being analyzed), the code generator traverses the IR and
writes TyVIS compliant C++ code suitable for simulating the structures modeled by
the input VHDL.

The code generator is built as a back end to the scram analyzer. Various code
generation methods defined in the extension classes implement the code generation
for the corresponding classes. The object-oriented design of the TyVIS simulation
kernel makes it possible to perform code generation by recursive descent. For
example, an architecture declaration in VHDL, built as a class in the intermediate
representation, contains information about declarations in the declarative region
and the concurrent statements contained in it as member objects. The code genera-
tion of an architecture declaration initiates the code generation of the concurrent
statements in it (recursively). This way, code generation is invoked for every struc-
ture in the intermediate representation starting from the design file, which repre-
sents the VHDL file being analyzed, to every concurrent statement, sequential state-
ment, declaration, and so on until the leaf elements are reached in the parse tree.
Some of these structures may be rewritten as combinations of other structures
without any difference in functionality. Such structures are transmuted to their
equivalent alternative structures (according to the rules specified in the LRM). This
is done so that code generation needs to be performed only for a minimal set of
classes.

The basic philosophy behind code generation has been to: (a) keep the code
generator simple; (b) minimize the code that is generated; and (c) make the gener-
ated code extensible. Most of the generated code is in the form of class instantia-
tions or calls to functions in order to minimize the code that is published. These
classes and functions are defined in a class library associated with the TyVIS kernel.
The object oriented design of the simulation kernel makes it extensible and recon-
figurable. The user can add/modify/remove any optimizations/implementations in
the kernel by defining another class and providing the specified interface. Such a
design has been governed by the basic aim of this research which has been to study
and improve the performance of VHDL simulation through the novel use of PDES
techniques.

3.3. The Simulation Subsystem

The simulation system has been built in two layers: the VHDL-specific layer
called TyVIS, and a general-purpose parallel discrete-event simulation kernel called
warped. The warped [37] simulation kernel provides the functionality to develop
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applications modeled as discrete event simulations. Considerable effort has been
made to define a standard programming interface to hide the details of the simula-
tion algorithm from the application interface. All simulation specific activities such
as state saving, are performed automatically by the kernel without intervention
from the application. Consequently, an implementation of the warped interface
can be constructed using either conservative or optimistic parallel synchronization
techniques; furthermore, the simulation kernel can also exist as a sequential kernel.
In fact, the current software distribution of warped includes both sequential and
parallel implementations.

The parallel implementation of warped is an optimistic discrete event simulator
based on the Time Warp [26] synchronization paradigm. The simulation is parti-
tioned into various concurrently executing entities called logical processes (LPs). A
logical process interacts with others by exchanging events. Different LPs may be
assigned to different processors, thus distributing the simulation across a network
of workstations. Events are sent between LPs using message send and receive calls
compliant with the MPI message passing standard [23], a portable communication
layer. Event messages between LPs hosted on the same processor are exchanged
directly, without routing the event message through the network. On the arrival of
an event, the process responsible for handling that event is invoked and executed.
This execution may result in further events being generated. Thus, simulation pro-
ceeds by processing events and advancing the simulation time. The distributed
nature of the simulation complicates certain basic functions of the simulation, such
as computing the time up to which simulation has proceeded and the termination of
simulation. Various distributed algorithms and optimizations [37, 38] are built into
the warped kernel to implement these tasks. Another advantage of this design is
extensibility, since the TyVIS kernel is developed on top of the warped kernel
without any modifications to the latter (allowing separate development on either
kernel).

The TyVIS simulation kernel provides the functionality necessary to implement a
VHDL simulator. Since most of the basic simulation requirements, such as sche-
duling and synchronizing are handled by warped kernel, these are inherited by the
TyVIS kernel (by inheriting the C++ classes in TyVIS from the corresponding
classes in warped). However, this alone is not sufficient for a VHDL simulation
kernel. It requires features such as elaboration, a VHDL type system, signal propa-
gation, file I/O, wait statements, and several other VHDL-specific features. TyVIS
extends the basic simulation kernel to provide these additional features. The next
section discusses the implementation of these features in detail.

4. APPLYING PDES TECHNIQUES TO VHDL SIMULATION

Achieving a VHDL simulation is by no means a simple task. A wide variety of
features such as support for concurrency, a powerful type system, data sharing
between concurrent objects (signals), and process suspension and resumption need
to be supported by the underlying simulation kernel. The TyVIS VHDL simulation
kernel provides support for the aforementioned features by taking advantage of
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object-oriented design features provided by C++ and making novel use of the
warped parallel discrete-event simulation kernel. This section provides an overview
of the components of TyVIS and the issues involved in simulating a VHDL design.

