
Predicting Performance Impacts due to
Resolution Changes in Parallel Simulations

Dhananjai M. Rao
CSA Department
Miami University
Oxford OH 45056, USA
raodm@muohio.edu

Philip A. Wilsey
Department of ECECS
University of Cincinnati
Cincinnati, OH 45221–0030, USA

Multi-resolution models are often used to accelerate simulation-based analysis without significantly
impacting the fidelity of the simulations. We have developed a web-enabled, component-based,
multi-resolution modeling and Time Warp synchronized parallel simulation environment called
WESE (Web-Enabled Simulation Environment). WESE uses a methodology called Dynamic Compo-
nent Substitution (DCS) to enable abstractions or refinements to a given model. However, effectively
utilizing abstractions, whether they are DCS-based or not, is a complex and time-consuming task.
The complexity arises because not all abstractions improve simulation performance due to a myr-
iad of factors related to model characteristics, synchronization protocol overheads and simulation-
platform configuration. The overheads involved in identifying optimal model resolution have been
exacerbating effective use of multi-resolution simulations, including our DCS-based approach. In
an endeavor to minimize the time taken to identify performance impacts of resolution changes, this
study proposes a DCS Performance Prediction Methodology (DCSPPM). It predicts simulation per-
formance changes due to DCS transformations via static analysis of the model. Static analysis uses
platform-specific performance characteristics of components constituting the model. DCSPPM yields
quantitative estimates of performance impacts which are used by the modeler to select appropriate
transformations. This article presents DCSPPM, its implementation in WESE and its empirical eval-
uation. The inferences drawn from the experiments prove that DCSPPM estimates have errors of
less than 5% for a variety of models. Furthermore, DCSPPM executes orders of magnitude faster
than corresponding shortest test simulations. Note that applicability of DCSPPM is not restricted to
WESE but can be extended to other Time Warp synchronized simulators.

Keywords:

1. Introduction

In-depth study and analysis of modern systems such as
microprocessors and communication networks is crucial
to effectively design, develop, manufacture, control and
maintain such systems [1, 2]. The accelerated increase

SIMULATION, Vol. 84, Issue 10/11, Oct./Nov. 2008 535–555
c� 2008 The Society for Modeling and Simulation International
DOI: 10.1177/0037549708096134

in size and complexity of the systems catalyzed by the
need for comprehensive knowledge furnished using intu-
itive representations has necessitated the use of computer-
based simulations for their study and analysis. Simulation
is widely used because it is an intuitive, cost-effective and
non-destructive methodology for the study and analysis
of a wide spectrum of systems [2, 3]. It enables explo-
ration of complicated scenarios that would otherwise be
difficult or impossible to analyze [4]. Parallel simulation
techniques are often used to provide more optimal space-
time tradeoffs to enable simulation of large models in rea-
sonable timeframes [1, 5].

Volume 84, Number 10/11 SIMULATION 535



Rao and Wilsey

Figure 1. Example of when abstraction may decrease simulation performance

In practice, simulation-based analysis of large and
complex systems is typically performed in phases, where
each phase focuses on a specific aspect or scenario of a
given system [1]. In other words, 90% of the time is spent
in 10% of the model. Therefore, detailed data is typically
required only from selected sub-models or specific sce-
narios. In addition, processing voluminous data from in-
consequential parts of the model or scenarios merely ex-
acerbates analysis [1]. In such focused studies, simulating
the complete system using a high-fidelity, high-resolution
model is unnecessary. Consequently, to improve the over-
all efficiency of simulation-based analysis, models at dif-
ferent levels of resolution are typically employed. Multi-
resolution Modeling and Simulation (M&S) methods en-
able more optimal tradeoffs between observability, accu-
racy, fidelity and performance [1] for a given analysis.
It is widely used in numerous fields to improve overall
efficiency of the simulation-based analysis.

In our research, we have enabled multi-resolution sim-
ulations using hierarchical, component-based models and
a novel methodology called Dynamic Component Substi-
tution (DCS) [1]. In DCS, a set of components called a
module is substituted with an equivalent component or
vice versa to enable abstraction or refinement [1]. DCS
transformations may be performed statically (i.e. prior to
commencement of simulation) or dynamically (i.e. during
simulation) to change the resolution of the model [1]. DCS
can be used to achieve a wide range of model abstrac-
tions [1]. DCS transformations are governed by a DCS
algebra that circumscribes changes to a model. DCS alge-
bra also provides a mathematical framework for reason-
ing about changes induced by a sequence of transforma-
tions. A more detailed overview of DCS is presented in
Section 3.

Typically, abstractions are used to improve simulation
performance while trading-off observability and possibly
some fidelity [1]. However, in many scenarios abstrac-
tion negatively impacts simulation performance and wall-
clock time for simulation increases [1]. For example, con-
sider the digital logic circuit shown in Figure 1(a). Fig-
ure 1(b) illustrates the scenario in which the 2 cascading
AND-gates (namely B and C) constituting the module E
have been abstracted into a single 3-input AND-gate com-
ponent E. Each individual AND-gate has a delay of 5 units

while the module consisting of 2 cascading AND-gates
has a delay of 5�5 � 10 units. Note that the functionality
of the two configurations is equivalent [1, 6]. In concor-
dance with conventional discrete-event simulation prac-
tices [6, 7], each gate processes the set of events presented
at its inputs at a given simulation time and generates an
output event with suitable timestamps.

Figure 1 also illustrates a typical sequence of events
that are generated in the model. The events are indicated
by �n, where n denotes the virtual timestamp on the events.
As shown in Figure 1(a), the sequence of events in the
model occur such that module D processes only a single
event (at simulation time �10). On the other hand, as shown
in Figure 1(b), when the AND-gates are abstracted, the ab-
stract module (module E) introduces an additional output
event (at simulation time 15) causing module D to process
2 events instead of 1. Note that this behavior conforms to
standard hardware logic simulation procedures stipulated
in the Language Reference Manual (LRM) for VHDL, one
of the most widely-used hardware description languages
[6, 7]. If the event granularity (wall-clock time taken to
process an event) of module D is high, then the abstrac-
tion shown in Figure 1(b) actually deteriorates the overall
performance of the simulation. Similar counter-intuitive
cases have been observed in other large, commonly-used
circuits such as 32-bit full adder, 32-bit multiplier and
other Arithmetic and Logic Unit (ALU) circuits [1].

