
An Active Networks Simulation Environment
Dhananjai M. Rao
Philip A. Wilsey
Experimental Computing Laboratory
Department of ECECS
P.O. Box 210030, Cincinnati, OH 45221-0030
dmadhava@ececs.uc.edu

The steady increase in size and complexity of communication networks, coupled with growing needs
and demands, has motivated the development of active networks. Active networking techniques
embed computational capabilities into conventional networks, thereby massively increasing the com-
plexity and customization of the computations that are performed with a network. One of the most
effective techniques for studying and analyzing active networks is computer-based simulation, but
customized and flexible tools are required to ease effective use of simulations. In an endeavor to
address these diverse issues, an Active Networks Simulation Environment (ANSE) has been devel-
oped. ANSE provides an environment for modeling, parallel simulation, and Web-based simulation of
active networks. This paper presents the issues involved in the design and development of ANSE and
the results obtained from the experiments conducted to evaluate the effectiveness of ANSE. Stud-
ies indicate that ANSE provides an effective environment for modeling and simulation of large-scale
active networks.

Keywords: Network topologies, time warp, verification, validation

1. Introduction

Computer and communication networks have steadily in-
creased in size and complexity to meet the growing needs
and demands of modern computing [1, 2]. Correspond-
ingly, networking techniques also need to advance to effec-
tively use the tremendous improvements in communication
infrastructures and provide cost-effective and high-quality
networking solutions. Toward this end, active networking
architectures are being researched [3]. In an active net-
work, the nodes constituting the network are capable of
performing customizable general-purpose processing (or
services) on the datagrams flowing through them [2-4].
Active networking techniques enable a massive increase in
the complexity and customization of networking services.
A more detailed description on the internal structure and
organization of active networks is presented in Section 2.

Study and analysis of active networks are necessary
to effectively design, manufacture, deploy, and maintain
them [2, 4]. In-depth analysis and accurate profiling of
these large, complex network architectures are not feasi-
ble using conventional analytical techniques [5], primarily
because they are still at their nascent stages and are notwell
understood [6]. Hence, experimental techniques such as
simulation must be employed [2, 5, 7]. Simulation, partic-

|
|
|
|

SIMULATION, Vol. 78, Issue 7, July 2002 447-460
©2002 The Society for Modeling and Simulation International

ularly discrete event simulation, has proven to be the most
effective tool to study conventional networks and is widely
used [2, 4, 5]. Parallel simulation techniques are often em-
ployed to provide better resource versus time trade-offs,
thereby enabling simulation of large models in reasonable
time frames [8].

Model development and its verification and validation
(V&V) play a critical role in simulation studies [8, 9].
Furthermore, the network models should reflect the size
and complexity of the actual networks to ensure that cru-
cial scalability issues do not dominate during validation of
simulation results. However, developing sufficiently ver-
ified and validated models of large, complex active net-
works is an involved and time-consuming task. The sce-
nario is further aggravated due to several hurdles, such
as (1) specification and use of large networks [1]; (2) in-
frastructure for rapid simulation of large models [4]; (3)
portability, interoperability, and reuse of existing models,
including those developed by third-party researchers and
manufacturers [10, 11]; and (4) availability and accessibil-
ity of the models [8, 12]. Consequently, customized and
flexible tools need to be employed to address the above-
mentioned issues, thereby facilitating modeling, simula-
tion, and analysis of active networks [2, 7, 13].

Wehave developed theActiveNetworks SimulationEn-
vironment (ANSE) in an attempt to build suitable model-
ing and simulation tools for active network modeling and
simulation. ANSE consists of a set of tools and simula-
tion frameworks that have been integrated using a unified

Rao and Wilsey

modeling frontend. The unified modeling frontend in-
cludes a hierarchical Topology Specification Language
(TSL) and an Application Program Interface (API). Net-
work models are developed by using TSL by suitably in-
terconnecting simulation objects developed using the API.
These network models can be used to conduct stand-alone
parallel simulations, developWeb-based repositories of the
simulation objects (i.e., ANSE factories), or performWeb-
based simulations by using the tools and frameworks con-
stituting ANSE. ANSE’smodeling frontend fully insulates
the application modules from the specifics of the different
frameworks constituting ANSE. In other words, the intri-
cacies involved in enabling parallel and Web-based simu-
lations are transparent to the model developer. The Web-
based modeling and parallel simulation techniques have
been used to address the (above-mentioned) hurdles that
hinder effective study and analysis of active networks using
simulations [2, 7, 8, 13]. ANSE also includes a library for
modeling and simulation of active networks based on the
Packet Language for Active Networks (PLAN). ANSE’s
API has been used to develop the PLAN library.

This paper presents the issues involved in the design and
development of ANSE. Section 2 presents a brief descrip-
tion of time warp, the optimistic synchronization strategy
employed by the frameworks constituting ANSE. A de-
tailed description of themodeling frontend ofANSE is pre-
sented in Section 3, along with a brief overview of ANSE.
The framework used to enable parallel simulation of active
network models is described in Section 4. The design of
the Web-based simulation infrastructure of ANSE is dis-
cussed in Section 5. The section also presents the design of
an ANSE factory—a Web-based repository of active net-
working components. The issues involved in the design and
development of the PLAN library are presented in Section
6. Section 7 presents the experiments conducted using the
PLAN library for evaluating the overall effectiveness of
ANSE. The results obtained from the experiments are also
discussed in this section. Concluding remarks and pointers
to future work are presented in Section 8.

