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Abstract

Many modern systems involve complex interactions between a large number of diverse

entities that constitute these systems. Unfortunately, these large, complex systems frequently

defy analysis by conventional analytical methods and their study is generally performed using

simulation models. Further aggravating the situation, detailed simulations of large systems

will frequently require days, weeks, or even months of computer time and lead to scaled down

studies. These scaled down studies may be achieved by the creation of smaller, representative,

models and/or by analysis with short duration simulation exercises. Unfortunately, scaled

down simulation studies will frequently fail to exhibit behaviors of the full-scale system under

study. Consequently, better simulation infrastructure is needed to support the analysis of

ultra-large (models containing over 1 million components)-scale models.

Simulation support for ultra-large-scale simulation models must be achieved using low-cost

commodity computer systems. The expense of custom or high-end parallel systems prevent

their widespread use. Consequently, we have developed an Ultra-large-Scale Simulation

Framework (USSF). This paper presents the issues involved in the design and development of

USSF. Parallel simulation techniques are used to enable optimal time versus resource

tradeoffs in USSF. The techniques employed in the framework to reduce and regulate the

memory requirements of the simulations are described. The API needed for model

development is illustrated. The results obtained from the experiments conducted using

various system models with two parallel simulation kernels (comparing a conventional

approach with USSF) are also presented.
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1. Introduction

Modern systems such as microprocessors and communication networks have
steadily grown in size and sophistication to meet the ever increasing needs and
demands. For example, today’s microprocessors are built using a few million
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transistors [14] and the Internet, a global data network, now connects more than 16
million nodes [15]. These systems involve complex interactions between a few
thousand to several million entities. The study and analysis of these systems is
necessary in order to effectively design, manufacture, and maintain them [15,25].
Unfortunately, analytical methods of analysis are insufficient to study these systems
and experimental techniques such as computer-based simulations are usually
employed instead [21,25]. Furthermore, parallel simulation techniques are employed
to enable simulation of large systems in acceptable time frames [15,21,25].
Simulation enables explorations of complicated scenarios that would be either
difficult or impossible to analyze [15]. Due to its effectiveness, simulation has gained
considerable importance and is widely used today.

Validity of the models plays central role in analyzing systems using simulation
[23]. The models should reflect the size and complexity of the system in order to
ensure that crucial scalability issues do not dominate during validation of simulation
results. Many techniques, algorithms, and protocols that work acceptably for small
models consisting of tens or hundreds of entities may become impractical when the
size of the system grows [15]. Events that are rare or that do not even occur in small
toy models may be common in the actual system under study. Detailed simulation of
the complete system is necessary to study large-scale characteristics, long-term
phenomena, and to analyze the system as a whole. Paxson et al., provide an excellent
context from the networking domain to highlight this issue. They write, ‘‘Indeed, the
HTTP protocol used by the World Wide Web is a perfect example of a success
disaster. Had its designers envisioned it in use by virtually the entire Internet—and
had they explored the corresponding consequences with experiments, analysis or
simulation—they would have significantly altered its design, which in turn would
have led to a more smoothly operating Internet today’’ [15]. Since today’s systems
involve a large number of entities ranging in the order of a few millions, modeling
and simulating such ultra-large systems is necessary.

Simulation of large systems is complicated due to their sheer size. The memory
and computational resources needed to simulate such large systems in acceptable
time frames are often beyond the limits of a single stand alone workstation [18].
Developing large and complex models while paying special care to optimally utilize
system resources (in particular, memory) is a tedious task demanding considerable
expertise from the modeler. Parallel simulation techniques need to be efficiently
exploited to meet the computational requirements. However, investing in large and
expensive hardware components for a ‘‘one time’’ analysis of the system models is
seldom economically viable. Hence, simulating large systems using modest hardware
resources is an attractive and often the only alternative.

This paper presents the design and evaluation of an Ultra-large-Scale Simulation
Framework (USSF) that was developed to enable and ease effective simulation of
large systems. In particular, USSF was motivated by the need to support analyzing
systems involving millions of entities using only modest computational resources.
The framework utilizes parallel simulation techniques to harness the resources of
conventional workstations to provide optimal time versus resource tradeoffs.
Various software techniques have been employed to reduce and regulate the memory
requirements of the simulations. USSF provides a flexible and robust object-oriented
API for model development. The API also insulates the model developer from the
intricacies of enabling large simulations.

The remainder of this paper is organized as follows. A brief description about the
parallel simulation kernels that are used as the underlying synchronization kernels of
USSF are presented in Section 2. In Section 3, brief descriptions about some of the
earlier research activities related to large-scale simulations are presented. Section 4
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outlines the software techniques used to alleviate the memory bottlenecks faced while
enabling large-scale simulations. A detailed description of the USSF along with the
API is presented in Section 5. The results obtained from the experiments using the
framework with different models and parallel simulation kernels are presented in
Section 6. Section 7 provides some concluding remarks with pointers to future work.

2. Background

The parallel simulation capability of USSF is enabled by developing the
framework around a given parallel simulation engine. That is, the framework runs
as an application on an underlying parallel kernel and utilizes its services. Object-
oriented (OO) techniques have been employed to isolate the various modules of
USSF from the underlying simulation kernel. This design was adopted in order to
obtain a desired level of ‘‘separation of concerns’’ so that the design of the
framework can focus on enabling large-scale simulations. The architecture of the
framework can be viewed as extending the capabilities of the underlying parallel
simulation engine. The design also enables USSF to be easily deployed on different
simulation kernels. In this study, USSF was deployed on two different parallel
simulation kernels; namely WARPED: an optimistic parallel discrete event
simulation (PDES) kernel based on Time Warp [17]; and NOTIME: an
unsynchronized PDES kernel [19,24]. The following subsections provide a brief
description about these two simulation kernels.