One of the primary reasons for developing a software model of a system is to
simulate it. This typically involves three phases: analysis, elaboration, and execution.
As described earlier, the analysis phase involves examination of the VHDL
description and detection of syntactic and static semantic errors. The whole model
of the system need not be analyzed at once. Instead, it is possible to analyze design
units such as entity and architecture body declarations, separately. For example,
consider the VHDL model illustrated in Fig. 2. The VHDL source for the model
(design units 1 and 2) and the test bench (design units 3 and 4) used to test the
model is stored in a single design file (inverter.vhdl). If the analyzer finds no errors
in the design unit, it creates an intermediate representation of the unit and archives
it in a library. The second phase (elaboration) in simulating a model is the process
of walking through the design hierarchy and creating all of the objects defined in
declarations. The final product of design elaboration is a collection of signals and
processes. A model must be reducible to a collection of signals and processes in
order to simulate it. A VHDL design can be built by hierarchically decomposing
the design into components and interconnecting them. Reusable components can be
developed and instantiated over and over again. For example, in Fig. 2 an inverter
gate is implemented and instantiated as a component (in architecture test of the
testInverter entity). In addition, local signals (myInput and myOutput) are connected
to the inverter gate’s input and output signals (through the port map declaration). By
instantiating this component several times and connecting it in different configura-
tions, various circuits can be built. These hierarchical design structures help in

FIG. 2. VHDL Model of an inventer.
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organization of the design but not in its simulation. The process by which hierar-
chical structures are flattened and made into a collection of connected processes is
called the elaboration of the design hierarchy. The third phase of simulation is the
execution of the model. In discrete-event simulation, the passage of time is
simulated in discrete steps, depending on when events occur. At some simulation
time, a process may be stimulated by changing the value on a signal to which it is
sensitive. For example, in Fig. 2, the execute process in design unit 2 is sensitive to
changes in the signal named input. When the signal myInput is assigned a new value,
the input signal of the inverter gate also get as signed the new value. This triggers
the process and the process may now schedule new values to be assigned to signals
at some later simulated time. This process is know as ‘‘scheduling a transaction’’ on
a signal. If the new value is different from the previous value on the signal, an event
occurs, and other processes sensitive to the signal may be resumed.

Simulation of a VHDL model starts with an initialization phase, followed by
repetitive execution of a simulation cycle. During the initialization phase, each
signal is assigned an initial value. The simulation time is set to zero, then each
process instance is activated and its sequential statements are executed. Execution
of the process continues until it reaches a wait statement, which causes the process
to be suspended. During the simulation cycle, the simulation time is first advanced
to the next time at which a transaction on a signal is scheduled. Second, all trans-
actions scheduled at this time are executed. This may cause events to occur on some
signals. This causes all processes that are sensitive to these signals to be resumed
and executed until they reach a wait statement and suspend. When all the processes
have suspended, the simulation cycle is repeated. When no further transactions are
scheduled for execution, then there is nothing left to be done and the simulation can
terminate.

4.1. Implementing Elaboration in TyVIS

The VHDL LRM defines two kinds of elaboration, static and dynamic. The
elaboration of the design that can be performed just before the commencement of
the simulation, such as propagation of generic constant values and computation of
the net list of the signals, is called static elaboration. Certain declarations, such as
type declarations in subprograms and interface constants in subprograms, cannot
be statically determined at compile time. These constructs have to be dynamically
elaborated during the execution of the model. For this reason, TyVIS defines a
third kind of elaboration, run-time elaboration, which occurs just before the simula-
tion of the model. Instructions necessary to elaborate the design are embedded into
the generated code. Execution of the code causes the complete elaboration of the
design before simulation commences. The information necessary for execution of
the model is gathered during elaboration and passed on to the simulation kernel.

The run-time elaboration scheme in TyVIS combines a top-down and a bottom-
up approach. The design hierarchy is elaborated in three phases, the instantiate
phase, the netinfo phase, and the connect phase. The components and processes in
the design are instantiated first in a top-down approach in the instantiate phase.
The netinfo phase is performed hand in hand with the instantiate phase. At the end
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of the instantiate phase of every design unit, its netinfo phase is initiated. When a
component instantiation statement is elaborated, it fills in the information related
to the signals it reads and drives. This information is then passed up the hierarchy
to the component that instantiated it. The component in turn fills in the local
information. This process is repeated recursively until the topmost design unit is
reached. At this point all the information about all the signals (in the form of an
elaboration tree data structure) is present in the topmost design unit. It then ini-
tiates the connect phase of the elaboration, where the complete elaboration tree is
passed on to the instantiated components and processes which record the necessary
data. At the end of the connect phase, the elaboration of the model is complete, and
simulation can begin.