2. Background

Time warp is an optimistic synchronization strategy [4]. A
time warp–synchronized parallel simulation is organized
as a set of communicating, asynchronous logical processes
(LPs). The LPs communicate between each other by ex-
changing discrete virtual time–stamped events [4]. Virtual
time is used tomodel the passage of time and defines a total
order on the events in the system. Each LP processes its
events, incrementing its local virtual time (LVT), chang-
ing its state, and generating new events. The LPs must be
synchronized to maintain the causality of the simulation;
although each LP processes local events in its correct time
stamp order, events are not globally ordered. Causal vio-
lations may occur due to the optimistic nature of the time
warp. Causality violations are detected by an LP when it

receives an event with a time stamp lower than its LVT (a
straggler event). On receiving a straggler, a rollbackmech-
anism [4] is invoked to recover from the causality error. A
rollback recovers the LP’s state prior to the causal viola-
tion, canceling the erroneous output events generated by
sending out anti-messages and reprocessing the events in
their correct causal order [4]. Each LP maintains a list of
state transitions along with lists of input and output events
corresponding to each state to enable recovery from causal
violations through rollbacks. A periodic garbage collec-
tion technique based on global virtual time (GVT) [4] is
used to prune the queues by discarding history items that
are no longer needed. The distributed simulation is deemed
to have terminated when all the events in the system have
been processed in their correct causal order.

3. Overview

Anoverviewof the interaction between themodeling front-
end and the different frameworks constituting ANSE is il-
lustrated in Figure 1. As illustrated in the figure, ANSE
consists of a set of diverse tools and frameworks that have
been integrated using a unified modeling frontend. Each
framework (i.e., a backend) is geared to perform a spe-
cific task or could be oriented for simulating with a given
discrete event simulation kernel. The backends can have
different API method calls and different semantics (within
the context of discrete event simulation).On the other hand,
the unified frontend remains a constant and is independent
of the backend being used for performing the actual sim-
ulation. In other words, the frontend insulates the modeler
from the intricacies and specifics of the different backends.
The primary motivation of this design is that the same set
of models can be used to simulate with several different
frameworks. This approach eliminates the need to retar-
get models for different platforms, which in turn reduces
several modeling overheads, such as verification and vali-
dation costs. Furthermore, the design eases interoperability
of the models developed using the unified frontend.

As indicated in Figure 1, the modeling frontend of
ANSE consists of two major components, namely, TSL
and the ANSE API. Developing a network model using
the frontend can be categorized into the following two ba-
sic steps (Figure 1): (1) developing simulation objects of
the networking components (such as routers, nodes, and
traffic generators) to be used in a given model using the
API and (2) using TSL to describe the topology (or model)
of the network along with cross-references to the various
components (developed using ANSE’s API) to be used in
the model. As shown in Figure 1, the TSL descriptions
are parsed into an object-oriented, in-memory intermediate
form called TSL-IF. TSL-IF constitutes the primary input
to the various backends constituting ANSE and for fur-
ther processing. A more detailed description of the various
components constituting the modeling frontend of ANSE
is presented in the following subsections.

448 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

Figure 1. An overview of an Active Networks Simulation Environment’s (ANSE’s) frontend

As shown in Figure 1, framework-specific modules are
used to interface the models developed using ANSE’s API
with each backend, yielding a framework-specific library
of components. The backends use the framework-specific
library of components and TSL-IF to perform the actual
simulation. Currently, ANSE includes two backends: one
for performing stand-alone parallel and sequential simula-
tions using the WARPED [15] simulation kernel and an-
other backend for conducting Web-based modeling and
parallel simulations. A detailed description of these back-
ends is presented in Sections 4 and 5, respectively.

3.1 Topology Specification Language (TSL)

The primary input to ANSE (as shown in Figure 1) is the
topology of the network to be simulated. The topology
must be described using the TSL [16] syntax. The Backus
Normal Form (BNF) of TSL grammar is shown in Fig-
ure 2. As specified by the grammar, a TSL specification
consists of a set of interconnected topology specifications.
Each topology specification consists of three main sec-
tions, namely, (1) the object definition section that contains
the details of the modules that need to be used to simulate
the topology, (2) the object instantiation section that speci-
fies the various nodes constituting the topology, and (3) the
netlist section that defines the interconnectivity between
the various instantiated nodes. Figure 3 presents a network
model along with the corresponding TSL description.

An optional label may be associated with each topol-
ogy. The label may be used as an object definition in sub-
sequent topology specifications to nest a topology within
another. In other words, the labels, when used to instantiate

an object, result in the complete topology associated with
the label to be embedded within the instantiating topology.
Figure 3 presents the TSL source code to model a larger
network using hierarchical constructs. The model of the
network is specified by interconnecting three instances of
the network model shown in the figure. Using this tech-
nique, a simple subnetwork consisting of merely 10 nodes
can be recursively used to construct a network with six
levels of hierarchy to specify a network with a million
(106) nodes [4, 17]. ANSE also includes a tool for trans-
lating Georgia Tech Internet topology models (GT-ITM)
[18] into equivalent TSL descriptions. As shown in Figure
1, GT-ITM along with the GT-ITM to TSL conversion tool
can be used to generate network topologies in TSL. Amore
detailed description of TSL is available in the literature [8,
19].