2.1. WARPED

WARPED is an optimistic PDES kernel that uses the Time Warp [7] paradigm for
distributed synchronization. A time warp synchronized simulation is organized as a
set of asynchronous logical processes (LPs) that represent the different physical
processes being modeled. The LPs share information by exchanging virtual time

stamped event messages. Virtual time [9] is used to model the passage of time and
defines a total order on the events in the system. Each LP processes its events by
incrementing a local virtual time (LVT), changing its state, and generating new
events. Although each LP processes local events in their correct time-stamp order,
events are not globally ordered. Causality violations are detected when an event with
time-stamps lower than the current LVT (a straggler) is received. On receiving a
straggler event a rollback mechanism is invoked to recover from the causality error.
The rollback process recovers the LP’s state prior to the causal violation, canceling
the erroneous output events generated, and reprocessing the events in their correct
causal order. Each LP maintains a queue of state transitions along with lists of input
and output events corresponding to each state to enable the recovery process. A
periodic garbage collection technique based on global virtual time (GVT) is used to
prune the queues by discarding history items that are no longer needed. The
distributed simulation is deemed to have terminated when all the events in the system
have been processed in their correct causal order.

The WARPED kernel presents an interface to build LPs. The kernel provides an
application program interface (API) to build different LPs with unique definitions of
state. The basic functionality for sending and receiving events between LPs using a
message passing system is supported by the kernel. In WARPED, LPs are placed
into groups called ‘‘clusters’’. LPs on the same cluster communicate with each other
without the intervention of the message passing system, which is faster than
communication through the message passing system. Although LPs are grouped
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together into clusters they are not coerced into synchronizing with each other.
Control is exchanged between the application and the simulation kernel through
cooperative use of function calls. Further details on the API and working of
WARPED is available in the literature [10,11,17].

2.2. NOTIME

NOTIME is an unsynchronized PDES kernel [19,24]. Unsynchronized simulations
have been successfully employed for simulation of stochastic models such as
queueing models and communication networks. NOTIME simulations provide
considerable improvements in performance, when compared to WARPED simula-
tions, with negligible loss in accuracy of the simulation results. A brief description of
NOTIME is presented in the following paragraph and further discussions on
unsynchronized simulations are available in the literature [19,24].

The NOTIME PDES kernel provides necessary support to develop applications
modeled as discrete event simulations. NOTIME mirrors the API utilized by
WARPED. The design enables models developed for WARPED to be run using
NOTIME without changes to the application. Similar to WARPED, the LPs are
grouped into clusters. Processor level parallelism occurs at the cluster level and each
cluster is responsible for communication management and scheduling the LPs
contained by the cluster. NOTIME utilizes the message passing interface (MPI)
libraries for communicating between the parallel clusters. Communication between
LPs on the same cluster occur without intervention of the communication layer.
Since the parallelism occurs at the cluster level, simulation objects that execute
relatively independent of each other can be placed on different clusters to maximize
parallelism. Conversely, simulation objects that frequently communicate with each
other should be placed on the same cluster to exploit the fast intra-cluster
communication. Each cluster uses a single input queue that contains the events for
all the LPs associated with it in order to optimize scheduling and intra-cluster
communication. NOTIME uses a first-in–first-out (FIFO) scheduling scheme. The
parallel simulation terminates when all the events in the system have been processed.
The kernel uses a circulating token scheme for termination detection. Additional
details on NOTIME are available elsewhere [19,24].

3. Related research

This section presents some of the other techniques that have been employed to
enable large-scale simulations. Simulation of large-scale models has received
considerable attention in the past. Various combination of software and hardware
techniques have been used to improve the capacity and efficiency of simulators.
Huag et al. present a novel technique to selectively abstract details of the network
models and to enhance performance of large simulations [6]. Their technique
involves modification of the network models in order to achieve abstraction [6].
Premore and Nicol present issues involved in development of parallel models in
order to improve performance [16]. In their work, they convert source codes
developed for ns, a sequential simulator into equivalent descriptions in telecommu-
nications description language (TeD) to enable parallel simulation [16]. Coupled
with meta languages (such as TeD) [16], parallel network libraries and techniques to
transparently parallelize sequential simulations have been employed [22]. Riley et al.
present a federated approach to enable parallel simulation in order to improve the
capacity for simulating large models. In their technique, existing sequential
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simulators are extended to enable parallel simulation using conservative synchro-
nization techniques [22].

Relaxation and even elimination of synchronization, a large overhead in parallel
simulations, has been explored [19,26]. The relaxation techniques attempt to improve
performance at the cost of loss in accuracy of the simulation results [19,24]. Martini
et al. [12] propose a novel synchronization protocol called ‘‘tolerant synchroniza-
tion’’ in which a conservative synchronization protocol is allowed to optimistically
process events that are within a tolerance level. As the protocol optimistically
processes events, causality violations may occur but these violations are ignored and
no recovery process is initiated to rectify the errors. Fall exploits a combination of
simulation and emulation in order to study models with large real world networks
[4]. This method involves real time processing overheads and necessitates detailed
model development. Carothers et al. present a novel technique called ‘‘Reverse
Computation’’ that eliminates the need for state saving in Time Warp simulations
and reduces the memory requirements of the simulations [3]. However, not all
computations can be reversed and this technique necessitates development of
additional simulation code to undo computations.

On the other hand, USSF employs a different approach to enable simulation of
large systems using resource constrained platforms. The framework exploits the
presence of replicated modeling constructs and the reuse of component (or LP)
descriptions to reduce the actual size of the simulations. Replicated structures are
identified through static analysis of the model. The framework utilizes a single copy
of each unique component (or LP) to mirror its different replicated instances. This
approach reduces the overall size of the simulation which in turn reduces the
resource consumption of the simulation. USSF also employs a number of techniques
to reduce and regulate (i.e., improve efficient utilization of main memory) the overall
memory requirements of the simulation in order to improve performance.
Furthermore, the techniques employed in the framework are independent of the
underlying synchronization mechanism and can be applied to any discrete event
simulator. Use of the framework does involves only minor changes to the application
modules—development of applications is straightforward and it does not require any
change in the modeling methodology. In other words, existing applications can be
easily ported to exploit the features of the USSF. A more detailed description of
USSF is available in the following sections.

4. Approach

The initial exploratory simulation studies of large systems were conducted using
WARPED [18,20]. The studies indicated that the memory requirements of such large
simulations posed the primary bottleneck in enabling large-scale simulations. The
memory requirements of a parallel simulation can be classified into two main
categories: namely (i) the static memory requirements that do not change over the
lifetime of the simulation; and (ii) the dynamic memory requirements that
continuously change during simulation. The static memory requirements of the
simulation arise due to the LP descriptions (application code), the kernel code, and
the various data structures that need to be maintained during the lifetime of the
simulation. Many of the kernel data structures need to be duplicated at each of the
parallel clusters to enable parallel simulation [17]. Hence, irrespective of the number
of workstations employed for parallel simulations, the static memory requirements
of the kernel, for a given number of LPs, remains almost constant.