A two-phase approach (instantiate and netinfo) is sufficient to elaborate the
entire design if only an uniprocessor (sequential) simulation is desired. However, for
a distributed simulation, the connect phase is necessary since the elaboration
information needs to be distributed to each individual VHDL process. Distribution
of elaboration information is necessary so that the distributed processes resident on
different processors can access and record information about processes local to this
processor. During simulation, only the part of the elaboration tree that is pertinent
to the set of processes resident on this processor is accessed. This translates to
shorter access times as only a part of the entire data structure is searched and
accessed. At the end of the connect phase, the signal flow in the VHDL circuit
description is available in the form of a net-list. This net-list represents the com-
munication topology of all the simulation objects.

4.2. Performing the VHDL Simulation

Since VHDL is a concurrent programming language, it is an ideal application for
parallel simulation since it can exploit the inherent parallelism. Furthermore, a
close inspection of the VHDL simulation semantics would reveal that signals and
process scheduling are event based interactions. This would suggest discrete event
simulation as the ideal simulation paradigm. Putting these together, the use of
warped, an optimistically synchronized parallel discrete event simulation frame-
work, as the underlying simulation kernel seems to be the correct choice. In addi-
tion, the optimistic algorithm based on Time Warp provides additional speculative
processing capability that could potentially exploit additional parallelism and
provide additional speedup. Of course, an incorrect prediction could result in an
inferior performance, but any good partitioning and load balancing algorithm can
alleviate this problem. Since warped is a distributed discrete-event simulation
kernel, it can be used to execute large simulations on a network of small and inex-
pensive workstations with moderate memory and computational capacities. The
kernel has been carefully implemented to make sure that it is independent of both
the platform and the network. The portability of the kernel assures that the
simulation may be executed on a network of small workstations, or on a large mul-
tiprocessor machine.

At the end of elaboration, the VHDL model is ready to begin simulation. Simu-
lation begins by executing all the processes once in the initialization phase. This
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results in certain events being generated, which are maintained in the input queue of
the corresponding process by warped. These events are scheduled in a lowest time-
stamp first (LTSF) order. A process is scheduled for execution when it has an event
that requires processing. The process examines the events in its input queue and
processes them as required. Then, depending on the conditions for the resumption
of that process, either it resumes execution of the sequential statements in it, or
returns control back to the underlying simulation kernel. Any VHDL specific
activity is handled by the TyVIS kernel while any optimistic simulation activity
(such as rollback) is handled by the warped kernel.

4.2.1. Issues in Parallel VHDL Simulation

After elaboration, the hierarchical model is now a set of VHDL processes and
signals. Each VHDL process is mapped to a warped logical process. Similar to the
way execution of a logical process changes the state of the logical process in a
discrete-event simulation, the execution of sequential statements in a process
changes the process’s state by modifying the values of the variables, signals, or files
associated with it. Changing the value of process variables is handled by invoking a
TyVIS kernel method with the variable in question and the new value of the vari-
able as the method’s arguments (variable assignment). The result is a change in the
variable’s value. However, signal assignments and file I/O are complex because of
the distributed nature of the simulation kernel. A signal contains a value that is
shared between concurrently executing processes. Any change to the signal value
has to be propagated to other processes that are sensitive to this signal. This is
achieved by scheduling an event for the appropriate processes after a prespecified
delay.

The simulation time, a measure of the progress of simulation, is updated by the
kernel as events are processed. Simulation time of a process may be set back by the
kernel to ‘‘roll back’’ from an incorrect computation. This is a result of the opti-
mistic characteristic of Time Warp. The states of the processes have to be saved
periodically to permit it to roll back to a state in the past. However, the global
simulation time, measured by the progress of the Global Virtual Time (GVT),
increases monotonically, guaranteeing simulation progress. File I/O also requires
special attention because of the optimistic and distributed nature of a Time Warp
synchronized simulation. File types in VHDL provide a method of writing data to
the persistent storage devices in the computer, generally a file system. Many of the
frequently used methods are predefined for all the file types, but a user can add
more properties to the file type by defining subprograms. The following two ques-
tions have to be answered to implement file type objects in TyVIS/warped:

• Due to the distributed nature of warped, how are simultaneous operations
to the same file type object handled?

• The execution of an event is not confirmed until it is committed. Therefore
as a result of the execution, I/O can not be performed immediately. How are file
operations handled correctly?
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The answer to the first question is obtained partly from the VHDL LRM. If
multiple file objects are associated with the same external file, the language does not
specify any order in which operations on the file are performed. Since this order is
not defined, the scheduling of the file operations can be safely neglected by TyVIS.
It then becomes the responsibility of warped to define this ordering. The problem
raised by the second question can be solved by maintaining separate file queues for
each of the file type objects in the system. Each of these file queues becomes an
additional simulation object. Since file types declared in subprograms are elabo-
rated dynamically, file queues have to be dynamically instantiated and manipulated
to accommodate dynamic elaboration of file type declarations. As a result, after
dynamic elaboration, the number of simulation objects in the simulation may vary
depending on how many file queue objects were instantiated. The commitment of
the events representing file operations are managed by warped. Since the warped
kernel uses a GVT estimation algorithm to determine when it is safe to garbage
collect old history items, the estimated GVT value is used to commit irreversible file
I/O operations.