3.2 TSL Parser and TSL-IF

The input topology configuration is parsed into an object-
oriented (OO) TSL intermediate format (TSL-IF). The
TSL parser is generated using the Purdue Compiler Con-
struction Tool Set (PCCTS) [4]. TSL-IF forms the primary
input to the other modules of ANSE. TSL-IF is designed
to provide efficient access to related data from the various
TSL sections [17]. In conjunction with the parser, TSL-
IF is also implemented in C++. The IF consists of a set
of cross-referenced C++ classes, with each class repre-
senting a particular grammar entity. The IF is composed
by filling in the references in the various classes gener-
ated by the parser with appropriate values. Since compo-
sition is achieved via base class references, each node can

Volume 78, Number 7 SIMULATION 449

Rao and Wilsey

design_file ::= include_list tsl_design_topology tsl_design_topology
include_list ::= include_clause include_clause include_list
include_clause ::= include “ file_name ”;
file_name ::= identifier identifier . identifier
tsl_network ::= tsl_topology label tsl_topology tsl_topology tsl_network

label tsl_topology tsl_network
tsl_topology ::= { object_definition_section } { object_instantiation_section }

{ net_list_section }
label ::= identifier
object_definition_section ::= object_definition object_definition object_definition_section
object_definition ::= object_name : url optional_parameter
object_name ::= identifier
url ::= host_name : port_number . factory
optional_parameter ::= parameter ; ;
parameter ::= “ string ” “”
factory ::= identifier identifier . factory
port_number ::= number
object_instantiation_section ::= object_instantiation object_instantiation object_instantiation_section
object_instantiation ::= object_instance : object_name optional_parameter

object_instance : object_name number optional_parameter
object_instance : label

object_instance ::= identifier
net_list_section ::= net_list net_list net_list_section
net_list ::= object_instance : instance_list ;
instance_list := object_instance object_instance instance_list
identifier ::= start_char any_char
start_char ::= [a - z, A - Z]
any_char ::= [a - z, A - Z, 0 - 9, _]
string ::= string_char string_char string
string_char ::= [̃]
number ::= [0 - 9]

Figure 2. Backus Normal Form (BNF) of the Topology Specification Language (TSL) grammar

N1

N2 N4
N5

N3

S1

{ N1 : Node; N2 : Node; N3 : Node;
 N4 : Node; N5 : Node;
 S1 : Switch; }

object instantiation section

{ S1 : N1 N2 N3 N4 N5 Net;
 N1 : S1; N2 : S1; N3 : S1;
 N4 : S1; N5 : S1}

netlist section

SN { Node : SimpleNode;
 Switch: SimpleSwitch; }

object definition section

Simple Network (SN) TSL For SN

object definition section

netlist section

object instantiation section

{ S : SN1 SN2 SN3; }

TSL for HN

{ S : Switch
SN1 : SN; SN2 : SN; SN3 : SN; }

HN { switch : SimpleSwitch; }
include "SN.tsl"

S

SN1

SN2 SN3

A Hierarchical Network (HN)

(a) Simple network (b) Hierarchical network

Figure 3. Examples of network models and corresponding Topology Specification Language (TSL) descriptions

450 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

refer to another node or even a subnetwork. This provides
an efficient data structure for representing and analyzing
hierarchical networks [4, 17].

3.3 ANSE API and Library

ANSEpresents an interface to the application developer for
modeling a network as set of communicating LPs. The LPs
are modeled as entities that send and receive events to and
from each other and act on these events by applying them to
their internal state. Figure 4 shows the Universal Markup
Language (UML) diagram for the core classes that con-
stitute the API. As illustrated in the figure, the Network
Node class forms the parent class for all the networking
components in the system. The ActiveNode and PLAN
Node are derived from this class. The NetworkNode
class is used to model conventional networking compo-
nents, while the ActiveNode is used to model active
components. The NetworkNode also provides methods
for accessing routing tables and supports primitive domain
name services (DNS).

The state (NetworkNodeState and Active
NodeState) andpacket (Packet andActivePacket)
classes corresponding to the LP hierarchy are also shown
in Figure 4. The state classes are used to encapsulate the
state information associated with each node/component.
The state information is used by WARPED (the under-
lying simulation kernel) to enable rollbacks [14] and re-
cover from causal violations that could occur in timewarp–
based simulations [15]. The Packet class is used for all
communications between the nodes constituting a network
model. The packets, in turn, represent the discrete events
in the simulation. The API has been developed in C++,
and the object-oriented features of the language have been
exploited to ensure it is simple and robust. The API plays
a critical role in insulating the model from the underly-
ing simulation kernel. The interface has been carefully de-
signed to provide sufficient flexibility to the application
developer and enable optimal system performance. Fur-
ther details on the API are available in the literature [4, 6].

4. Parallel Simulation Framework (PSF)

The Parallel Simulation Framework (PSF) of ANSE has
been developed to enable stand-alone parallel simulation
of active network models developed using ANSE’s mod-
eling frontend. Figure 5 presents an overview of the PSF.
As shown in the figure, the primary input to the frame-
work is the TSL-IF (in-memory, intermediate form) of the
network to be simulated. TSL-IF is obtained fromANSE’s
modeling frontend, which parses the input TSL description
into TSL-IF. The elaborator is used to elaborate or “flatten”
hierarchical TSL specifications. As shown in Figure 5, a
backend code generator uses the elaborated networkmodel
to generate ANSE API compliant simulation code. The
generated code is compiled with the necessary libraries—
namely, the WARPED library, a general-purpose parallel

discrete event simulation kernel; the ANSE library, which
provides necessary implementations for the API calls; the
PLAN library; and any other use-defined libraries (as the
casemay be) to obtain the final executable. This executable
performs the actual simulation when run. Detailed descrip-
tions of the various modules specific to the PSF are pre-
sented in the following subsections.

4.0.1 Elaborator

Hierarchical constructs provide convenient techniques to
specific large networks by reusing the specification for
smaller subnetworks [4, 17]. However, the hierarchical
constructs have to be elaborated or “flattened” prior to sim-
ulation [4, 17]. Elaboration is the process in which each
hierarchical level is broken down to its constituting com-
ponents. The basic steps involved in elaborating a hierar-
chical specification are shown in Figure 6. As illustrated in
the figure, the elaborator starts with a user-specified topol-
ogy and recursively traverses the various subtopologies in
the model and creates new instances of the subtopologies
and the objects. Elaboration of subtopologies is done be-
fore they are imploded into the enclosing topology. Im-
ploding hierarchies involves inclusion of all necessary ob-
ject definitions, object instantiations, and corresponding
data structures. Elaboration may be done statically or at
runtime. Static elaboration occurs prior to code genera-
tion, while runtime elaboration occurs just before simula-
tion commences, when the generated code is executed. As
shown in Figure 5, static elaboration has been employed
in PSF. The TSL-IF generated by the parser and the elabo-
rated topology is also represented in TSL-IF (as shown in
Figure 5).