D.M. Rao, P.A. Wilsey / J. Parallel Distrib. Comput. 62 (2002) 1670–16931674



The discrete events and the states of the various LPs contribute to the dynamic
memory requirements of the simulation. The dynamic memory requirements are
governed by the state sizes of the application modules and their event generation
characteristics. The static and dynamic memory requirements of the simulation must
be reduced in order to enable large-scale simulations using modest hardware
resources. Reducing the memory consumed by the parallel simulation kernel, by
modifying its data structures, is complex due to the intricate mechanics of optimistic
parallel simulations [17,21]. Modification of the data structures used by the kernel
would affect its performance and increase simulation time [21,20]. Hence, techniques
to reduce the static memory requirements and regulate the dynamic memory usage of
the application were pursued.

The initial hurdle in enabling large-scale simulations was the static size of the
application models and their data structures. The application development languages
(described in Section 6) provided hierarchical constructs that ease specification of
large systems. The hierarchical models were statically elaborated (i.e., at compile
time) or ‘‘flattened’’ to a single hierarchical level prior to generating the simulatable
code (as illustrated in Section 6). The static elaboration (or compile time elaboration)
technique did not scale well in terms of the size of the generated code (the volume of
generated code was too large), compilation time (the time taken to compile the
generated code was unacceptably long), and static size of the resulting executable.
Therefore, a runtime elaboration technique was proposed, in order to reduce the
static size of the application modules and in turn its static memory requirements. A
runtime elaboration library (REL) was developed as a part of USSF to ease runtime
elaboration. The runtime elaboration technique and the REL are presented in
Section 5.1. A comparative analysis between static elaboration and runtime
elaboration is also presented in Section 5.1.

During our exploratory studies of large-scale simulations, it was observed that
many of the LPs share the same descriptions. The LP descriptions (the code to model
the functionality of the LPs) were the same but the data and states were different.
The model descriptions could be reused by decoupling them from their data and
state. In other words, the same description could be associated with different data
and states in order to emulate the various instances of a particular LP. Using this
approach a few thousand instances of a given LP could be aggregated into one. This
approach reduces the total number of LPs and in turn would reduce the size of the
internal data structures of the simulation kernel. Decoupling the data and states also
provided a convenient design for swapping data and states in and out of the main
memory based on demand, freeing up the memory to contain the discrete events
which strongly influence the performance of the simulations [17,20,21]. These
techniques regulate the dynamic memory consumption of the simulations. The USSF
utilizes these techniques to enable effective simulation of large system using limited
computational resources. The API of USSF insulates the model developer form the
intricacies of enabling ultra-large simulations. A detailed description on the design
and implementation of USSF is presented in the following section.

5. Ultra-large-scale simulation framework

The USSF was developed to ease simulation of large systems. An overview of the
framework along with the applications used in this study is shown in Fig. 1. As
illustrated in the figure the networks simulation framework (NSF), the performance

and scalability analysis framework (PSAF), and the queueing models generate USSF
API compliant code from the corresponding high-level model specifications. As
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mentioned earlier, the compile time elaboration technique used in NSF and PSAF
did not scale well when employed for large models involving millions of LPs. Hence,
the elaboration technique was modified to employ the runtime elaboration technique
(presented in Section 5.1). The necessary static analysis to identify and collate the
various LPs that share a common object description (as required by USSF API), was
also coupled along with code-generation. LPs that share the same description are
identified using each object’s definition. The object definitions are a part of the high-
level model specifications and are extracted from the frontend modeling language
supported by the application frameworks [1,21]. The collated information is
embedded along with the generated runtime elaboration code and is utilized by
the REL modules. The current implementation of USSF in concordance with
WARPED and NOTIME is in C++. Accordingly, the application frameworks also
generate code in C++. As shown in Fig. 1, the generated code is compiled with the
appropriate libraries to obtain the final simulation executable. A brief description
about the applications is available in Section 6 and a detailed description about the
various components of USSF are presented in the following subsections.

5.1. Runtime elaboration library

Hierarchical language constructs provide convenient techniques to specific large
systems by reusing the specification for smaller subsystems [20,21]. The frontend
modeling languages of the application frameworks provide hierarchical constructs to
ease specification of large models. However, the hierarchical constructs have to be
elaborated or ‘‘flattened’’ prior to simulation. Elaboration is the process in which
each hierarchical level is broken down to its constituting components. The basic
steps involved in elaborating a hierarchical specification are shown in Fig. 2. As
illustrated in the figure, the elaborator starts with an user-specified hierarchy and
recursively traverses the various components in the model and creates new instances
of the sub-hierarchies and the objects. Elaboration of sub-hierarchies is done before
they are imploded into the enclosing hierarchy. Imploding hierarchies involves
inclusion of all necessary object definitions, object instantiations, and corresponding
data structures.

Elaboration may be done statically or at runtime. Static elaboration occurs prior
to code generation while runtime elaboration occurs prior to simulation, when the
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Fig. 1. System overview.
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generated code is executed. Since static elaboration occurs prior to code generation,
the volume of code generated for large models is considerably higher when compared
to the code generated when using runtime elaboration. For example, for a network
model consisting of a million nodes the number of lines of C++ code generated is a
few million. The few million lines of code occupy large volumes of disk space and the
compilation times are unacceptably long. As illustrated by the experiments presented
in Section 6.4, the static elaboration technique does not scale well. In contrast, the
code generated for runtime elaboration merely captures the hierarchical structure of
the network model and passes the information to the REL. The volume of the
generated C++ code is considerably less and hence compilation times are reduced.
The static size of the executable for runtime elaboration is also smaller. However,
runtime elaboration involves additional overheads prior to simulation. Runtime
elaboration provides a tradeoff between the size of the generated code, the
compilation time of the generated code, and overall simulation time.