In some senses, performing a VHDL simulation using the TyVIS and warped
simulation kernels is similar to performing a process-oriented [32] simulation.
Process-oriented views are useful for modeling but are difficult to implement
efficiently in a simulation system [35]. The simulation of a collection of VHDL
processes (post-elaboration) can be viewed as implementing a process-oriented
simulation. A key issue in this type of simulation is providing support for the
capability of invoking wait statements over nested procedure calls at any point in a
procedure body. A wait statement causes the simulation to suspend processing of
the sequential statements following it for a given time period and resume when any
one of the signals in its sensitivity list (if any) become active and a condition clause
(if any) evaluates to true. Once the time period expires, it resumes irrespective of
signal sensitivity or the condition. If the time period expression is omitted, the wait
never resumes (other than due to activation of a signal it is sensitive to or the con-
dition clause evaluates to true). An implementation of the wait statement must be
able to suspend execution at any point in a process or a procedure, and resume the
execution from the same point depending on the conditions or when the time has
expired, whichever occurs first. In addition, an implementation of the wait state-
ment in warped must be able to rollback by restoring a previous state.

The execution of a wait statement proceeds in three distinct phases. First, when the
wait statement is encountered, an event (WAIT−MESSAGE) is sent by the process to
itself. This event will be scheduled after a prespecified delay as illustrated by Fig. 3a
(step 1). To identify the wait statements within a process uniquely, an ID is assigned
to each wait statement. The ID (or label) of the wait statement that the process is
waiting on and the time at which it was executed is recorded so that execution can
be resumed from the same point. The second phase starts with the arrival of a wait
event. When this event is received by the process after the delay interval, a flag in
the state of the process is set indicating that the time delay has occurred (step 2).
Activity of signals is detected by examining a list of flags maintained in the kernel.

The third and final phase (Fig. 3a, step 3) takes place when the body of the
process is executed. Irrespective of whether the process resumes or remains
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FIG. 3. Handling wait statements in processes and procedures.

suspended, the body of the process is executed. The first step is to examine the
waitLabel variable in the state, which indicates the wait statement on which the
process is waiting on. Depending on this, it makes an unconditional jump (goto) to
the corresponding instruction. Here, a call to the method resumeWait is made with
the ID of the wait statement and the value of the condition expression. This method
determines, according to the rules specified in the VHDL LRM, if the wait resumes
or continues suspension. On resumption, the statements following the wait state-
ment are executed until the process suspends again. If the wait does not resume,
control is transferred back to the kernel.

VHDL also allows a wait statement in the body of a procedure. A few problems
arise when such a wait statement is implemented in the TyVIS kernel. The control
has to be transferred back to the kernel, which cannot be achieved with just a
return statement, as in the case of a wait statement in a process. The calling path
has to be backtracked all the way back to the kernel. To resume from the wait
statement, control has to be transferred to the wait statement from the kernel. The
path taken by the control transfer has to be the same as the natural call path. The
temporary variables in the procedures must be stored in the state of the process
from which the call was initiated to take care of roll back and state saving. Finally,
the same procedure may be invoked by different processes, and when the wait
statement returns, control should be transferred to the correct process.

This problem is solved in TyVIS by maintaining a ‘‘call stack’’ in the process’s
state which records information regarding the path of the call and the value of the
local variables in the procedure. Figure 3b illustrates the control transfer from the
process to the procedure call and vice versa (steps 1 through 4). When a wait state-
ment is executed in a procedure, the waitLabel variable in the process’s state is set
to WAITING−IN−PROC. The local variables in the procedure and the location of
the wait statement are saved in the call stack. The control is then transferred back
to the kernel. In case a procedure body contains a procedure call, the local variables
and the location of the procedure call are stored in the call stack. These values are
required if a wait statement is executed in the body of the called procedure. When a
wait in a process statement is detected in the final phase of the execution of the wait
statement, it retrieves the path the process took to the wait statement and the local
variables of the procedures in the path from the call stack. Finally, while the call
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stack has been used specifically to implement wait statements in VHDL procedure
statements in the TyVIS kernel, Perumalla and Fujimoto [35] use the same prin-
ciple in the simulation of telecommunication models (written in the TeD language
[36]). They call it stack reconstruction.