4.1 Code Generator

As shown in Figure 1, the backend code generator uses the
elaborated TSL-IF to generate a simulatable model from
the given TSL description. The generated code in C++ is
in concordance with all the other components of ANSE.
The OO nature of TSL-IF has been exploited in the devel-
opment of the code generator. The generated code is com-
pliant with WARPED’s. A model developer can directly
develop the network model (compliant with WARPED’s
API) and bypass these stages. However, the complexity in-
volved in model development will be considerably higher.
The backend code generator can be replaced with a dif-
ferent code generator to retarget the generated code for
different frameworks.

4.2 WARPED

The parallel simulation capabilities of the PSF have
been enabled by developing the framework around a
general-purpose discrete event simulation engine. OO
techniques have been employed to isolate the various mod-
ules of ANSE from the underlying simulation kernel. This

Volume 78, Number 7 SIMULATION 451

Rao and Wilsey

SimulationKernelLogicalProcess

NetworkNode
#neighbours: int
#neighbourCount: int
+initialize(): void
+executeProcess(): void
+finalize(): void
+sendPacket(pkt:Packet*): void
+getPacket(): Packet*

ActiveNode

+sendActivePacket(pkt:ActivePacket*): void
+getActivePacket(): ActivePacket*

PLANNode
+parser: PLANParser*
+localSymbolTable: SymbolTable*
+interpretPacket(pkt:ActivePacket*): int
+initialize(): void
+executeProcess(): void
+finalize(): void
+()

BasicEvent
+senderId: int
+receiver: int
+receiveTime: VTime
#BasicEvent()

Packet
+port: int

ActivePacket
+codeOffset: int

BasicState

+copyState(source:BasicState*): void
+getSize(): int

NetworkNodeState

+copyState(source:BasicState*): void
+getSize(): int

ActiveNodeState
+numberOfServices: int
+servicesTable: SymbolTable
+copyState(source:BasicState*): void
+getSize(): int

Figure 4. The core classes forming the Application Programming Interface (API) of the Active Networks Simulation Environment
(ANSE)

TSL Parser
Intermediate

Format
(TSL-IF)

Elaborator
Static

Simulation Model
(ANSE API Compliant)

Code Generator

WARPED
LibraryLibrary

ANSE

Executable
Simulation

C++

Library Library
User’s PLAN

Network Model
(TSL)

Overview of the PSF

Figure 5. Overview of the Parallel Simulation Framework (PSF)

design not only provides a desired level of “separation of
concerns” but also enables the use of different simulation
kernelswithout having tomodify applicationmodules. The
current implementation of ANSE uses the WARPED sim-
ulation kernel [15] to enable sequential and parallel simu-
lation of active network models. WARPED is an API for
a general-purpose discrete event simulation kernel with
different implementations [15]. ANSE uses the sequential
kernel and the time warp–based parallel simulation kernel
of WARPED.

TheWARPED kernel presents an interface to build log-
ical processes based on Jefferson’s original definition [14]
of time warp [15]. The kernel provides an API to build dif-
ferent LPs with unique definitions of state [15]. The basic
functionality for sending and receiving events betweenLPs
using amessage-passing system is supported by the kernel.
In WARPED, LPs are placed into groups called “clusters.”
LPs on the same cluster communicatewith each otherwith-
out the intervention of the message-passing system, which
is faster than communication through the message system

452 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

step 1: Initialize elaborator

1. Initialize new symbol table and IF
2. Search input IF and locate node corresponding to user specified top level topology
3. Call elaboration (step 2) with new topology

step 2: Elaboration subroutine (parameter topology)

1. Process the list of netlists specified in the topology. If the node is an object instantiation perform step 3. If
the node is a topology label perform step 4.

step 3: Elaborate object instantiation

1. Create new instance of the object instantiation with mangled labels.
2. Create new object definition for the new instance with mangled labels and add to new symbol table, if necessary.
3. Add new object instantiation to the new topology and update netlist entry.

step 4: Elaborate sub-topology

1. Instantiate temporary symbol table and IF
2. Recursively call elaboration with the sub-topology
3. Implode new IF to the new topology

Figure 6. Phases in elaborating a Topology Specification Language (TSL) design

[15]. Although LPs are grouped together into clusters, they
are not coerced into synchronizingwith each other. Control
is exchanged between the application and the simulation
kernel through cooperative use of function calls. Further
details on the API and working of WARPED are available
in the literature [15].

5. Web-Based Simulation Framework (WSF)

Simulation has shown to be an effective technique for
studying large and complex networks. Despite their effec-
tiveness, the complexity of model development and model
V&V continues to exacerbate their use. Some of the dom-
inant issues are as follows: (1) portability, interoperability,
and reuse of existing models, including those developed
by third-party researchers and manufacturers [10, 11]; (2)
availability and accessibility of the models [8, 12]; and
(3) infrastructure for rapid simulation of large models [4].
These issues are magnified in the case of active network
simulations because several active architectures and sev-
eral active protocols have been proposed. These protocols
need to be studied in conjunction with each other [13]. Fur-
thermore, active networks have to coexist and interact with
conventional networks because an immediate shift in the
networking paradigm is not feasible. Therefore, active net-
works have been studied in conjunction with conventional
networks. Consequently, effective reuse of existingmodels
is not only an attractive solution but is often the only vi-
able alternative. Web-based modeling and simulation are
an effective solution to address these issues. The World
Wide Web (WWW) provides an excellent infrastructure
for information exchange and large-scale simulation [20].
However, the complex interactions required for modeling
and simulation render the raw WWW services insufficient

[16]. Hence, in an endeavor to address these issues and
ease effective use of simulations, support for Web-based
simulation has been developed as a part of ANSE.