Identifying and avoiding performance-degrading ab-
stractions in these larger models is a complicated and
time-consuming task. Furthermore, in parallel simulations
the impact of abstractions on parallelism (or concurrency)
changes to model partitioning due to abstraction, commu-
nication costs and synchronization overheads also needs
to be analyzed. For example, consider the Asynchro-
nous Transfer Mode (ATM) network topology shown in
Figure 2(a). The example network consists of two end
clients interconnected using a pair of ATM switches. The
ATM cloud (see Figure 2(a)) represents a higher level
abstraction of the pair of the ATM switches. This is a
typical, conceptual organization of ATM networks [1, 8,
9]. Corresponding parallel simulation-time layout con-
sisting of logical processes (LPs) for the model on two
workstations is shown in Figure 2(b) and Figure 2(c).
Figure 2(b) illustrates the high-resolution version of the

536 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

Figure 2. Example illustrating change in parallel simulation configuration due to DCS: (a) example ATM network� (b) high-resolution model�
and (c) low-resolution model

Figure 3. Observed change in simulation time due to abstractions: (a) wall clock time for simulation� and (b) percentage change in simulation
time

network while Figure 2(c) presents an equivalent low-
resolution configuration achieved via DCS. Although the
lower resolution model has fewer components, the DCS
transformation impacts the aforementioned parallel simu-
lation parameters and causes degradation in performance.
In other words, from a simulation performance perspec-
tive, it is beneficial to simulate the model in high resolu-
tion.

The complexity involved in identifying useful abstrac-
tions forces simulation practitioners to use ‘dry runs’ (or
test simulations) to isolate effective abstractions. The dry
runs are performed with selected resolution configurations
using few input vectors. However, the primary problem
with this approach is that the test simulations must be run
for a sufficiently long time or using an adequate number of
input vectors [1]. For example, consider the graphs shown
in Figure 3. Figure 3(a) shows the wall clock time for sim-
ulating a model for a varying number of test vectors with

and without a given abstraction. The percentage change
in wall clock time is shown in Figure 3(b). As indicated
by the graph in Figure 3(b), a stable performance obser-
vation can be made only after the ‘knee point’ when the
model has been exercised with sufficient number of in-
put vectors. If observations were made using fewer input
vectors, there would be a significant skew in the observed
data and the inferences drawn would be incorrect. On the
other hand, identifying such knee points after which the
data stabilizes may require numerous dry runs. Further-
more, comparisons must be performed using the average
run times from several runs (typically 5–10) in order to
provide sufficient confidence in the observations.

The additional steps involved in identifying perfor-
mance-enhancing abstractions in the M&S cycle are
shown in Figure 4(a). As shown in the figure, the mod-
eler needs to perform numerous dry runs and comparisons
to identify abstractions that improve performance. More-

Volume 84, Number 10/11 SIMULATION 537



Rao and Wilsey

Figure 4. Overview of typical Modeling and Simulation (a) without DCSPPM (b) with DCSPPM

over, each time the model is changed, this task may need
to be repeated. The aforementioned issues significantly
hinder effective use of multi-resolution simulations. Con-
sequently, effective approaches to rapidly identify effec-
tive abstractions and shrink the existing M&S cycle (see
Figure 4(a)) are exigent [1]. Furthermore, in an existen-
tial discussion within the parallel and distributed simu-
lation community [10], the viability of performance es-
timation techniques for parallel simulation protocols has
been pointed out as being critical for the future success
and general acceptance of parallel simulations [10, 11].

We have been investigating approaches to predict per-
formance impacts of resolution changes and ease effective
use of multi-resolution models, particularly in DCS-based
simulations. Our endeavors have resulted in the develop-
ment of a novel DCS Performance Prediction Method-
ology (DCSPPM). DCSPPM uses simulation platform-
specific estimates of components and static analysis of
a model to predict the performance impacts due to a
given set of DCS transformations. Simulation platform es-
timates of a component are collated using one-time, gran-
ularity measurement simulations and cached for repeated
use.

DCSPPM yields quantitative estimates that can be
compared and used to identify performance-enhancing
transformations. For example, given two transformations,
say � 1 and � 2, DCSPPM yields estimates (in the form
mean� variance) e.g. 4�5�1% and�2�3�0�5%, respec-
tively. Positive estimates indicate improvements in per-
formance while negative values indicate degradation in
performance. Using the estimates, a modeler can scien-
tifically choose suitable model transformations to improve
overall efficiency of simulation-based analysis. The sig-
nificantly shortened M&S cycle when using DCSPPM is
shown in Figure 4(b). As illustrated by the figure, DC-
SPPM directly uses the model and generates estimates
for all primary abstractions. A modeler may also inter-
actively determine performance impacts due to a com-
bination of the primary abstractions. Once suitable ab-

stractions are identified, they are applied to the model
and simulation commences. The key point to note is that
for a given transformation DCSPPM takes a significantly
shorter time (orders of magnitude faster in most cases)
when compared to a single analogous dry run, as shown
in Figure 4(a). As illustrated by Figure 4, DCSPPM con-
siderably reduces M&S cycles by easing identification of
performance-enhancing abstractions in multi-resolution
simulations.

This paper presents the issues involved in the de-
sign and implementation of DCSPPM along with an em-
pirical evaluation. A brief description of some of the
closely related research activities is presented in Section 2.
Section 3 presents an overview of DCS. Our investiga-
tions have been conducted using a DCS-capable model-
ing and Time Warp synchronized parallel simulation envi-
ronment referred to as Web-Enabled Simulation Environ-
ment (WESE). A brief overview of WESE and its DCS in-
frastructure is presented in Section 4. Section 5 presents a
detailed description of DCSPPM along with the issues in-
volved in implementing DCSPPM in WESE. This section
also presents some of the statistical analysis performed to
validate our implementation. The experiments conducted
to evaluate the accuracy of the estimates generated by
DCSPPM are discussed in Section 6. This section also
presents experiments conducted to evaluate the sensitiv-
ity of DCSPPM to some of the external factors such as
garbage collection rates, extraneous CPU load and net-
work traffic. Finally, Section 7 concludes the paper sum-
marizing the contributions from this work and providing
pointers to future work.

2. Related Work

The techniques for performance estimation can be broadly
classified into the four categories: (i) measurement� (ii)
simulation� (iii) analytical modeling� and (iv) hybrid tech-
niques [12]. Measurement is the most fundamental ap-

538 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

proach and is needed even in analytical or simulation-
based techniques to calibrate the models. Simulation-
based techniques involve constructing a model for the be-
havior of the system and driving it with an appropriate
abstraction of the workload. Analytical modeling involves
developing a mathematical model of the system behavior
(at the desired level of detail) and analyzing it using math-
ematical tools.

Each approach has its own advantages and disadvan-
tages and is more suitable for certain types of sub-systems
than others. Consequently, to provide better system-level
solutions, a mixture of the above-mentioned techniques
are used. Such approaches, in which a mixture of per-
formance estimation methods are used, are called hybrid
techniques. DCSPPM is a hybrid technique that uses mea-
surements and analytical technique for predicting perfor-
mance impacts due to changes in resolution of a model
used for parallel simulation. Accordingly, this section
presents some of the closely related research activities in
this area. Readers are referred to the literature [1] for a
more comprehensive coverage of this topic.