5. OPTIMIZING PARALLEL VHDL SIMULATION

Unfortunately, the application of parallel discrete event simulation (PDES)
techniques to speed circuit simulation has met with limited success. This is due to
the fact that event granularities are very small and, in general, each event processed
will generate one or more events that must be communicated to other parallel pro-
cesses (resulting in a very high communication-to-computation ratio) [5, 44]. Thus,
parallel logic simulators have yet to produce acceptable performance. In this
section, we present several methods for overcoming these performance issues in
parallel simulation. Using the savant/TyVIS/warped tool suite, we have devel-
oped several optimizations to speed up the combined performance of the simulation
system. Specifically, we investigate the following optimizations: (a) partitioning; (b)
rollback relaxation; and (c) fine-grained communication optimizations. The following
sections detail each of these optimizations.

5.1. Partitioning

To extract better performance from parallel logic simulators, partitioning tech-
niques are necessary [16, 41, 45]. The partitioning techniques can exploit the
parallelism inherent in either (i) the simulation algorithm or (ii) the circuit being
simulated. The amount of parallelism that can be gained from the former method is
limited by the algorithm used for simulation. The latter method attempts to
improve performance by dividing the circuit to be simulated across processors.
Hence, during simulation, the workload is distributed and the concurrency and
parallelism in the circuit are exploited. Its success is bounded by the amount of
parallelism inherent in the circuit and the number of processors available for simu-
lation. Partitioning algorithms, in general, concentrate on achieving speedup by
improving concurrency, minimizing inter-processor communication, and balancing
the processor workload based on the circuit being simulated [2].

Several techniques have been developed to partition logic circuits for parallel
simulation [2, 16, 28, 41, 45]. The algorithms address various issues related to
concurrency, communication and load balancing. In addition to investigating and
implementing existing partitioning algorithms, we have developed a new partition-
ing algorithm based on a multilevel heuristic. The new multilevel approach [46] to
partitioning attempts to optimize the concurrency, communication, and load
balance factors by decoupling them into separate phases. The multilevel algorithm
for partitioning has been studied and analyzed in [27] and has been shown to
produce high-quality partitions (measured with respect to edges cut, i.e., the
number of edges that cross partition boundaries) over several partitioning algo-
rithms such as the inertial and the spectral bisection algorithms. The complexity of
the multilevel algorithm is O(NE), where NE represents the number of edges in the
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TABLE 1
Characteristics of Benchmarks

Circuit Inputs Gates Outputs

s5378 35 2,779 49

s9234 36 5,597 39

s15850 77 10,383 150

circuit graph making the multilevel partitioning technique a fast linear time heuris-
tic. Further details about the multilevel partitioning algorithm are available in the
literature [46]. The partitioning algorithms that have been implemented and
profiled in the savant/TyVIS/warped simulation system include (a) random,
(b) topological, (c) depth first search (DFS), (d) cluster (or breadth first search),
(e) fanout cone, and (f) our new multilevel algorithm.

An empirical evaluation of the performance of different partitioning strategies in
the savant/TyVIS/warped environment was carried out using three of the
ISCAS ’89 benchmarks [11]. The characteristics of the benchmarks used in the
experiments are shown in Table 1. All the partitioning algorithms failed to provide
speedup for benchmarks with less than 2500 gates, since such models were small
enough for the sequential simulator to outperform the parallel version. The parallel
simulation experiments were conducted on eight workstations inter-connected by
fast Ethernet. Each workstation consisted of dual Pentium II processors with
128 MB of RAM running Linux 2.2.12. The experiments were repeated five times
and the average was used as the representative value in all the characteristics. It was
observed that the multilevel algorithm outperformed all other partitioning algo-
rithms when more than four nodes were involved in the simulation. The perfor-
mance of the Cluster and DFS algorithms deteriorates with increased number of