The Web-based Simulation Framework (WSF) of
ANSE has been developed by suitably modifying an
existing framework for Web-based network simulations
(FWNS) [19]. A brief description of the modified infra-
structure is presented in this section, while a detailed de-
scription of FWNS is available in the literature [8, 19]. An
overview of the WSF is shown in Figure 7. The WSF pro-
vides a framework for developing a Web-based repository
of components and the infrastructure for Web-based dis-
tributed simulations. As shown in Figure 7, WSF provides
a Hypertext Markup Language (HTML) interface based
on Common Gateway Interface (CGI) scripts, as well as
a text-based frontend that can be used to interact with the
ANSE server. The server controls and coordinates the var-
ious parallel and distributed activities of the framework.
As shown in Figure 7, the primary input is the topology of
the network model or a TSL description. The input TSL
description is parsed into TSL-IF in the conventional man-
ner. Unlike the PSF, the TSL-IF is not elaborated but is
used by the various components of the ANSE server in
its hierarchical form to minimize memory consumption.
However, processing of TSL-IF reflects the various phases
of elaboration.

The ANSE server also performs the task of collaborat-
ing with the distributed ANSE factories and coordinating
the simulations. The simulation manager (shown in Fig-
ure 7) performs the activities associated with coordinating
with the various ANSE factories (via the factory manager)
to set up a distributed, Web-based simulation. The fac-
tory manager performs the tasks of interacting with the
distributed ANSE factories using a predefined protocol

Volume 78, Number 7 SIMULATION 453

Rao and Wilsey

TSL

Manager
Information

T

E

T

I

E

N

N

R

Sub-System
Communication

Legend

Manager

Factory

HTML
(CGI)
Pages

Client’s Browser

Factory

Factory

Factory

Model

Text Interface

Interface
Front End/

Manager
Simulation

Simulation Server

Factory

Web-Based Simulation Framework (WSF)

Outputs

ANSE Server

SSL Parser

TSL-IF

Figure 7. An overview of the Web-based Simulation Framework

provided by FWNS [19]. It not only provides a uniform
interface to communicate with different object factories
but also insulates the other modules of the ANSE server
from the intricacies of the underlying protocols. A more
detailed description of the components constituting the
ANSE server is available in the literature [8, 19].

5.1 ANSE Factory

WSF also provides a framework for developingWeb-based
repositories of simulation objects, called a factory. An
ANSE factory can be viewed as aWeb-based repository of
components with an added capability for simulating them.
The factories provide a convenient mechanism for sharing
the simulation object over the WWW, thereby increasing
availability and accessibility of simulation modules. The
factories play a pivotal role in providing a uniform interface
to different simulation entities and simplify their main-
tenance and generation. This feature reduces overheads
associated with interoperability and reuse of components
without compromising proprietary information issues [16].
Figure 8 shows the layout of an ANSE factory. The initial
handle to a factory is provided by the gateway module via
a specified port on a given workstation. The Internet Pro-
tocol (IP) address of the workstation coupled with the port
number must be used to refer and interact with a given fac-
tory. For instance, it is this IP address/port number pair that
must be used in the TSL descriptions (along with an object
definition) so that the simulation object to be used in the
network model can be obtained from the ANSE factory.
Figure 9 shows the TSL example shown in Figure 3a along
with factory specifications.

The task of interacting with an ANSE server to cre-
ate objects and set up the simulation is handled by the
session manager. The configuration manager acts as an
interface between the session manager and the simulation
subsystem. It tailors the objects generated by the factory to
meet the user’s specifications. The simulation subsystem
constitutes the actual simulation engine of the factory. In
the current implementation, the WARPED simulation ker-
nel has been used as the simulation engine. A factory is
built from subfactories and object stubs. The object stubs
are the atomic components of an ANSE factory. The stubs
provide information about the simulationmodule, instanti-
ate the module, and provide a conceptual link between the
physical component and its simulation object. The sim-
ulation modules developed using ANSE’s API (see Sec-
tion 3.3) can be integrated into an ANSE factory without
any changes. Simulation objects generated by the factories
could be local or remote. Local objects provide a trade-off
between intellectual property protection and component
accessibility. Currently, all the simulation objects gener-
ated by an ANSE factory are local (i.e., they are also simu-
lated on the same factory that houses them). Further details
on component factories along with API specifications are
available in the literature [8, 16].

6. PLAN Library

As illustrated in Figure 4, ANSE’s API has been used to
develop a library for modeling and simulating active net-
works based on PLAN [21]. PLAN is a simple, functional

454 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

Gateway Manager
Session

Configuration
Manager

Main Factory

Object
Stub

Simulation
(Sub-System)

Factory
Interface

Sub Factory

Communication Sub-System / Backbone

Figure 8. Layout of an Active Networks Simulation Environment (ANSE) factory

SN { Node : viking.ececs.uc.edu:1024.SimpleNode;
 Switch: viking.ececs.uc.edu:1024.SimpleSwitch; }

{ N1 : Node; N2 : Node; N3 : Node;
 N4 : Node; N5 : Node;
 S1 : Switch; }

{ S1 : N1 N2 N3 N4 N5 Net;
 N1 : S1; N2 : S1; N3 : S1;
 N4 : S1; N5 : S1}

object definition section

object instantiation section

netlist section

Modified TSL For SN

Figure 9. Topology Specification Language (TSL) shown in Figure 3a, modified for the Web-based Simulation Framework (WSF)