Dickens et al. [13] present an analytical model of par-
allel discrete-event simulations for comparing the perfor-
mance of YAWNS conservative synchronization protocol
with Bounded Time Warp. Their analytical model is based
on the assumption that the simulation is a heavily loaded
queuing network where the probability of a server being
idle is almost zero. They develop and validate analytical
methods for computing approximated performance mea-
sures as a function of the degree of optimism allowed,
cost of state-saving, rollback overheads and barrier syn-
chronization and workload characteristics. Our research,
on the other hand, deals with predicting performance im-
pacts due to resolution changes rather than considering the
simulation as whole.

Balakrishnan et al. [14] present a simulation-based Per-
formance and Scalability Analysis Framework (PSAF)
for performance prediction of any discrete-event simula-
tor. Using PSAF, synthetic models can be easily devel-
oped for different simulators. The synthetic models are
designed and fine-tuned to exercise the various aspects
of the simulator. The models are simulated with various
simulators and their performance is compared. The objec-
tive of PSAF is to compare different parallel simulators
while DCSPPM is designed to compare different resolu-
tion configurations of a given model on a given parallel
simulation environment.

Ferscha and Johnson [11] present N-MAP tool set, a
performance prediction testbed for Time Warp simula-
tions. The objective is to support performance engineering
endeavors from an early design phase of Time Warp pro-
tocols in order to avoid late or costly re-engineering. Us-
ing the N-MAP toolset, a programmer starts with a rough
description of the algorithmic structure in the form of a
skeletal code. The skeleton is refined in an iterative man-
ner by providing additional details about the program and
analyzing the performance impacts at each incremental

step. The performance of the program is estimated using
simulations. The idea is to make optimal decisions at each
incremental step so that the final parallel program runs
with an optimal configuration. The N-MAP tool set is de-
signed to identify optimal parameters (e.g. event structure,
average LVT progression, commitment rate and state sav-
ing) for a Time Warp simulator.

An analogous research reported by Liu et al. [15] uses
an hybrid approach for performance estimation of a con-
servatively synchronized parallel simulator called DArt-
mouth implementation of the Scalable Simulation Frame-
work (DaSSF). In their work, they empirically estimate
the various overheads in their parallel simulator such as
context switching, dynamic object costs, procedure call
overheads, dynamic channel overheads, cost of process
orientation, event list management costs and a limited es-
timate of synchronization costs. The empirical estimates
are then suitably combined based on intimate knowl-
edge of the simulator and the model to predict simula-
tion performance. The experiments conducted in context
of their studies (i.e. models of network simulations de-
veloped using the SSF API) show that the error in their
approach is less than 10%. Unlike N-MAP and DaSSF,
the objective of DCSPPM is to identify optimal resolution
configurations from a subset of feasible transformations.
Contrary to N-MAP and DaSSF, DCSPPM uses a combi-
nation of measurement and automatic static analysis of a
model. On the other hand, similar to N-MAP, DCSPPM
is also built on the assumption that the parallel simulator
uses the Time Warp protocol for synchronization.

Gupta et al. [16] present a discrete-state continuous-
time Markov chain model for performance analysis of
Time Warp simulations. They make several assumptions
about a number of simulation characteristics and have val-
idated their model using a Time Warp testbed executing
on a shared-memory multiprocessor workstation. Tay et
al. [17] present an analytical model to evaluate the perfor-
mance of Time Warp simulation with cascading rollbacks.
They propose performance metrics for various simulation
characteristics such as rollback probability, rollback dis-
tance, elapsed time, cascading rollbacks and Time Warp
efficiency including throttled Time Warp. These research
activities deal with performance evaluation of Time Warp
simulations. In contrast, the proposed research deals with
predicting the performance impact of resolution changes
in Time Warp synchronized, multi-resolution simulations.

Perumalla et al. [18] recently presented a virtualiza-
tion system that is designed to help simulation-based per-
formance prediction of parallel/distributed discrete-event
simulations performed using supercomputing platforms.
It is intended to be useful in experimenting with and un-
derstanding the effects of execution parameters, such as
different load balancing schemes and mixtures of model
fidelity [18]. Our research differs from theirs in that we
do not use virtualization but operate directly on the final
model. Furthermore, DCSPPM uses hybrid techniques
rather than a simulation-based approach for performance

Volume 84, Number 10/11 SIMULATION 539



Rao and Wilsey

prediction. A number of other similar research activities
related to performance estimation are available in the lit-
erature [1].

3. Dynamic Component Substitution (DCS)

Dynamic Component Substitution (DCS) is a generic
methodology for changing the resolution (or level of ab-
straction) of any hierarchical, component-based model
[19, 20]. In a component-based model, a system is rep-
resented as a set of interconnected components [19, 20].
A component is a well-defined entity which is viewed
as a ‘black box’, i.e. only its interface and functionality
are of interest and not its implementation. However, dur-
ing simulation, each component is associated with a log-
ical process (LP) or a simulation object (a specific, well-
defined software unit) that implements its behavior and
functionality. A component could in turn be specified us-
ing a set of sub-components. A set of interconnected com-
ponents with a well-defined interface is called a module.
A module can be viewed as a logical component. Modules
are conceptual, convenient abstractions that enable devel-
opment of hierarchical models and ease modeling of large
systems [19].

In DCS, changes to the resolution of a model are
achieved by substituting a module (i.e. a set of compo-
nents) with a functionally equivalent module or vice versa.
The equivalent module is chosen such that the overall
characteristics of the model are not altered and deviations
in the simulation results due to DCS are within acceptable
limits. The equivalent module may contain one or more
components. In practice, the equivalent module typically
contains a single component. In such cases, the module
is simply called an equivalent component. An equivalent
module or component must satisfy the following criteria.

1. Interface equivalence: Equivalent modules must
have an interface that is identical. The interface
specification also includes the type of events that
can be processed or generated by the LP associ-
ated with the component. The interface equivalence
property ensure that DCS transformations of a mod-
ule are completely transparent to any other intercon-
nected component.

2. Functional equivalence: The equivalent modules
must have similar functionality, as defined by the
modeler. In other words, the behavior and func-
tionality of a given pair of equivalent modules
need not be identical but within acceptable limits.
This flexibility enables the application of different
forms of abstractions to the model. This criteria is a
weaker requirement then interface equivalence.