TABLE 2
Simulation Time (in Seconds) for the Different Partitioning Algorithm

Circuit No. of nodes Random DFS Cluster Topological Cone Multilevel

s5378 2 166.44 118.72 97.45 128.63 166.54 91.66

(149.96) 4 116.11 84.80 83.28 331.45 113.11 84.07

6 131.95 76.12 96.86 194.34 96.07 63.61

8 101.89 81.09 78.62 152.91 76.56 52.94

s9234 2 675.07 473.90 417.63 577.14 701.10 529.39

(651.24) 4 496.30 424.41 322.02 434.85 502.60 341.84

6 520.80 320.98 373.41 539.59 414.65 316.96

8 383.32 489.97 415.02 360.90 351.35 290.31

s15850 4 2090.82 1279.19 1317.28 2272.62 1832.24 1043.43

(2154.21) 6 1434.79 906.08 1351.17 1439.99 1363.40 943.91

8 1407.33 947.64 1215.64 2735.07 1176.36 864.03
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nodes due to lack of concurrency. The lack of concurrency also increases the
number of rollbacks in the simulations. The performance of the Topological algo-
rithm is limited due to increased communication overheads; more signals are split
across partitions for concurrency. The parallel simulation execution times for all the
benchmarks have been tabulated in Table 2. Underneath each circuit’s name, the
time taken for a sequential simulation is also shown (in brackets). As illustrated in
the table, the multilevel strategy performs better than other strategies when the
number of processors employed lies between 8 (four workstations) and 16 (eight
workstations). When two nodes were employed to simulate the s15850 model, the
simulations ran out of memory and hence the results are not presented in Table 2.

5.2. Rollback Relaxation

Rollback relaxation [48] is an optimization for Time Warp simulators that
reduces the cost of state savings and can potentially reduce rollback costs. Two
important problems with Time Warp optimistic simulation are the impact of state
savings and rollback costs. As discussed in [20], these problems are tightly
interwoven. If the state is saved after processing each event, then empirical data
indicates that rollback costs are less than 1/10 of the cost as the original forward
computation. However, saving the state after every event is particularly costly,
leading to suggestions to (i) alter the frequency of state savings [17], (ii) use
hardware modules to assist in state savings [21], or (iii) save only the incremental
state change caused by event processing [33]. While these approaches reduce the
over head in terms of space, they can dramatically increase the cost of rollback.
Thus, as parallel simulations increase in complexity and size, rollback costs may
quickly become significant.

The impact of large rollback costs must not be overlooked. More precisely, some
analytical models have shown that if rollback is expensive, then the progress in
simulated time per unit of real time can decrease as the simulation proceeds and the
time to perform rollback can increase exponentially, leading to unstable behavior
[30]. Thus, it becomes important to carefully control increases in rollback costs.
Rollback relaxation takes advantage of the fact that some processes do not contain
internal state and thus they do not strictly require the maintenance of a state queue.
Processes with internal states that are potentially live between processing distinct
events must still be processed as usual: However, memoryless processes (those
without states) do not require state queues and can be managed so that, upon
receipt of a straggler message, minimal recomputation is necessary. These
memoryless processes allow the advantages of rollback reevaluation [22, 49]
without its cost.

The notion of rollback relaxation arises with the classification of logical processes
into two categories, namely state-full processes and memoryless processes. More
precisely, a set of processes in a simulation system can be partitioned into two
nonintersecting subsets:

(a) Memoried Process: The set of processes whose output events are defined
as a function of both input event values and internal state values. In such processes,
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event processing may use internal state information from previous event processing
activities to produce an output event.

(b) Memoryless Process: The set of processes whose output events are
completely determined by the values of its input events. Event processing by a
memoryless process will never use internal information from past event processing
to produce an output event. Note, a process with internal state variables can qualify
as a memoryless process provided that all of its internal state variables are not live2

2 The definition of liveness in this context is derived from compiler optimization theory. Effectively, a
variable is live if its value is used in the program before it is defined.

and the process has a single entry point for event processing.

While the concept of rollback relaxation can be used with any Time Warp Simu-
lator, we have implemented rollback relaxation as it relates to a specific instance of
a Time Warp simulator. In particular, we have implemented rollback relaxation in
a parallel logic simulator. Each logical process will be assumed to correspond to a
physical digital system component and events will denote changes to values
exchanged between hardware components. This restriction allows a simple intro-
duction to rollback relaxation. The generalization to other applications is trivial
and ensured because of the use of standard compiler analysis techniques. Initial
implementations of rollback relaxation in a parallel logic simulator resulted in a
significant improvement in the performance of the parallel logic simulator. On
average, a speedup in the range of 15–40% was obtained when rollback relaxation
was employed in the parallel logic simulator. A similar technique for reducing the
state saving costs called reverse computation is employed by Carothers et al. [12].

5.3. Fine-Grained Communication Optimizations

Several strategies for minimizing the communication times of distributed appli-
cations (such as parallel logic simulators) have been explored. The application must
be partitioned so that processes that communicate most often are mapped to the
same physical processor [6]. In most cases, it is possible to hide some of the com-
munication cost by overlapping it with the computation [23]. While these (and
other) strategies result in improving the performance, they are specific to the appli-
cation and the communication subsystem. In addition, with the advent of cheap
and powerful hardware for workstations and networks, a new cluster-based archi-
tecture for distributed processing applications has been envisioned. Clearly, fine-
grained parallel logic simulators that communicate frequently are not the ideal
candidates for such architectures because of their high latency communication
costs. So what can be done to improve the communication latencies of such cluster-
based architectures? Depending on what kind of cost–performance trade-offs are
required, the communication latency can be improved along the following three
dimensions: (a) using faster network hardware; (b) using more efficient communi-
cation libraries; and (c) using communication optimizations that exploit the
simulation’s inherent communication characteristics. A number of experiments [15,
39] have been carried out on the warped simulation kernel to reduce the effect of
communication latency on the performance of the simulation. Specifically, Chetlur
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et al. [15] have designed and developed a message aggregation facility for warped
that aggregates application messages into larger chunks before sending them across
the network. In several experiments carried out with different models (queuing and
logic circuit models), speed-ups of over 50% were reported [15, 39].