Volume 78, Number 7 SIMULATION 455

Rao and Wilsey

programming language based on a subset of Markup Lan-
guage (ML) with some added primitives to express re-
mote evaluation [21]. In a PLAN-based active network,
the active packets can contain a PLAN program that can
be used to customize the active network to provide dif-
ferent networking services. The PLAN library provides
a PLANNode that is capable of parsing and interpreting
PLAN packets. A PLAN parser constructed using PC-
CTS is used to parse incoming PLAN packets into an
OO intermediate format (IF). The IF is fed to a PLAN
interpreter that executes the program contained in the
packet. The interpreter supports all PLAN constructs, in-
cluding recursive function calls, exceptions, and forward-
ing of any PLAN packets generated during interpretation.
The PLAN library also contains a PacketInjector
component that can be used to inject PLAN packets into
the simulated network. The PacketInjector can be
used to inject a PLAN program from a file or obtain the
PLAN program interactively from the user. The Packet
Injector can be driven using a variety of traffic gen-
erators based on random-number generators available as a
part of the library. The random-number generators generate
traffic based on mathematical distributions such as normal
distribution, constant delay distributions, Poisson distribu-
tion, and Pareto distributions. The library also contained
components for modeling different types of communica-
tion links with different parameters such as transmission
delay and packet loss ratios.

The runtime structure of a typical PLAN-based active
network is shown in Figure 10.As illustrated in the figure, a
single instance of the PLANparser and interpreter is shared
by the different PLANNodes. The design helps to mini-
mize the overall resource requirements (memory, in par-
ticular) of the simulations, thereby enabling simulation of
larger networks using available hardware resources. How-
ever, in parallel simulations, a single instance of the PLAN
parser and interpreter is used in each cluster. This approach
is a trade-off between the overall memory requirements of
the simulation versus simulation overheads such as com-
munication and concurrency. It must be noted that con-
current demands for the parser and interpreter never arise
because execution of events on a cluster proceeds in a se-
rial order. In other words, although the WARPED clusters
and the LPs operate asynchronously with each other, the
events on a given cluster are executed serially. Hence, in
a given cluster, only one LP can be active (or processing
an event) at a time, and the PLAN parser and interpreter
are assigned (or reserved) for use by that LP. Since parsing
of PLAN packets and their interpretation are two distinct
and independent stages, they can be cascaded or pipelined
to improve performance—that is, when a previous packet
is being interpreted, the next packet can be parsed. Such a
design is of considerable benefit in shared-memory mul-
tiprocessor (SMP) platforms. Any dependencies or incon-
sistencies that could arise due to asynchronous pipelining
can be resolved by directly using the optimistic simulation

infrastructure. In other words, if inconsistencies arise, then
the simulation will get rolled back and the events would
get reprocessed in the correct causal order. However, such
a design has not been adopted in the current implementa-
tion because other simulation techniques such as sequential
simulation and conservative simulations may not be capa-
ble of supporting such a design.

As shown in Figure 10, the routing tables and DNS ta-
bles (built and maintained by NetworkNodes) are also
shared between the various nodes constituting the simula-
tion. This design also helps to reduce the overall mem-
ory requirements of the simulations. As explained ear-
lier, concurrent access to these data structures does not
arise. Hence, complex locking mechanisms or semaphores
are not necessary to ensure their consistency and coher-
ence. The routing and DNS tables are replicated at each
cluster (in a parallel simulation) to minimize simulation
overheads. The runtime modules of ANSE (present in the
ANSE library) assist in constructing the tables by provid-
ing necessary information about the network model being
simulated. Although the LPs are partitioned onto different
clusters, the necessary information (such as name of the
nodes along with the interconnectivity data) related to all
the nodes is extracted and filled into the tables. In the cur-
rent implementation of ANSE, the LPs are equally divided
among the clusters used in a simulation (i.e., each cluster
has almost an equal number of LPs). ANSE’s API also in-
cludes interfaces for implementing other partitioning algo-
rithms. It must be noted that partitioning (i.e., assignment
of nodes to clusters) and parallel simulation are completely
transparent to the application modules. Furthermore, the
library has been developed such that the models and the
generated code need not change based on the number of
clusters or the underlying synchronization technique used
in the simulations.

7. Experiments

The experiments conducted to evaluate the performance
of ANSE and the results obtained from the experiments
are presented in this section. Table 1 tabulates the char-
acteristics of the models used to conduct the experiments.
The network models were described in TSL and used the
various components available in the PLAN and ANSE li-
braries. The network models consisted of a set of intercon-
nected PLAN nodes. The larger models such as Model3,
Model4, and Model5 were constructed using the hierar-
chical modeling constructs supported by TSL. The num-
ber of PLAN nodes in each model is shown in Table 1.
The other components of the model, such as traffic gen-
erators, packet injectors, and links, are grouped together
and tabulated in Table 1 (under the “Others” column). A
route-tracing PLAN program [21] was run on the simu-
lated networkmodel. The route-tracing PLAN packets hop
from one node to another (as they get interpreted by each
PLAN node in the simulated network), and at each node

456 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

PLAN
Node

PLAN
Parser

PLAN
Node

PLAN
Node

PLAN
Node

PLAN
Interpreter

PLAN
Node

Other
LPs

Other
LPs

Other
LPs

Other
LPs

Routing
Table

DNS
Table

Other
LPs

Shared
Data structures

PLAN
Node

PLAN
Parser

PLAN
Node

PLAN
Node

PLAN
Node

PLAN
Interpreter

PLAN
Node

Other
LPs

Other
LPs

Other
LPs

Other
LPs

Routing
Table

DNS
Table

Other
LPs

Shared
Data structures

W A R P E D C L U S T E RM P IW A R P E D C L U S T E R

Figure 10. Runtime structure of a Packet Language for Active Networks (PLAN)–based simulation

they generate two new PLAN packets. One packet carries
the information about the current hop back to the source
node (i.e., the node at which the route tracing for that par-
ticular packet began). The other packet proceeds forward
to trace the route until the destination node is reached.
The destination node on each packet was randomly cho-
sen from the set of nodes participating in the simulation.
The PacketInjector (described earlier) was used to
inject the PLAN packets into the simulated network. Each
PacketInjectorwas programmed to generate 500 re-
quests to trace the route to 500 randomly chosen PLAN
nodes. The links interconnecting the nodes were config-
ured through suitable parameters in the TSL description
to have zero packet losses. In other words, a basic TCP/IP
type of connectivity was modeled.