Substitution of components may be done statically or
dynamically. Static substitutions occur during model de-
velopment or prior to commencement of simulation. Static

component substitution is widely used in different flavors,
to address capacity and performance issues of large-scale
simulations [21, 22]. The primary drawback of the sta-
tic methods is that the tradeoff between fidelity, resolu-
tion and simulation overheads cannot be altered during
simulation. On the other hand, substituting components
during simulation enables a dynamic tradeoff between
the modeling and simulation-related parameters. The dy-
namic flavor of DCS can be further classified into the
Proactive and Reactive DCS transformations. Approaches
in which DCS transformations are scheduled to occur in
the future (with respect to current simulation time) are
classified as proactive strategies. In reactive strategies,
however, DCS transformations are scheduled at the cur-
rent simulation time or in the past. Proactive transfor-
mations are used to drive the model to known optimal
configurations while reactive transformations are used to
recover from recent incorrect proactive transformations.

DCS can be used to enable dynamic (i.e. during sim-
ulation) tradeoffs between fidelity and simulation perfor-
mance by changing model resolution during simulation.
DCS has been applied to accelerate simulations of a di-
verse set of systems such as: estimating power dissipation
of VLSI circuits [23]� analyzing rare phenomena or rare
events in detailed Asynchronous Transfer Mode (ATM)
network simulations [24]� simulation of spatially explicit
models of Lyme disease epidemiology [25]� and Mobile
Ad hoc Networks (MANETs) [1]. Each of these applica-
tions involved different forms of abstractions [1]. Detailed
descriptions of each application and use are available in
the literature [1, 8, 23, 24, 25]. However, analogous to
any multi-resolution approach, care must be taken when
applying DCS to avoid several modeling and simulation
pitfalls such as: temporal inconsistencies� ghosting of at-
tributes� high transition latency� thrashing� and degrada-
tion in fidelity [1, 26].

One of the most attractive and important aspects of
DCS is that algebra has been developed for reasoning
about the changes induced in model by DCS transfor-
mations [27]. The algebra has its foundations in discrete
mathematics and set theory. The algebra clearly defines
and delineates the various transformations that can be in-
duced in the model. Based on the axioms underlying the
algebra, it has been proven that a sequence of DCS trans-
formations satisfy the following properties.

1. Closure: The set of all possible transformations is
finite.

2. Associativity: Given any three DCS transformations
� 1, � 2 and � 3, �� 1 � � 2� � � 3 = � 1 � �� 2 � � 3�, where
� is a binary operator that represents the application
of two given non-commutative transformations to a
model.

3. Identity: DCS algebra defines an identity transfor-
mation �� such that �� i � ��� = ��� � � i � = � i .

540 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

Figure 5. Overview of WESE

4. Inverse Property: Given a DCS transformation � i ,
there exists an inverse transformation ��1

i such that
(� i � ��1

i ) = (��1
i � � i ) = �� .

Since DCS algebra satisfies the aforementioned prop-
erties, it constitutes a ‘group’ in discrete mathematics
[28]. These properties also play an important role in
efficient implementation of DCSPPM. For instance, as-
sociativity implies that transformations can be carried out
in different orders without violating their validity. Sim-
ilarly, from the identity property, if follows that NULL
(��) transformations can be eliminated from estimation
because they do not change the model. These aspects
make DCS a rigorous and efficient approach for perform-
ing multi-resolution simulations. Further details on DCS
and DCS algebra along with mathematical proofs of prop-
erties are available in the literature [1, 27, 29, 30].

4. Web-enabled Modeling and Simulation
Environment (WESE)

This section presents a brief description of WESE [19,
27, 29], the web-enabled, component-based modeling and
simulation environment which has been used to con-
duct this research. An architectural overview of WESE is
shown in Figure 5. As illustrated in the figure, WESE pro-
vides both a HTML interface and a text-based frontend for
user interaction. The primary input to WESE is the model
of the system described using the System Specification

Language (SSL), which we briefly discussed using an ex-
ample. Figure 6 presents the SSL description of a 3-input
AND-gate module [1].

As shown in Figure 6, the specification of a model or
a SSL design file consists of a set of interconnected mod-
ules. Each module consists of three main sections, as fol-
lows.

1. Component Definitions: Defines the set of compo-
nents used in a module and the source of LPs for
each component. The number of input and output
ports for components is also defined.

2. Component Instantiations: Specifies the in-
stances of components, defined in the component
definitions section, that will be used to describe the
model. Using high level programming languages
as an analogy, component definitions are similar to
type definitions while component instantiations are
analogous to variables of a given type.

3. Netlists: This section specifies the interconnec-
tion between ports of components. Interconnection
specifies the logical flow of events in the model.

As shown in Figure 6, SSL permits an equivalent com-
ponent (see Section 3) to be associated with each mod-
ule. DCS is performed by replacing the module with its
equivalent component or vice versa. SSL also allows an
optional label (example AndG3M in Figure 6) to be as-
sociated with each module. The label can be used as a

Volume 84, Number 10/11 SIMULATION 541



Rao and Wilsey

Figure 6. Example SSL source file for a three-input AND-gate module (AndG3M)

component definition in subsequent module specifications
to nest one module within another. This technique can be
employed to reuse module descriptions and develop hier-
archical specifications.

As shown in Figure 5, the input SSL source is parsed
into an object-oriented (OO) in-memory intermediate
form (SSL-IF). SSL-IF is the primary data structure used
by DCSPPM for static analysis of the model. Figure 7
illustrates the core classes constituting SSL-IF. As illus-
trated by the figure, object-oriented features of C++ lan-
guage have been employed in the design of SSL-IF. The
design objective of SSL-IF is to provide efficient access to
related data from different parts of a model. All the SSL-
IF classes have been derived from SSL_Base class. This
aspect enables construction of SSL-IF through pointer
composition. Operations performed using SSL-IF are im-
plemented using polymorphic virtual methods in each of
the classes. The _dcsppm method (see Figure 7) per-
forms all the phases of DCSPPM. When this method is
invoked on a SSL_DesignFile instance, it invokes appro-
priate methods on each module in the design file. Inter-
mediate results are selectively stored in member objects
(such as cachedBR in Figure 7) to reduce overall analy-
sis time. A more detailed description of the data structure,
its design and implementation is available in the literature
[1].

The core sub-system of WESE is the server (Figure 5).
The WESE server performs the task of collaborating with
the distributed factories and coordinating the simulations.
The factory manager performs the tasks of interacting
with the distributed WESE factories using a predefined
protocol. A WESE factory can be viewed as a web-based

repository of components with added capability to simu-
late them. Parallelism occurs at the factory level i.e. each
factory is a parallel, asynchronous simulation entity [19].
Parallel simulations are performed by utilizing compo-
nents (or simulation objects) from different factories. A
WESE factory is built from sub-factories and stubs. Stubs
contain attributes of a component such as interface de-
scription, cost and formal specifications.