The REL was developed to ease elaboration of large models. The modules of the
REL interact with the various modules of USSF kernel during elaboration and
construct the simulation at runtime. Fig. 3 illustrates the important classes that
constitute the API of the REL. The Elaboration class, the BasicElabContainer

class, and the BasicModel class form the core infrastructure of the REL. The
BasicElabContainer class is the base class for all the elaboration classes that are
used to instantiate the actual LPs that constitute the simulation. For each unique
simulation module, the code-generator is responsible for generating a corresponding
container class with the BasicElabContainer class as its parent. As shown in Fig. 3,
the generated container class overloads the necessary pure virtual method in the
BasicElabContainer class. The Elaboration class is the base class for each of the
generated elaboration classes. For each level in a hierarchical design, an unique class
is generated by the code-generator. The generated code contains the necessary calls
to the various methods in the Elaboration class. On instantiating an elaboration
class for a given hierarchy, pointers to the underlying sub-hierarchies and objects,

Fig. 2. Phases in elaborating a hierarchical design.
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code generated as member objects, are suitably instantiated. Runtime elaboration
proceeds in a depth-first manner. The BasicModel class acts as the base class for
generating the top level elaboration class. The generated code triggers runtime
elaboration by instantiating the elaboration class corresponding to the top most
hierarchy in the design. The elaboration data structures constructed in memory are
deleted as the recursive decent unwinds in order to ensure minimal memory usage.
The REL also includes support for elaborating models directly for WARPED and
NOTIME without necessitating any changes to the generated code.

5.2. USSF kernel

The core functionality of regulating the memory requirements of the application
modules are handled by the USSF kernel modules. The kernel modules present an
interface similar to WARPED and NOTIME to the model developer. The USSF
API is presented in the following subsection. The core of the USSF kernel is the
USSF cluster. The USSF cluster represents the basic building block of USSF
simulations. Each USSF cluster is assigned and addressed by an unique id. A USSF
cluster performs two important functions. It not only acts as a LP to WARPED and
NOTIME, it also acts as a cluster to the application programmer. As shown in
Fig. 4, the USSF cluster is used to group a number of LPs that use the same
description together. A single copy of an user process is associated with different
data and states to emulate its various instances. The USSF cluster uses file-based
caches to maintain the data and states of the various processes. The caching helps in
regulating the demands on main memory. Separate data and state caches are
maintained to satisfy concurrent accesses to data and state spaces and to reduce
cache misses. On encountering rollbacks, the kernel flushes all the caches to maintain
cache consistency and coherence. OO techniques have been used to decouple the
various memory management routines from the core of the USSF kernel. This design
not only provides a simple mechanism to substitute various memory management
algorithms but also insulates the USSF cluster from their intricacies.

The USSF cluster is also responsible for scheduling the various application
processes associated with it. The USSF cluster appropriately translates the calls
made by the underlying simulation kernel into corresponding application process
calls. It is also responsible for routing the various events generated by the application

BasicElabContainer

#BasicElabContainter(kind:int)
+createObject(id:int): NetworkObject*
+registerObject(): void
+getParameters(): char*
+setParameters(parameter:const char*): void
+getNetlistSize(): int
+getNetlist(): int*
+getType(): int

Elaboration
#numberOfRegisteredObjects: int
#registeredObjects: BasicElab**
#Elaboration()
+registerNode(node:BasicElab*): int
+addToLocalNetlist(node:BasicElab*): void
+addNetlistEntry(dest:BasicElab*,src:BasicElab*'): void
+addNetlistEntry(dest:BasicElab*,src:Elaboration*): void
+setNetlist(size:int,netlist:int*): void

UserContainer

+UserContainer(type:int)
+createObject(id:int): NetworkObject*
+getType(): int

UserToplogy1Elaboration
#subToplogy1: UserTopology2Elaboration*
#subTopology2: UserTopology2Elaboration*
#subToplogy3: UserToplogy2Elaboration*
+setNetlist(size:int,netlist:int*): void

UserToplogy2Elaboration
#node1: UserContainer*
#node2: UserContainer*
#node3: UserContainer*
+setNetlist(size:int,netlist:int*): void

BasicModel

+createNetwork(): void
+simulate(): void
+getNumberOfClusters(): int
+getTotalNumberOfLPs(): int
+getNextId(kind:int): int
#BasicModel(noOfClusters:int,clusterId:int,noOfUSSFlps:int=0)

UserModel
#mainToplogy: UserToplogy1Elaboration*
+UserModel(noOfClusters:int,myClusterId:int)
+createNetwork(): void

Fig. 3. UML diagram for runtime elaboration API.
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to the simulation kernel. The WARPED and NOTIME kernels support exchange of
events between the USSF clusters. To enable exchange of events between the various
user LPs, the USSF cluster translates the source and destination of the various
events to and from USSF cluster id’s. In order for USSF kernel to perform these
activities, a table containing the necessary information is maintained by the kernel
modules. The table is indexed using the unique process id’s that need to be associated
with each user LP. To reduce the number of entries in this table, a single entry is
maintained for a group of LPs sharing a process description. The static analysis
phase of the various application frameworks assigns contiguous id’s to processes
constructed using the same simulation objects. This fact is exploited to efficiently
construct and maintain the table. The USSF cluster also maintains a file-based state
queue in order to recover from rollbacks [7] that could occur in a Time Warp
simulation. An incremental state saving mechanism with a fixed (at compilation
time) check-pointing interval is used for this purpose [5]. The states space of the
USSF cluster contain the corresponding offsets of the checkpoint and state
information in the state queue. The offsets are used to restore the states efficiently
after a rollback. A simple garbage collection mechanism triggered by the garbage
collection routines in WARPED is used to prune the state queues. Access to the
various methods in the USSF kernel is provided via a set of application program
interfaces, illustrated in Section 5.3. Further details on the design and implementa-
tion of the USSF kernel is available in the literature [20,21].

5.3. USSF application program interface (API)

The API presented by USSF closely mirrors the WARPED API [17]. This enables
existing WARPED and NOTIME applications to exploit the features of USSF with
few modifications to USSF. The API has been developed in C++ and the object
oriented features of the language have been exploited to ensure it is simple and yet
robust. The API plays a critical role in insulating the model developer from the
intricacies involved with enabling ultra-large parallel simulations. The interface has
been carefully designed to provide sufficient flexibility to the application developer
and enable optimal system performance. Fig. 5 presents an overview of the
important classes that constitute the API.