6. EXTENDING PARALLEL LOGIC SIMULATION TO
MIXED-TECHNOLOGY SIMULATION

In this section, we first describe the domain of mixed-technology simulation and
then present how the savant/TyVIS/warped environment has been extended to
handle mixed-technology simulation. Mixed-technology (or mixed-mode) simula-
tion is the simulation of a combination of two distinct mathematical models.
Zeigler [52] classifies these two mathematical models as the class of discrete event
models and the class of differential equation models. Both models are characterized
by their behavior. Differential equation models exhibit continuous changes in time
and state; thus, the time derivatives (i.e., rates of change) are governed by differen-
tial equations. Cellier [13] reports that differential equation models, in general, are
simulated as a discrete-time model on a digital computer to avoid infinitely many
state changes. Values in between the discrete-time stamps are then interpolated. On
the other hand, discrete event models exhibit discrete changes in time and state.
State changes only occur at individual time points (events) and are always discon-
tinuous. No changes in state occur in between these time points. Due to the differ-
ence in the two underlying models, mixed-mode simulation results in two different
simulation paradigms. There are many simulation algorithms, each with its own
properties, that can simulate either differential equation models [4] or discrete
event models [14]. However, these algorithms cannot be used for mixed-mode
simulation as the two paradigms have to be combined. Figure 4 shows an example
of a mixed-mode simulation model and its results. The model contains two discrete-
event processes with signals (A, B) and one process that solves differential equa-
tions, with an internal signal. The model description in Fig. 4a includes interface
functions (IF) between the two domains. The IF maps discrete signals to continu-
ous signals and vice versa. This is illustrated by the vertical lines in Fig. 4b.
Although the IFs are critical for mixed-mode simulation (as two different signal
types are being connected), they introduce new problems during design and simula-
tion [40]. For example, how is a digital signal described at the behavioral level
connected to the same signal in the analog domain (described at the electrical level)?
Hence, the IFs are not only crucial for correct modeling, but also act as a bridge
between the two different simulation paradigms.

It is obvious that for correct simulation of a combination of these models, inter
action via the interface functions will have to be supported. This implies that the
simulation is divided into distinct simulation time3 intervals in which no interaction

3 Every discrete event simulation contains a state variable called the simulation clock to model the
flow of time during a simulation.

between the two simulation models occurs, leaving distinct points where the
interaction (or communication) does takes place. To model this interaction, the

486 MARTIN ET AL.



FIG. 4. (a) Example mixed-mode simulation model, (b) signals from example mixed-mode
simulation model.

simulation model is defined as interacting processes. Discrete-event processes de
fine the behavior of the discrete-event model whereas differential equation processes
define the behavior of the differential equation model. The interface functions are
entrusted with the task of the communication between these processes; the different
notions of time remain the responsibility of the simulator. Resolving the different
notions of time is critical for correct simulation. Figure 5 illustrates the temporal
behavior of a discrete-event process and a differential equation process. As seen in
Fig. 5, execution of a discrete-event process is instantaneous. Time is not advanced
during execution. On the other hand, a differential equation process’s execution
may advance the simulation time during execution. This means that the execution
of a differential equation process may result in the execution influencing itself. This
continuous time increment is why a differential equation process is referred to as a
self-advancing process. In the remainder of this section, differential equation
processes are denoted as self-advancing processes.

A mixed-mode simulator must coordinate between the two different simulation
processes. In current implementations of integrated mixed-mode simulators, this
coordination is achieved by partitioning the self-advancing process into a large set
of discrete-event processes [1]. However, this results in high communication costs,
which should be avoided when targeting execution to a parallel machine. As this
study is restricted to parallel mixed-mode simulation on distributed networks of
workstations, intelligent partitioning is essential for reducing the communication
costs. Current implementations accomplish this partitioning by combining a set of
processes belonging to the same self-advancing process and executing this partition
on one processor. The same goal is achieved if the self-advancing process is con-
sidered as a single heavyweight process with respect to network synchronization.
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FIG. 5. Mixed-mode processes.