The simulation sub-system of a WESE factory has
been developed using the WARPED simulation kernel.
WARPED is an Application Program Interface (API) for
a general purpose discrete-event simulation kernel with
different implementations [31]. WESE utilizes the Time
Warp [31] based simulation kernel of WARPED. A Time
Warp synchronized simulation is organized as a set of
asynchronous LPs that represent the different physical
processes being modeled. The LPs exchange event infor-
mation by exchanging virtual time-stamped event mes-
sages. Each LP processes its events by incrementing a lo-
cal virtual time (LVT), changing its state and generating
new events.

Although each LP processes local events in their cor-
rect time-stamp order, events are not globally ordered.
Causality violations are detected when an event with time-
stamps lower than the current LVT (a straggler) is re-
ceived. On receiving a straggler event, a rollback mech-
anism is invoked to recover from the causality error. The
rollback process recovers the state of the LP prior to the
causal violation, canceling the erroneous output events
generated and re-processing the events in their correct
causal order. Each LP maintains a queue of state tran-
sitions along with lists of input and output events cor-

542 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

Figure 7. Overview of classes constituting SSL-IF

responding to each state to enable the recovery process.
A periodic garbage collection technique based on Global
Virtual Time (GVT) is used to prune the queues by dis-
carding history items that are no longer needed. The dis-
tributed simulation is deemed to have terminated when
all the events in the system have been processed in
their correct causal order. A more detailed description of
WARPED, Time Warp and WESE are available in the lit-
erature [31, 32].

The modeling and simulation sub-systems of WESE
provide the infrastructure for enabling both proactive and
reactive DCS. In WESE, an event-driven mechanism has
been employed to sequence the various phases involved in
DCS [33]. WESE provides API calls to schedule proac-
tive DCS transformations which will occur in the future.
Reactive DCS transformations are achieved by artificially
rolling-back the simulation to an earlier simulation time
(i.e. earlier than the time when the transformation needs
to occur) and then performing the DCS transformation.
The overheads of rollbacks and causal consistency main-
tenance are transparent to the application. In order to en-
able reactive DCS, the state of the simulation at the desired
time needs to be available. To ensure that the states are
available, WESE provides suitable API calls that can be
used to delay garbage collection in the simulations. Care

must be taken to ensure that an optimal value is specified
so that the memory usage of the simulation does not sig-
nificantly increase.

In addition, WESE provides an API and infrastructure
for mapping states of components during DCS. WESE
also includes a lightweight Error Propagation Library
(EPL) that provides a set of statistical functions that can
be used to track and propagate errors in simulation results
that may arise due to DCS transformations. EPL provides
a number of statistical functions that can be used to deter-
mine the uncertainty or errors. Operator overloading has
been used to define suitable mathematical operators to au-
tomatically propagate the uncertainties through the model.
Experiments have indicated that EPL introduces minimal
(less than 1) performance penalties. Details regarding ex-
perimental evaluation of EPL are available in the literature
[1].

5. DCS Performance Prediction Methodology
(DCSPPM)

DCSPPM aims to provide a quantitative measure of the
change in simulation time due to a given set of DCS trans-
formations for a given partition of the model. An overview

Volume 84, Number 10/11 SIMULATION 543



Rao and Wilsey

Figure 8. Overview of DCSPPM

of the DCSPPM is shown in Figure 8. As shown in the
figure, component-based models are parsed into an object-
oriented, in-memory intermediate format called SSL-IF.
The SSL-IF is partitioned by logically assigning compo-
nents to a given set of WESE factories. Currently, the par-
titioning is random and assigns equal number of compo-
nents to each factory used for simulation. The partitioned
SSL-IF is utilized by the DCSPPM module for further
processing. As shown in Figure 8, DCSPPM proceeds in
four distinct but overlapping phases. A discussion of the
four phases is presented in the following subsections.

5.1 Phase 1: Collating Behavior Tables for
Components

The first phase of DCSPPM (see Figure 8) involves col-
lating the data for generating the Behavior Table (BT) for
each atomic component. The BT of a component essen-
tially consists of several rows indicating the input-output
characteristics of the component. Each row specifies the
probability of output vectors (or events) being generated
by the component at each output port for a given combi-
nation of input vectors (or events) at its input ports. Com-
ponents that do not have any inputs are treated as a special
case and are described using a reserved NULL input vec-

tor. Similarly, components that do not have any outputs
have a NULL output vector. The set of I/O vectors are
implicitly ordered to reflect the order of ports in a com-
ponent to minimize the size of BTs. The I/O vectors are
also grouped based on their virtual time-stamps to ease
analysis in Phase 3. As shown in Figure 8, the I/O vec-
tors at each port are represented using a 3-tuple consisting
of �I/O Probability, Real Time, Factory-ID�. The three
components of an I/O vector are discussed in the follow-
ing subsections.

5.1.1 I/O Probability

The probability value associated with an I/O vector essen-
tially indicates the probability with which an event occurs
at a port. Probability of 0 indicates absence of an event. In
WESE, the I/O probability value may be empirically de-
termined using test simulations (see Figure 8). Such test
simulations are effective for components with few input
and output ports. All possible combinations of input vec-
tors are fed to the component and the resulting output is
analyzed to determine I/O probability. This approach has
been used for collating BTs for the components that have
2–5 input ports. For example, logic components used for
developing the circuits used in this study utilize this ap-
proach.

544 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

However, such an approach does not scale for large
components or components whose number of I/O ports
is not fixed at model development time. In such cases, it
is the responsibility of the modeler to use suitable API
calls to appropriately specify the I/O probabilities. Fur-
thermore, to address scalability issues, the BT entries are
computed on-the-fly as needed. This feature is used to
describe the behavior of Asynchronous Transfer Mode
(ATM) network switch (ATMSwitch) component used in
this study. In this case, the stub (see Section 4) associ-
ated with the ATMSwitch, provides BT entries on de-
mand, once the actual model to be analyzed is known. Fur-
thermore, it computes output probabilities based on model
specific knowledge that if an input event arrives at one of
its inputs, the switch generates an output with equal proba-
bility at one of its output ports. In other words, for a k-port
switch, an input vector with probability of p will result in
an output at each output port with a probability of p	k.

5.1.2 Real Time

This field indicates the real time (or wall clock time) at
which the I/O events occur. Alternatively, this value in-
dicates the time taken to process the given input vector
and generate outputs. For example, the first row of the BT
shown in Figure 8 indicates that if an input vector is pre-
sented to the component at real time 0, it generates output
at 4�75� 0�1
s. Granularity also includes the simulation
kernel overheads for processing the event such as event
scheduling costs, time spent for state saving and garbage
collection overheads. However, it does not include com-
munication overheads or any synchronization overheads.

It is the responsibility of the modeler to specify the
set of ‘typical’ events to be used for granularity estima-
tion via suitable API calls. Typical events are those events
that would be most commonly processed by the compo-
nent and represent its average or characteristic behavior.
For example, the ATMSwitch processes a diverse set of
events. However, the most common events pertain to net-
work traffic or cells. Accordingly, cell events are used
to estimate the Typical Event Granularity (TEG) of the
ATMSwitch. Once the typical events are specified, the rest
of the process of estimating TEG is fully automated in
WESE.