The USSF kernel presents an interface to the application developer for modeling a
set of communicating LPs. The LPs are modeled as entities which send and receive

Data
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Process
Logical

USSF ClusterUSSF Cluster USSF Cluster USSF Cluster USSF Cluster

Data

State

Process
Logical

Data

State

Process
Logical

Message Passing Interface (MPI)

cached states
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WARPED / NoTime WARPED/NoTime

Fig. 4. Layout of an USSF simulation.
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events to and from each other, and act on these events by applying them to their
internal state. The USSF Process class forms the base class for all the LPs. The basic
functionality that the USSF Process class provides for modeling LPs are methods for
sending and receiving events between the LPs and the ability to specify different
types of LPs with unique definitions of state. The USSF State and USSF Event form
the base classes for the states and events in the system, as shown in Fig. 5. The user is
expected to override some of the kernel methods that are invoked at various times
through out the simulation. Each method in this set has a specific function. The
initialize method gets called on each LP before the simulation begins. This gives
each LP a chance to perform any actions required for initialization. The method
finalize is called after the simulation has ended. The method executeProcess of a
LP is called by the USSF kernel whenever the LP has at least one event to process.
The kernel calls allocateState and allocateData when it needs the LP to allocate
a state or data on its behalf. The various interface classes along with the inheritance
hierarchies for specifying application data, states, and events are shown in Fig. 5.
Although it is the responsibility of the modeler to assign unique id’s to each LP, the
static analysis modules in the USSF perform this functionality. Interfaces for
constructing application data, states, and events are also specified. Control is
exchanged between the application and the USSF kernel modules through
cooperative use of function calls. A detailed flow of control in the system via the
API calls is presented in the following subsection.

5.4. Flow of control in USSF

The flow of control in the USSF is illustrated in order to fully highlight the issues
involved in the various aspects of its design. Fig. 6 shows the various interactions
between USSF, the underlying parallel simulation kernel, and the application during
simulation. The first phase of the simulation deals with setting up of the various
USSF clusters and the processes contained in them. The runtime elaboration
modules perform the task of elaborating the topology and instantiating the necessary
LPs. As the processes are created and registered with the USSF cluster, the internal
tables are updated. At the end of this phase, the various USSF clusters register
themselves with the underlying simulation kernel. The initialize method of the
various USSF cluster processes are invoked by the underlying simulation kernel. The
USSF clusters then exchange time stamped events distributing their internal tables to

User_LogicalProcess
-userLpData: int = 0
+initialize(): void
+executeProcess(): void
+finalize(): void
+allocateState(): USSF_State*
+allocateData(): USSF_Data*

USSF_Process
#data: USSF_Data * = NULL
-id: int
-lVT: VTime
-ussfClusterHandle: USSF_Cluster*
#USSF_Process()
+~USSF_Process()
+initialize(): void
+executeProcess(): void
+finalize(): void
+getEvent(): USSF_Event*
+sendEvent(event:USSF_Event*): void
+getLVT const(): const USSF_Time&
+getId const(): int
+allocateState(): USSF_State*
+getCurrentState(): USSF_State*
+allocateData(): USSF_Data*
+getData(): USSF_Data*

USSF_State
-processId: int
-dirtyFlag: bool
#USSF_State()
+~USSF_State()
+copyState(source:USSF_State*): void
+getSize const(): int

User_State
-userStateMember: int
+copyState(source:USSF_State*): void
+getSize const(): int

USSF_Event
-actualRecvTime: VTime
-processId: int
#USSF_Event()
+~USSF_Event()
+getProcessId const(): int
+getKind const(): EventKind

User_Event
-myEventData: int
+USSF_Event()
+~USSF_Event()
+getKind const(): EventKind

SimulationKernelEvent
+senderId: int
+receiverId: int
+sendTime: VTime
+receiveTime: VTime
+eventSize: int

Fig. 5. Overview of USSF API.
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other clusters. It is important to note that the USSF kernel events have a time stamp
that is lower than those of the applications. This is necessary to ensure that the
underlying kernels schedule USSF kernel events before the application events are
scheduled. Processing the kernel events is crucial in order to ensure that the internal
data structures are updated before any of the application’s processing begins. Once
updating of the internal data structures is complete, the USSF clusters call the
initialize methods of all the LPs associated with them. When the executePro-

cess method of the USSF cluster is invoked, it updates the data and state caches of
the corresponding LP and in turn calls the LP’s executeProcess method. The
events generated by the application are appropriately translated to USSF Cluster id’s
and dispatched using the underlying kernel’s interfaces. The USSF cluster also saves
the state of the various processes as when the state saving methods are triggered. The
saved states are used to restore the states of the various LPs when a rollback occurs
during simulation. Garbage collection is done when the routines are triggered by
WARPED or NOTIME. Finally, when the finalize method of the USSF cluster is
called, the USSF cluster calls the finalize method of the various LPs associated
with it and clears all its data structures and the simulation terminates.

6. Experiments

The experiments conducted to evaluate the performance of USSF and the results
obtained are presented in this section. All the experiments were conducted on a
network of shared memory multi-processor (SMP) workstations. Each workstation
consisted of two 300 MHz Pentium II processors with 128 MB of main memory. The
workstations were networked using fast Ethernet. The experimental analysis of the
USSF was conducted using three applications; namely the network simulation

WARPED
Specific

Distribute LP information
to other USSF Clusters

Update LP information &
initialize LPs

and pass control to LP
Update LP caches

Flush LP caches and
Save necessary LP states

and pass control to LP
Update LP caches

initialize

executeProcess

finalize

Creation & Registration
of USSF Clusters

of Logical Processes
Creation & Registration

Runtime Elaboration,

initialize

executeProcess

finalize

Logical Processes
Restore the states of

ApplicationUSSF KernelWARPED/
NoTime

saveState

rollBack

Fig. 6. Flow of control in USSF.
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framework [20], the PSAF [1], and queueing models [19]. Fig. 1 presents an overview
of the interaction between the application frameworks and USSF. The following
subsections present brief descriptions about the applications.