The graphs in Figure 11 present the time taken by PSF
for performing the different phases of model generation
such as parsing, elaboration, code generation, and compil-
ing the generated code. The experiments were conducted
on a Linux workstation consisting of dual Pentium II (300
MHz) processors with 128 MB of main memory (RAM).
The workstations were interconnected by fast Ethernet.
The timings were obtained using the standard Unix time
command. The times plotted in the graphs are the aver-
age values computed from 10 experimental runs. As illus-
trated by the graphs shown in Figure 11, the overall time
for generating a network model scales almost linearly with
respect to the total number of objects (or LPs) constituting
a network model. These data illustrate the scalability of
the modeling and simulation infrastructure supported by
ANSE. They also indicate that ANSE will be capable of

generating large network models in reasonable time.
The parallel simulations were conducted using 1 to 16

WARPED clusters. The results obtained from the various
simulations conducted using the PSF are presented by the
graphs in Figure 12. The timing information for the various
simulations was obtained using the standard Unix time
command. The simulation times plotted in the graphs are
the average values computed from 10 simulation runs. The
timings obtained from the simulations conducted using the
sequential kernel available with WARPED are also plot-
ted in the graphs. The sequential simulator was configured
for its most optimal configuration. As illustrated by the
graphs in Figure 12, parallel simulation provides consider-
able improvements in performance even for medium-sized
networkmodels. For example, parallel simulation using 16
processors provides an order ofmagnitude improvement in
performance when compared to a sequential simulation.
The primary factor for the pronounced improvement in
performance is the high-event granularity (i.e., time taken
to process an event) of the active packets that need to be
parsed and interpreted. As the number of processors used
in the simulation is increased, the computational load gets
distributed across the parallel processors, which in turn
reduces the overall simulation time. However, as illus-
trated by Figure 12a, for small models, the performance
deteriorates as the number of processors is increased.
This is because the smaller models do not have sufficient
concurrency and workload to use all the parallel proces-
sors. Hence, the overheads of parallel simulations (such as
communication and synchronization costs) outweigh the
gains accrued by increasing the number of processors.

Volume 78, Number 7 SIMULATION 457

Rao and Wilsey

Table 1. Characteristics of the models used in experiments

Number of Processes

Packet
Model Hierarchies PLAN Injectors Others Total

Model 1 1 9 9 41 59
Model 2 2 19 19 127 165
Model 3 2 26 26 193 245
Model 4 3 55 55 375 485
Model 5 3 110 100 781 991

PLAN = Packet Language for Active Networks.

0.001

0.01

0.1

1

10

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number Of Objects

Parse Time
Elaboration Time

Code-generation Time
Compilation Time

Total Time

Figure 11. Time for different phases of model generation

The graphs in Figure 13 present the time taken to simu-
late the different models shown in Table 1 usingWSF. The
timing also includes the time taken to set up the simula-
tions. As shown by the graphs in Figures 12 and 13, the
WSF simulations incur an additional 10% to 15% over-
head. This overhead is due to the additional setup costs
involved in communicating with the various ANSE facto-
ries and establishing aWeb-based simulation. However, as
indicated by the graphs in Figure 11, the front to back sim-
ulation time using the WSF is slightly less than that of the
PSF. The data indicate that if a model is going to be repeat-
edly simulated, then it is better to use PSF, but it is faster
to use the WSF for “one-time” simulations. The results
also demonstrate the scalability of the parallel simulation
frameworks. The experiments highlight that considerable
improvements in the performance of the simulations can
be achieved by employing parallel simulation techniques.
The experiments also illustrate the overall effectiveness of
ANSE for modeling and simulation of active networks.

8. Conclusions

The issues involved in the design and implementation
of ANSE were presented in this paper. The experiences
gained during the development of ANSE also highlight a
number of issues on different aspects of active network
modeling and simulation. Our experiences indicate that it
is better to have a simple and flexible language such as
TSL for modeling network topologies. It is useful to have
a clear delineation between the languages for developing
the software modules for networking components and net-
work modeling languages. For example, TSL and ANSE
can be used to enable simulation of conventional networks.
They can also be used for performing cosimulations using
a mixture of conventional and active networking compo-
nents. The flexibility and general-purpose design of ANSE
can be used to enable interoperability between different
types of models and even different simulators. An experi-
mental evaluation ofANSEwas presented in the paper. The

458 SIMULATION Volume 78, Number 7

AN ACTIVE NETWORKS SIMULATION ENVIRONMENT

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
)

Number of Processors

Model1:Sequential
Model1:Parallel

Model2:Sequential
Model2:Parallel

Model3:Sequential
Model3:Parallel

(a) Small models

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
)

Number of Processors

Model4:Sequential
Model4:Parallel

Model5:Sequential
Model5:Parallel

(b) Large models

Figure 12. Comparison between sequential and parallel simulation times

experiments demonstrate that considerable improvements
in the performance of the active network simulations can
be achieved by employing parallel simulation techniques.
The experiments, in conjunction with the diverse set of
issues addressed by ANSE, highlight the effectiveness of
the active networks simulation environment provided by
ANSE.