TEG is assumed to follow a Normal distribution in con-
cordance with statistical theories [12, 34]. Weighted av-
erages are used to determine TEG for components that
have more than one significantly different TEG. For ex-
ample, consider the code snippet shown in Figure 9. As-
sume that the cases labeled KIND1 and KIND2 have in-
dividual event granularities of N �
1� �

2
1� and N �
2� �

2
2�

respectively, where N �
� � 2� represents a Normal dis-
tribution with mean 
 and variance � 2. Given their
weighted probability of the occurrence to be p and q �
�1 � p� respectively, the overall TEG is calculated as�

p 	 N �
1� �
2
1�
� � �q 	 N �
2� �

2
2�
� � N �

�
p 	 
1

� �

Table 1. Results from statistical tests for NotGate component: left-
stem plot (note that the decimal point is 2 digit(s) to the left of the 
)

530 5

532 2679

534 031

536 680

538 122233456

540 001278968

542 024

544 0133114

546 124550

548 14

550 898

Table 2. Results from statistical tests for NotGate component:
Shapiro–Wilk’s test

data x

W 0.9792

p-value 0.5176

W �0.5

p-value �0.05

Cannot reject null hypothesis H0: Population is normal

�
q 	 
2

�
�
�

p2 	 � 2
1

���q2 	 � 2
2

�
�. This technique can be

also extended to components with three or more distinct
event granularities. Proof of validity of this operation is
available in the literature [34].

Given the typical events, WESE provides the in-
frastructure for automatically analyzing the granularity
data, extracting distinct event granularities and performing
the averaging operations. However, it is suggested that the
assumption of normality be verified [12, 34] using a com-
bination of several statistical techniques such as box plots,
histograms, Q-Q plots, stem and leaf plots and Shapiro–
Wilk’s test.

Figure 10 illustrates these plots for a logic gate (Not-
Gate) component obtained using an open-source statisti-
cal package called � [35]. As shown in Figure 10(a), the
box plot reflects a standard normal distribution. The his-
togram shown in Table 1 and the Leaf–Stem plot shown
in Figure 10(b), provide strong evidence of normality. The
observed data points are sufficiently close to the theoret-
ical value as shown in the Q-Q plot in Figure 10(c). The
high p-value (0.5176) and large W value (0.9792) from
Shapiro–Wilk’s test (Table 2) clearly demonstrate that the
granularity values follow a normal distribution. A more
detailed discussion of the statistical tests, their inferences
and results for each one of the components used for em-
pirical evaluation in this study is available in the literature
[1].

The primary motivation for normality verification is to
ensure that the modeler has specified a sufficient number

Volume 84, Number 10/11 SIMULATION 545



Rao and Wilsey

Figure 9. Example of averaging multiple distinct granularities

Figure 10. Results from statistical tests for NotGate component: (a) box plot� (b) histogram� and (c) Q-Q plot

of samples to be collated by WESE to yield a good rep-
resentative statistic. Although a modeler can safely spec-
ify 100 samples (which is statistical infinity in most cases
[34]) for each typical event, this may unnecessarily in-
crease estimation times. For example, average granulari-
ties from 40 test events were more than sufficient to com-
pute the TEG for digital logic components used in this
study. On the other hand, a minimum of 65 test events
were needed to obtain good normality for the ATMSwitch
component. The smaller the value, the faster is the estima-

tion. However, care must be taken to ensure the values are
not too small to minimize statistical errors.

5.1.3 Factory-ID

The third value in the tuple indicates the logical WESE
factory ID to which the component has been assigned by
the partitioner. The ID value is used (in Phase 3) to de-
tect and track interactions between components on dif-
ferent factories which require communication over the

546 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

network. Tracking such network centric communication
points serves the following two purposes in DCSPPM.

1. It enables appropriate inclusion of communication
latencies that impact the overall TEG of a model.

2. It is used to identify points where potential for roll-
backs exist in order to account for synchroniza-
tion overheads in Time Warp simulations. More
specifically, in WESE, rollbacks occur only when
events are received over the network. A more de-
tailed discussion of the heuristics used to track roll-
backs is discussed in Section 5.3.

5.2 Phase 2: Estimating Network Latencies

Estimation of communication latencies is performed using
a pair of WESE factories only when more than one WESE
factory is used for simulation. One WESE factory acts as
a server while the other acts as a client. Communication
latency is estimated by exchanging a large number of mes-
sages between the two factories and measuring the Round
Trip Time (RTT) for the messages. A number of the RTT
measurements are averaged to obtain the mean latency and
variance. Similar to component granularities, the average
latency value is assumed to follow a normal distribution.
The estimation process is suitably coordinated by the DC-
SPPM Module (see Figures 5 and 8). The estimated values
are stored in the DCSPPM Module and reused as neces-
sary during Phase 3.

5.3 Phase 3: Estimating Granularity of a Module

The overall TEG of a module is estimated in a recursive,
top-down manner using the TEG of each component (es-
timated in Phase 1) and sub-module constituting the mod-
ule. The estimation is performed by propagating the BTs
of components from inputs to outputs of the model. As the
BTs are propagated they are suitably transformed to in-
clude the behavior and characteristics of the components
constituting a module. SSL-IF, the in-memory intermedi-
ate form, is the core datastructure used for this phase. Re-
sults from computations performed during this phase are
stored in SSL-IF. As illustrated in Figure 8, this phase pro-
ceeds in the following steps.

Step 1: Levelization: The objective of levelization is to
capture the natural flow of events from inputs to
outputs of a module. Accordingly, in this step, each
component or sub-module is assigned a level num-
ber such that other components that generate inputs
to a given component are at a lower level. Cycles
(output of a higher level is fed as input to a lower
level component) in a module are identified and ar-
bitrarily broken. Currently, DCSPPM does not ef-
fectively account for cycles in a model. Levelization

results in updates and minor reorganization of SSL-
IF, the in-memory intermediate representation (see
Section 4) of the module.

Step 2: Propagation of BTs: In this step, the BTs of com-
ponents are propagated from the lowest level (in-
put) to the highest level (output) of a module. Every
component in a level utilizes the set of input BT
records (IBTRs), its own BT and generates output
BT records (OBTRs) at its output ports. For each
IBTR, the OBTRs are computed in the following
manner.

1. First, the probabilities in a IBTR are used to
detect the presence or absence of inputs at
each port which yields an input pattern. The
components’ BT entry corresponding to the
input pattern is obtained from the appropriate
WESE factory. For example, consider a sce-
nario in which a input BT entry {� 0�5� 10�
1
s� 0 ��� 0�75� 12 � 1
s� 1 �} at sim-
ulation time 35 is presented to a component
whose BT is shown in Figure 8. In this case,
the component has inputs on both ports and
uses the corresponding entry from the BT. In
this case, the first row is obtained from the
WESE factory.