6.1. Network simulation framework

The NSF provides a collection of tools to ease modeling and simulation of large-
scale networks. As shown in Fig. 1, the primary input to the framework is the
topology to be simulated. The syntax and semantics of the input topology is defined
by the topology specification language (TSL), which provides simple and effective
techniques to specify hierarchical topologies [18]. A TSL specification consists of a
set of interconnected topologies. A topology consists of a set of interconnected
object instantiations (net-lists) along with necessary object definitions. The topology
is parsed into an OO intermediate format (TSL-IF) using a TSL parser. The parser is
generated using the purdue compiler construction tool set (PCCTS) [13].
Hierarchical TSL-IFs are elaborated or ‘‘flattened’’ (as illustrated in Section 5.1)
prior to code generation. The elaborated TSL-IF is used to generate necessary C++
code that conforms to WARPED’s API for simulation. The NSF in conjunction
with WARPED is implemented in C++. The generated topology includes code to
instantiate the necessary user-defined modules that provide descriptions for the
components in the topology. The generated code is compiled along with the
WARPED library, and the application program modules to obtain the final
simulation executable. Further details on NSF are available in the literature [21,20].

The network models used in the experiments were constructed by interconnecting
a set of subnetworks (representing a local area network) to form a larger network
using the hierarchical modeling techniques supported by TSL. The subnetworks
were modeled as a set of nodes interconnected by a router. Each node in the
network model is driven using a TrafficGenerator. The TrafficGenerator can be
used to generate traffic patterns (such as constant bit rate (CBR)) for modeling
different network applications or workloads. Different random number generators
based on statistical distributions (such as Poisson distribution and normal
distribution) may also be used to generate network traffic. The router component
is used to model a simple router (or a switch) in a network. It forwards the packets
generated by a node to the corresponding destination node or adjacent router as the
case may be. Information necessary for routing is established at the time of
initialization of simulation. The routers build the tables for routing by exchanging
information between interconnected routers. Interconnections between subnet-
works was achieved by suitably interconnecting the routers. In the experiments
conducted as a part of this study, the routers at the higher hierarchical level were
interconnected with each other to model different routing domains such as a stub

domains and transit domains [2]. The transit–stub network model (used in the
experiments) has been shown to be a good model of the Internet [2,27]. The
characteristics of the network models used in the experiments is shown in Table 1.

6.2. Performance and scalability analysis framework

The PSAF is a simulation-platform independent tool that can be used to analyze
the scalability and performance of any discrete event simulator [1]. The centerpiece
of the framework is a platform-independent workload specification language (WSL).
WSL permits the characterization of simulation model using a set of fundamental
parameters that influence the performance of a discrete event simulator [1]. The
language provides constructs that can be used to describe synthetic as well as real
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world benchmarks. PSAF includes a synthetic workload generator (SWG) that can be
used to generate synthetic benchmarks in WSL. WSL also provides hierarchical
constructs that can be used to specify large workloads. The hierarchical constructs
provide an efficient technique to scale models to desired proportions using the
synthetic constructs of the language. PSAF also provides support to specify
platform-specific translation routines that are used to generate a set of simulation
models, specific for a given simulation environment, from a WSL description.
PCCTS is used to generate the WSL parser. Hierarchical WSL specifications are
elaborated (as described in Section 5.1) prior to generation of the simulation models.
The generated models can be collectively or individually used as a benchmarking
suite to explore the effects of different parameters on the performance of the targeted
simulator. The synthetic models generated using PSAF closely reflect the
characteristics of several real-world models [1]. Further details on the design and
implementation of PSAF are available in the literature.

The characteristics of the synthetic models used in the experiments is shown in
Table 2. These models were developed using the hierarchical WSL constructs. The
models consisted of a set of interconnected synthetic LPs with fixed state size and
event granularities. A set of event sources and sinks were used to exercise the various
LPs constituting the synthetic model. The events were generated using random
distributions supported by WSL. The WSL translator was used to generate the
synthetic models from the corresponding WSL specification.

6.3. Queueing models

The queueing models used in this study were built using a library of components
developed to explore the usefulness of unsynchronized simulations [19,24]. The
stochastic nature of queueing models make it an interesting case for unsynchronized

Table 1

Characteristics of TSL models used in experiments

Models Number of components Lines

Nodes Traffic Routers PacketSinks Total of TSL

generators

L0N 6 6 2 6 20 53

L1N 30 30 11 30 103 76

L2N 300 300 111 300 1011 99

L3N 3000 3000 1111 3000 10,111 122

L4N 30,000 30,000 11,111 30,000 101,111 145

L5N 300,000 300,000 111,111 300,000 1,011,111 168

Table 2

Characteristics of WSL models used in experiments

Models Number of components

Sources Sinks LPs Total

WSL1 10 10 80 100

WSL2 100 100 800 1000

WSL3 1000 1000 8000 10,000

WSL4 10,000 10,000 80,000 100,000
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simulation. Since WARPED and NOTIME present the same API, the queueing
models developed using the library can be simulated using either of the parallel
kernels without necessitating any changes to the models. The primary components of
the queueing library are random sources, queues, servers, and statistics collectors.
The components can be used to model any G=G=m queueing system [24]. The
G=G=m queueing systems represent a generic class of queueing systems that play a
central role in a number of physical systems [8]. In such a queueing system the
distribution of interarrival times and service times are completely arbitrary. The
system has m servers and the order of service is also arbitrary. Accordingly, the
queueing library permits different random distributions to be associated with the
source and servers. The model and scenario of the queueing system to be simulated is
specified through configuration files. The queuing models used in the experiments are
presented in Section 6.6.

6.4. Comparison between static and runtime elaboration

The statistics obtained from the experiments conducted to evaluate static and
runtime elaboration techniques, using the network models shown in Table 1, are
presented in Tables 3 and 4, respectively. The values shown in the tables are average
values that were computed using the statistics from ten test runs. Fig. 7 shows a
comparison between the time taken for code generation and compilation using static
versus runtime elaboration techniques. The memory usage of the TSL parser was
monitored by overloading the new and delete class of C++. As shown in Fig. 7,
the time for static elaboration, code generation, and compiling the generated code
for small network models is lower than the time for runtime elaboration. As the size
of the network model increases the time for code generation and compilation
increases exponentially with respect to the number of nodes in the network. The time
for compiling the generated code for network model L4N consisting of 100,000

Table 3

Statistics on static elaboration

Model Parsing Elaboration Peak memory Code gen. Lines of Compile

time (s) time (s) usage (KB) time (s) C++ time (s)