But this assumes that the simulator can synchronize the two different types of pro-
cesses. In our work to to facilitate the synchronization of the self-advancing process
with other discrete-event processes, a new synchronization scheme is proposed [19].
This novel scheme adopts a process based approach to synchronization and is
called process synchronization.

Process synchronization of mixed-mode simulation processes involves the design
of a synchronization interface that handles the interactions between self advancing
processes and discrete-event processes. In the implementation of process synchro-
nization reported in this document, the analog sub-assemblies are grouped into n
analog processes (each called an analog island) for distribution and parallel execu-
tion on n processors. Process synchronization protocols then bridge the interfaces
between each analog island and the remainder of the simulation. This has several
advantages. Since traditional optimistic discrete-event simulation stores states after
each activation of a process, memory requirements are reduced in the case of a
single self advancing process. This is because the self-advancing process advances in
its own time domain, such that state saving is only required at synchronization
points. Since synchronization is limited to specific simulation intervals, the number
of states saved will be much lower than the number of states saved in the traditional
optimistic discrete-event simulation. It is important to note that state and event
histories are the major memory intensive components of the discrete-event simula-
tion and by saving state only at synchronization points, a considerable amount of
memory consumption is reduced. This is essentially a trade off between process
granularity and memory requirements [17]. Communication is reduced to interface
function communication in the case of the self-advancing processes. As self-
advancing processes have high internal communication demands, this communica-
tion is kept local. Tahawy et al. [47] were the first to investigate synchronization of
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processes for mixed-mode simulation. However, the process synchronization
scheme introduced by Tahawy only considered sequential event-driven simulation
kernels. Due to the requirement of parallel simulation methods of today’s large
scale simulation models, the utility of Tahawy’s scheme is limited. A more detailed
description of the process synchronization protocol is available in the literature
[19].

With the growing trend of hardware designs that contain significant analog and
digital sections, comprehensive design environments that seamlessly integrate
analog and digital circuitry are necessary. Toward this end, the VHDL language
(for which there are several design tools) was extended to support (in addition to
digital) analog and mixed-signal simulation. These extensions to VHDL have
resulted in a new language called VHDL-AMS [25]. In addition to the electrical-
domain, VHDL-AMS also supports mixed-domain modeling. There are several
ongoing endeavors in the academic and industrial worlds to develop design
environments to create and simulate models written in VHDL-AMS. Simulation
Environment for VHDL-AMS (SEAMS) [18], is one such mixed-signal simulator
that is the product of our research. SEAMS [18] consists of several modules that
are integrated into a single simulation system. Figure 6 shows the architecture of
SEAMS. The input to the system is a VHDL-AMS model that is to be simulated.
The model is parsed and analyzed (the syntax and the semantics of the system are
verified). The scram analyzer (augmented with support for VHDL-AMS) converts
the VHDL-AMS code to an intermediate format from which C++ code is automat-
ically generated. Once again the intermediate format and the generated code have
been augmented to support the analog and mixed-signal language extensions to
VHDL. The code that is generated is compliant to two simulation kernels. To
correctly handle the aspects of digital logic simulation, the TyVIS kernel API
(augmented to support VHDL-AMS types) is used. To correctly handle the aspects
of analog logic simulation, the anaKernel’s API is used. The generated C++

program is then compiled and linked with the different kernels in the system,
namely the TyVIS VHDL (and VHDL-AMS) Kernel [51], the anaKernel analog
simulation kernel, and the warped optimistic discrete-event simulation kernel [37].
In experiments carried out with simple mixed-signal circuits such as clock generators

FIG. 6. Architecture of SEAMS.
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consisting of an analog resistor-capacitor (RC) circuit connected to two digital
NOT logic gates, speedups of more than 60% were obtained using the process
synchronization approach [19].

7. CONCLUSIONS

Designing and implementing a simulation environment that is capable of
simulating complete mixed-technology (VHDL and VHDL-AMS) models is a
daunting task. If this is not challenging enough, the requirement of executing this
simulation environment on a distributed network of workstations efficiently is sure
to push the difficulty and complexity level of the task up a few notches. In this
paper, we described in detail the design and implementation of such an environ-
ment for the simulation of mixed-technology systems. Specifically, the design of the
savant/TyVIS/warped simulation environment was described and some of the
issues faced during the implementation were discussed. In addition, optimizations
to the simulation environment were also discussed. This demonstrated the success
and utility of applying PDES techniques to the simulation of electronic CAD
systems. Finally, we showed how the environment was extended to handle the sim-
ulation of analog and digital VLSI circuit designs (in the form of VHDL-AMS
model descriptions). To our knowledge, the savant/TyVIS/warped and the
SEAMS environments are the only ones of its kind that allow the parallel discrete-
event simulation of mixed-technology systems.
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