9. Acknowledgment

Support for thisworkwas provided in part by theAdvanced
Research Projects Agency under contract DABT63-96-C-
0055.

10. References

[1] Paxson, V., and S. Floyd. 1997. Why we don’t know how to simu-
late the Internet. In Proceedings of the 1997 Winter Simulation
Conference (WSC’97), December, pp. 44-50.

[2] Rao, D. M., K. Swaminathan, R. Radhakrishnan, P. A. Wilsey, and
P. Alexander. 1998. An Active Networks Simulation Environ-
ment. In Proceedings of the Austrian-Hungarian Workshop on
Distributed and Parallel Systems (DAPSYS ’98), September, pp.
127-31.

[3] Tennenhouse, D. L., W. D. Sincoskie, D. J. Wetherall, and G. J. Min-
den. 1997. A survey of active network research. IEEE Communi-
cations Magazine 35 (1): 80-86.

[4] Rao, D. M., and P. A. Wilsey. 1999. Simulation of ultra-large com-
munication networks. InProceedings of the Seventh International

Volume 78, Number 7 SIMULATION 459

Rao and Wilsey

0.001

0.01

0.1

1

10

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of Objects

Parse Time
Elaboration Time

Code-generation Time
Compilation Time

Total Time

Figure 13. Total simulation time using the Web-based Simulation Framework (WSF)

Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, October, pp. 112-19.

[5] Riley, G. F., R. M. Fujimoto, and M. H. Ammar. 1999. A generic
framework for parallelization of network simulations. InProceed-
ings of the Seventh International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems,
October, pp. 128-35.

[6] Rao, D. M., and P. A. Wilsey. 2001. Modeling and simulation of
active networks. In Proceedings of the 34th Annual Simulation
Symposium, April.

[7] Swaminathan, K., R. Radhakrishnan, P. A. Wilsey, and P. Alexander.
1998. Large scale active networks simulation. In International
Workshop on Applied Parallel Computing (PARA98), edited by
B. Kagstrom, J. Dongarra, E. Elmroth, and J. Wasniewski, vol.
LNCS 1541, pp. 537-42. New York: Springer-Verlag.

[8] Rao, D. M. 2000. A network simulation toolkit. Master’s thesis, Uni-
versity of Cincinnati.

[9] Robinson, S. 1997. Simulation model verification and validation: In-
creasing the users’ confidence. In Proceedings of the 1997 Winter
Simulation Conference, December.

[10] Vinoski, S. 1997. CORBA: Integrating diverse applications within
distributed heterogenous environments. IEEE Communications
Magazine 35 (2).

[11] Page, E. H., and R. E. Nance. 1994. Parallel discrete event simu-
lation: A modeling methodological perspective. In Proceedings
of the ACM/IEEE/SCS 8th Workshop on Parallel and Distributed
Simulation, December, pp. 88-93.

[12] Rao, D. M., and P. A. Wilsey. 2000. Parallel co-simulation of con-
ventional and active networks. In Proceedings of the Eighth In-
ternational Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, August.

[13] Jefferson, D. 1985. Virtual time. ACM Transactions on Program-
ming Languages and Systems 7 (3): 405-25.

[14] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M. Rao, and P. A.
Wilsey. 1998. An object-oriented time warp simulation kernel.
In Proceedings of the International Symposium on Computing in
Object-Oriented Parallel Environments (ISCOPE’98), edited by
D. Caromel, R. R. Oldehoeft, andM. Tholburn, 13-23. NewYork:

Springer-Verlag.
[15] Rao, D. M., R. Radhakrishnan, and P. A. Wilsey. 1999. FWNS: A

framework for Web-based network simulation. In 1999 Interna-
tional Conference on Web-Based Modeling & Simulation (Web-
Sim’99), edited byA.G. Bruzzone, A.Uhrmacher, and E.H. Page,
vol. 31, pp. 9-14. Society for Computer Simulation.

[16] Rao, D. M., and P. A. Wilsey. 1999. An object-oriented framework
for parallel simulation of ultra-large communication networks. In
Proceedings of the Third International Symposium on Computing
in Object-Oriented Parallel Environments, November.

[17] Zegura, E., K. Calvert, and S. Bhattacharjee. 1996. How to model
an Internet work. In Proceedings of IEEE INFOCOM, April, pp.
594-602.

[18] Rao, D. M., R. Radhakrishnan, and P. A. Wilsey. 1999. Web-based
network analysis and design.ACM Transactions on Modeling and
Computer Simulation.

[19] Dahmann, J. S., R. M. Fujimoto, and R. M. Weatherly. 1997. The
Department of Defense High Level Architecture. In Proceedings
of the 1997 Winter Simulation Conference, December, pp. 142-49.

[20] Page, E. H., S. P. Griffin, and L. S. Rother. 1998. Providing con-
ceptual framework support for distributed Web-based simulation
within the High Level Architecture. In Proceedings of SPIE: En-
abling Technologies for Simulation Science II, April.

[21] Hicks, M., P. Kakkar, J. T. Moore, C. A. Gunther, and S. Nettles.
1998. PLAN: A Packet Language for Active Networks. In Pro-
ceedings of the Third ACM International Conference on Func-
tional Programming Languages (SIGPLAN’98), May, pp. 86-93.
Available: www.cis.upenn.edu/ switchware/papers/plan.ps

Dhananjai M. Rao is a PhD candidate at the Experimental
Computing Laboratory in the Department of ECECS, Cincinnati,
Ohio.

Philip A. Wilsey is an associate professor at the Experimental
Computing Laboratory in the Department of ECECS, Cincinnati,
Ohio.

460 SIMULATION Volume 78, Number 7