L0N 0.00290 0.0079 10 0.00142 173 3.142

L1N 0.00349 0.0150 29 0.00396 733 4.319

L2N 0.00400 0.3993 267 0.03250 7103 19.832

L3N 0.00475 62.1024 2809 0.32100 70,803 957.079

L4N 0.00563 7698.5800 29,880 3.72000 707,803 N/A

Table 4

Statistics on runtime elaboration

Model Parsing Elaboration Peak memory Code gen. Lines of Compile

time (s) time (s) usage (KB) time (s) C++ time (s)

L0N 0.00290 0.021 1.33 0.0040 340 6.062

L1N 0.00349 0.031 1.99 0.0052 380 6.641

L2N 0.00400 0.123 2.66 0.0073 482 7.675

L3N 0.00475 1.480 3.33 0.0257 584 9.286

L4N 0.00563 15.800 4.66 0.2080 686 10.749

L5N 0.00626 65.010 4.92 2.0140 788 12.244
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network components is not shown since the C++ compiler ran out of memory
while compiling the generated code. Static elaboration technique was not employed
for the model LN5 (consisting of more than a million nodes) since the technique failed
for a considerably smaller network model (LN4 network model).

In contrast, the corresponding times for runtime elaboration are considerably
smaller. The time for generating code for runtime elaboration is small since the
network model is not elaborated prior to code generation. The time for compiling
the code generated for runtime elaboration is lower since the size of the generated
code (in terms of number of lines of C++ is shown in Table 4) is smaller. The
reduction in the size of the generated code also reduces the size of the static
executable. The drawback of runtime elaboration is that elaboration must be done
each time the simulation is run. The time taken for runtime elaboration for the
various models is shown in Table 4. Runtime elaboration occurs in each of the
parallel clusters. Hence, irrespective of the number of parallel clusters used in the
simulation, the time for runtime elaboration remains the same for a given network
model.

6.5. Comparison between WARPED and USSF

The network and synthetic models shown in Tables 1 and 2 were simulated using
WARPED and USSF with WARPED as the underlying simulation kernel. A very
aggressive GVT computation was used so as to ensure rapid garbage collection to
reduce memory consumption of the simulations. Runtime elaboration was utilized
for simulating the models. The simulations were run in parallel using a varying
number of processors. The LPs were randomly partitioned onto the parallel clusters.
The simulation times of the network models shown in Table 1 are shown in Fig. 8(a)
and (b). The parallel simulation times for the synthetic models using WARPED are
shown in Fig. 9(a) and (b). The graphs also show the time for simulating the models
using a sequential simulator. The sequential simulations were conducted using the
sequential simulator that is available as a part of WARPED. The sequential
simulator also uses WARPED’s API and hence the models were run using the
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sequential kernel without any changes. The sequential simulator could not be used to
simulate the large models (such as L4N, L5N, and WSL4) as the simulations exceeded
the memory limits of the systems and did not complete successfully. Fig. 10(a) and
(b) present the corresponding simulation times of the models obtained using USSF.
The data plotted in the graphs are the average simulation time values computed from
10 simulation runs.

As illustrated by the graphs shown in Figs. 8, 9, and 10; for both WARPED and
USSF the simulation time for small models (such as L0N, L1N, WSL1, and WSL2)
increases as the number of processors utilized in the simulation are increased. The
increase in simulation time is due to the limited amount of parallelism available in
the small models. Since parallelism is limited, increasing the number of processors
utilized in the simulations merely increases the overheads of parallel simulation and
the overall simulation times increase. In the case of medium sized models (such as
L2N, L3N, WSL3, and WSL4) the performance improves as the number of processors are
increased up to a certain threshold where the gains accrued by parallel simulation
outweigh the overheads. Beyond the threshold point, the overheads of parallel
simulation dominate as the number of processors are increased and the performance
deteriorates. However in the case of the large models (such as L4N and WSL4) the
simulation time improves as the number of processors are increased. The
improvement in simulation time occurs because the models are large (consisting of
100,000 LPs or more) and sufficient amount of workload and parallelism is available
to exploit the parallel processors. The simulation times for the large models using
few processors is not shown either because the simulations took unreasonably long
time or they did not complete as they exceeded the memory limits of the system. For
example the L4N model could not be run with WARPED using fewer than 4
processors and the L5N model (consisting of more than a million LPs) could be run
only using USSF on 16 processors.
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The graph in Fig. 11(a) presents a comparative picture between the simulation
execution times of small models using WARPED and USSF. Fig. 11(b) presents the
peak dynamic memory utilization of the models. The dynamic memory consumption
of the simulations was measured by tracking the memory allocated and deallocated
by overloading the C++ new and delete function calls. The peak memory shown
in the graph represents the maximum of the memory consumed by any of the
WARPED clusters. As illustrated by the graphs, the memory consumption of
WARPED is well within the memory limits of the system and the WARPED
performs better than USSF. The simulation times with USSF is higher due to
additional overheads of USSF. Some of the USSF simulations performed better than
WARPED simulations due to fewer rollbacks. The USSF simulations experienced
fewer rollbacks because the overheads of the framework inherently throttle the
simulation curtailing the aggressiveness of the optimistic simulations. It was also
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observed that the performance of USSF simulations deteriorate more rapidly than
WARPED simulations as the number of rollbacks increase. The two primary factors
that increase the cost of rollbacks were: (i) since a number of LPs are aggregated into
a single USSF cluster, for each rollback the cluster experiences, all the LPs in the
cluster need to be rolled back to ensure consistency of the simulations; and (ii) since
incremental state saving is used the overheads of restoring the state after a rollback is
higher when compared to that of WARPED. The observation indicates that
aggregation of LPs into USSF clusters results in a trade off between memory usage
and simulation overheads. Although aggressive aggregation decreases memory usage
it increases simulation overheads.

The graphs in Fig. 12(a) and (b) presents a comparison between the simulation
time and peak dynamic memory consumption of the WARPED and USSF
simulations. As shown by Fig. 12(b) the memory consumption of the simulations
steadily decrease as the number processors increases since the memory requirements
gets distributed across the processors. As illustrated by the graphs, the simulation
times using WARPED and USSF are comparable when the memory consumption of
WARPED falls well within the physical memory limits of the workstations used in
the simulations. For example, WARPED simulation the L4N model on 4 processors
has a peak memory consumption of about 90 MB: In contrast, the peak memory
requirements of the USSF simulations were considerably lower (about 68 MB) and
hence they perform better. However, as the number of processors are increased the
size of the simulations fall well within the physical memory limits of the system and
the performance of WARPED simulations steadily increase.