2. The output simulation time is computed by
adding the IBTR simulation time to the value
in the component’s BT entry. In the above ex-
ample, the output simulation time of the BR
would be 35� 5 � 40.

3. Next, the maximum probability value from
the IBTR is multiplied by the probability val-
ues in the component’s BR entry to deter-
mine probability of OBTR. In the above ex-
ample, the output probability would be: 1�0	
max�0�5� 0�75� � 0�75.

4. If vectors arrive from different factories (iden-
tified using factory-id in IBTR entries) the
communication latency between the pair of
factories is added to the real-time value of the
corresponding input vector. For example, as-
sume that the component being analyzed is
assigned to factory 1. Given the earlier input
vectors, the first vector (� 0�5� 10�1
s� 0 �)
is from factory 0. In this case, the communi-
cation latency, say 40 � 7
s, is added to the
real time (resulting in � 0�5� 50 � 8
s� 0 �).
Note that the real-time operations use statis-
tical arithmetic based on the fact that these
values represent normal distributions with a
given mean and variance [34].

5. The real time at which the outputs are gen-
erated is determined by adding the maximum
real-time value of the IBTR vectors to each

Volume 84, Number 10/11 SIMULATION 547



Rao and Wilsey

OBTR vector. Based on the earlier example,
the real time for the output event would be:
4�75�0�1�max�10�1� 12�1� � 16�75�1�1.

6. Next, the following two heuristics are used to
account for synchronization overheads in the
simulation. Since the simulations are based
on Time Warp, the heuristics generate a roll-
back factor. The heuristics are based on the
fact that, in WESE, rollbacks occur only
when inputs are received from multiple facto-
ries. Rollbacks require reprocessing of events
which requires additional wall clock time. Ac-
cordingly, the rollback factor is used to suit-
ably scale the overall real-time value of the
output vectors. In addition, the rollback fac-
tors are propagated through the model to ac-
count for cascading rollbacks. Cascading roll-
backs occur even although all events are re-
ceived from the same factory, as some compo-
nents in the input chain rollback.

7. Heuristic 1: This heuristic is based on the fact
that if inputs at the same simulation time ar-
rive at different real times from different fac-
tories, there is a probability of rollback. Ac-
cordingly, the real-time values of various in-
put vectors from different factories are statis-
tically compared and, for each pair that is dif-
ferent, the rollback factor is increased by one.
The real-time values for each output vector are
then suitably scaled using the rollback factor
value for the component, i.e. realTime = real-
Time + (realTime 	 rollback_factor).

8. Heuristic 2: This heuristic uses the fact that
if inputs at earlier simulation times arrive at
a later real time when compared to one an-
other, then rollbacks occur. For example, if in-
puts at simulation time 30 arrive at real time
25 � 1
s while inputs at simulation time 40
arrive at real time 10 � 1
s, then a rollback
will most likely occur. The real-time values
of successive input behavior record entries are
statistically compared to determine rollback
probability. Similar to the previous heuristic,
the real-time values for each output vector
are suitably scaled to reflect synchronization
overheads.

9. For models with cycles, a two-stage approach
is used for estimation. During the first stage,
the available behavior records are used for be-
havior propagation. If no inputs are available,
then the cycle is broken by arbitrarily choos-
ing the NULL BR of a component and utiliz-
ing it to generate a temporary output behav-
ior for a component. The temporary output be-
havior is propagated along the cycle during the
first phase. In the second stage, the BTs from

the first phase are further refined and updated
to fully estimate the interaction and behavior
between the components in the cycle.

Step 3: Overall Granularity: In order to determine the
granularity of a module, first the components in a
module are grouped based on the factory in which
they reside. Next, the granularity contributed to
each factory by the module is determined by adding
the granularity of components in each group.

Estimation of granularity of components proceeds in a
recursive, top-down manner until the top-level module has
been analyzed. At the end of analysis, the overall granular-
ity contribution to each factory involved in the simulation
is collated in the SSL-IF node corresponding to the top-
level module. Since each factory simulates in parallel, the
maximum of these values is used as an estimation of the
overall typical event granularity (TEG) of the model as a
whole. For example, the result of this phase would be a
TEG in the form 4567 � 38
s. This TEG is retained as
the reference for further comparisons in Phase 4.

5.4 Phase 4: Estimating Performance Changes due
to DCS

In this phase, parts of the model that undergo DCS trans-
formations are located and Phase 3 is repeated starting
with that part of the model. However, rather than us-
ing the BT for the module, the BT for the correspond-
ing equivalent component is used. This results in a TEG
value that indicates the overall estimated granularity with
the new component in place. For example, say the re-
sult is 4238 � 42
s. The new TEG is compared with
the reference TEG from Phase 3 to determine the change
in performance due to a DCS transformation. Using the
earlier example, the difference in performance would be
�4567� 38� 4238� 42�	4567� 38 � 7�2� 1�9%.

5.5 Assumptions underlying DCSPPM

DCSPPM is a static performance prediction methodology.
Several assumptions regarding the dynamic characteristics
of the model and the simulation platform have been made
during its design and implementation. The primary mo-
tivation for the assumptions is three-fold, namely: (i) to
ensure the task at hand is tractable� (ii) to ease implemen-
tation of DCSPPM� and (iii) to optimize and reduce time
for estimation. These assumption play an important role
in the applicability and validity of the estimates generated
by DCSPPM. The assumptions underlying DCSPPM are
as follows.

1. One of the important requirements is that the over-
all average granularity of a component must fol-
low a normal distribution (with a given mean and

548 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

variance) as per statistical laws. This requirement is
necessary in order to ease implementation of statis-
tical and mathematical operations required during
analysis. The properties of Normal distributions are
very well understood. Algebraic and statistical op-
erations can be easily performed using data that is
normally distributed.

Note that the granularity estimation approach de-
scribed in Section 5.1.2, which essentially com-
putes the average of average granularity values, al-
ways yields a normally distributed average statistic
[34]. However, sufficient random samples must be
used to ensure that a representative distribution is
computed. For this part, we assume that the modeler
provides a sufficient number of samples and verifies
the normality of data using the statistical techniques
described in Section 5.1.2.

2. It has been assumed that the typical events of a
component can be identified and the TEG granu-
larity of components can be estimated. We assume
that the modeler appropriately specifies the set of
events that must be used to compute the TEG of
each component. This is an important aspect� if a
component’s TEG is not accurately determined then
DCSPPM estimates will demonstrate large errors.