As shown by the graph in Fig. 12(a), although the memory requirements of
WARPED drops well below the memory limits of the workstations, as the number of
processors are increased, the performance of WARPED simulations do not
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considerably improve. An analysis of the various parameters that influence the
performance of the parallel simulations revealed that the primary factor that
contributed to increase in simulation times was the cost of the initialization phase of
the simulations. The initialization cost was high because of the overheads involved in
distributing LP information to the various parallel clusters. For each LP, the
WARPED kernel sends an event to all the other clusters in the simulation providing
them the necessary information. For example in the case of the L4N model, consisting
of 106,444 LPs and running on 16 processors, the 16 clusters exchange a total of
1,596,660 MPI messages. Hence, for large models the number of MPI messages used
in the simulations increase as the number of processors are increased and hence the
communication overheads dominate the initialization phase. On the other hand,
since the USSF kernel collapses a large number of user-defined LPs in a single USSF
cluster (or a WARPED process), the number of WARPED LPs are few and the
number of MPI events used are few. Therefore, the USSF simulations have
considerably smaller startup times compared to the WARPED simulations.
Consequently, as shown in Fig. 12(a), the overall simulation time for USSF
simulations is considerably lower than that of WARPED simulations.

6.6. Comparison between NOTIME and USSF

The experiments with USSF using NOTIME as the underlying parallel simulation
kernel were performed using different queueing models. The queueing models were
built in a hierarchical fashion by randomly cascading generic queueing systems to
form larger systems. The queuing models were developed using the queueing model
library described in Section 6.3. The runtime elaboration library was used to ease
development of the queueing models. Table 5 presents the characteristics of the
queuing models used in the experiments. The various queueing models were
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simulated in parallel using a varying number of processors on a network of
workstations. The LPs were randomly partitioned onto the parallel clusters. Figs. 13
and 14 present the simulation times and peak dynamic memory usage of the various
queueing model simulations performed using, respectively, NOTIME and USSF
(with NOTIME as the underlying simulation kernel). The data plotted in the graphs
are the average simulation time values computed from 10 simulation runs.

As illustrated by Fig. 13(a) and (b), the parallel simulation times using USSF and
NOTIME for small queueing models (such as Queue1 and Queue2) increase as the
number of process are increased. However, for the larger queueing model, namely
Queue4, the performance of parallel simulations using ussf improves as the number
of processors are increased. The statistics reflect the nature of the computation to
communication ratio of the queueing models. In the case of small models,
communication dominates computation, and hence the communication costs
increase as the number of processors are increased and the overall simulation time

Table 5

Characteristics of queueing models used in the experiments

Models Number of components

Event Sources Queues Servers Statistic Total

generators collectors

Queue1 30 31 4 40 1 106

Queue2 300 312 41 410 1 1063

Queue3 3000 3122 4110 411 1 10,644

Queue4 30,000 31,222 41,110 4111 1 106,444
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increases. In the case of the large models, computation dominates communication.
Hence, as the number of processors are increased the computational overheads are
distributed across the parallel processes and the simulation time decreases. The
NOTIME simulation data for the Queue4 model on one processor is not shown since
the simulation exceeded the memory capacity of the workstation and did not
complete successfully. The peak dynamic memory requirements of the simulations
are shown in Fig. 14. As illustrated by the graphs, the memory consumption of the
USSF simulations is considerably lower than the memory consumption of the
NOTIME simulations. The significant difference in memory usage between 1 and 2
processor USSF simulations is indicative of the additional overheads necessary to
enable parallel simulation.

Similar to the initialization overheads of WARPED, the initialization phase of
NOTIME simulations involved exchanging a large number of messages to distribute
information on the configuration of the simulations. Hence, the time for initializing
NOTIME simulations increases as the number of processors are increased. In the
case of NOTIME the cost of initialization phase is more pronounced due to the
reduced overhead of the simulation kernel. However, since the USSF kernel
collapses a number of user-defined LPs into a few NOTIME LPs, the number of
messages exchanged during initialization is reduced. Therefore, as illustrated by the
graphs in Fig. 13, the initialization time and overall simulation time for USSF
simulations (using NOTIME) are considerably smaller than those with NOTIME.

7. Conclusions and future work

The steady growth in size and complexity of modern systems has required their
simulation with modest hardware resources to enable detailed yet cost-effective
study and analysis. An USSF was developed to ease simulation of ultra-large models
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with limited hardware resources. The issues involved in the design and implementa-
tion of USSF were presented in this paper. The techniques used to reduce the static
and dynamic memory requirements of large simulations were presented. An API for
the runtime elaboration library was presented. Runtime elaboration was shown to
out perform static elaboration for large models. A comparison between the
performance of USSF using two parallel simulation kernels, namely WARPED and
NOTIME, with raw WARPED and NOTIME simulations were presented. The
experiments conducted indicate that USSF simulations perform better for large
models. The experiments also demonstrate the capacity of the framework for
simulating ultra-large systems using resource constrained platforms.

The USSF provides a tradeoff between memory requirements and simulation
overheads by varying the number of LPs aggregated into each USSF cluster. LPs
that share a common description are aggregated together. Therefore, the number of
LPs that share a common description is a critical factor that determines the overall
efficiency of the solution provided by USSF. USSF is an ideal candidate for
simulating large applications which contain a number LPs that share a common
description. Such models are typical in the domains of network modeling and very
large-scale integrated-circuits (VLSI) design. It must be noted that USSF is a general
purpose discrete event simulation framework and does not place restrictions on the
nature of the discrete event model being simulated. It is also independent of the
underlying synchronization mechanism.

The design and development of the USSF is a part of an ongoing research to
improve the efficiency of large-scale simulations. Further studies are underway to
improve the efficiency of USSF. Research is being conducted to determine an
optimal level of aggregation for each model based on the availability of hardware
resources. Techniques to dynamically (i.e., during the course of simulation) change
the degree of aggregation and the number of USSF clusters used in a simulation are
also being investigated. The effectiveness of USSF to enable large-scale simulations
using conservative simulation techniques needs to be explored. Application of the
techniques, used in USSF, for simulation of large-scale mixed technology system also
provides an excellent avenue for further research.
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