3. It is assumed that the variances in TEG are small,
typically of the order tens of microseconds. This
assumption is necessary because variance increases
as a square of the estimates, unlike the mean value
which increases linearly. Consequently, when vari-
ance is large the gross estimates may include vari-
ances that are larger than the mean, thereby render-
ing the estimate practically useless. For example, if
the variance is large, the DCSPPM may predict the
change due to DCS to be 5(� 10%). In other words,
the change could be in the range –5% (decrease in
simulation time) to +15% (increase in simulation
time). Such an estimate provides no useful informa-
tion to the user.

4. In other words, it is assumed that the granularity of
each component does not significantly skew dur-
ing simulation. Furthermore, the output probabili-
ties of the components do not skew during simula-
tion, i.e. each component generates output events as
predicted during static analysis.

5. Currently, DCSPPM does not handle loops in the
model and arbitrarily breaks them. It is assumed that
loops in the model do not introduce an excessive
number of additional events which currently are not
predicted by static analysis.

6. It is assumed that the underlying simulation kernel
scales linearly with respect to the number of events
and simulation objects. Based on this assumption,

linear arithmetic operations have been used in the
implementation of DCSPPM. This is an important
assumption because the characteristics of compo-
nents are estimated using small, fast simulations
which involve very few components. On the other
hand, the final models may contain hundreds or
thousands of components. If the simulation kernel
does not scale linearly, linear operations on granu-
larity estimates will no longer be valid.

7. The simulation platform is assumed to be homoge-
neous in workstation and network configurations.
Each workstation is assumed to have the same hard-
ware and software characteristics. Furthermore, the
network connections between each pair of work-
stations is assumed to have identical latencies and
bandwidth.

8. It is assumed that the workload on the worksta-
tions does not significantly change during simu-
lation. The workload on the workstations directly
influences the granularity of the components sim-
ulated on the workstations. If the load on one of
the workstations changes, then the characteristics
of the simulation (particularly parallel simulation)
may change significantly. Consequently, the esti-
mates generated by DCSPPM will no longer be
valid. However, it must be noted that, in general, dy-
namic changes to the simulation environment can-
not be tracked by a static estimation approach such
as DCSPPM.

9. It is assumed that the network characteristics do
not significantly skew due to external loads dur-
ing simulation. If there is significant external load
on the network, it impacts parallel simulation per-
formance. Therefore, DCSPPM predictions will no
longer be accurate.

6. Empirical Evaluation of DCSPPM

Empirical evaluation of DCSPPM was primarily con-
ducted to evaluate the accuracy of the performance esti-
mates generated by the proposed methodology. For this
purpose, a variety of models undergoing both positive (i.e.
abstractions that improve performance) and negative (i.e.
abstractions that decrease performance) were used. An
overview of the various models used for experiments is
described in Section 6.1. The results from these experi-
ments, conducted using a varying number of workstations,
are discussed in Section 6.2. Furthermore, additional ex-
periments were conducted to estimate sensitivity of the
DCSPPM predictions to various extrinsic factors such as
prolonged fluctuations in CPU load, changes in network
traffic and GVT-based garbage collection rates. Recall
that these factors are assumptions underlying the design

Volume 84, Number 10/11 SIMULATION 549



Rao and Wilsey

Table 3. Characteristics of models

Model Number of components

Name Atomic Abstract Others Total

Adder 482 96 2 580

Multiplier 16360 3096 2 19458

pASIC 825 25 2 852

ATM-Net 126 3 0 129

MANET 88 4 0 92

and implementation of DCSPPM (see Section 5.5). Ex-
periments related to sensitivity analysis of DCSPPM are
presented in Section 6.5.

6.1 Models

The models used in the empirical evaluation were bor-
rowed from studies conducted to evaluate the applicabil-
ity of dynamic resolution changes in parallel simulation.
In other words, realistic models that use multi-resolution
modeling for different tasks were used for evaluating the
effectiveness of DCSPPM. Some of the salient character-
istics of the models used in the experiments are listed in
Table 3.

All of the models were described in a hierarchical
fashion using SSL (WESE’s frontend modeling language)
by suitably interconnecting atomic components developed
using WESE’s API. The atomic components are at the
highest level of resolution and cannot be refined any fur-
ther. The number of atomic components in the models at
the least abstract configuration is shown in the column
headed Atomic in Table 3. The SSL description also in-
cluded a number of abstract components that represent the
low-resolution equivalent for a given set of atomic compo-
nents. Depending on the model, the abstract components
replaced 4–12 atomic components. The column headed
Abstract in Table 3 indicates the number of such abstract
components in each model. These models also included
components that generated primary inputs and captured
outputs. The number of such auxiliary components in each
model is shown in the column headed Others in Table 3.

As tabulated in Table 3, the models used in the experi-
ments can be classified into the following three main cat-
egories.

1. Logic Circuit Models: The first three models shown
in Table 3, namely Adder, Multiplier and pASIC,
were digital logic circuits. They were primarily de-
signed to demonstrate the effectiveness of apply-
ing DCS-based dynamic, multi-resolution models
for VLSI power estimation [1, 8]. The circuits were
modeled in a hierarchical fashion using basic logic
gates such as AND, OR and NOT gates. The col-
umn headed Atomic in Table 3 indicates the number
of such components used for modeling. The models

also included more abstract logic components such
as exclusive-OR gates and FullAdder components.
The column headed Abstract in Table 3 indicates
the number of such abstract components.

The Adder models a 32-bit ripple carry adder [36].
It does not have any loops and experiences negligi-
ble rollbacks. It can be considered as an ideal can-
didate for DCSPPM.

The Multiplier is a large model with complex in-
terconnections between components. Although this
model does not have loops in it, the inherent design
causes numerous rollbacks and is a stress test for
both Time Warp and DCSPPM [1, 8].

The pASIC model has numerous loops in it and
does not have a deep hierarchical organization. Un-
like the earlier models, this model requires two-
phase analysis to resolve the loops. However, the
loops do not give rise to oscillations in this model.

All of the digital logic models have few I/O ports
and, as described in Section 5.1.1, the behavior of
the components can be readily collated and used.
DCSPPM was used to predict performance changes
of abstracting several parts of these models.

2. ATM Network Models: The ATM-NET model is
a detailed, cell-level model of an Asynchronous
Transfer Mode (ATM) network. It utilizes the Pri-
vate Network-to-Network Interface (PNNI) signal-
ing and control protocol that provides scalable, dy-
namic QoS-based link-state routing. The model was
originally developed to explore applicability of dy-
namic DCS-based multi-resolution models to accel-
erate simulations of rare event scenarios [1, 25].
The ATM-NET model had nine ATM switches or-
ganized into three hierarchical ATM clouds. An
ATM cloud is an abstraction of a given number
of ATM switches. DCSPPM was used to analyze
the performance impact of abstracting three ATM
switches using an ATM cloud. The ATM switches
and cloud components use a varying number of I/O
ports. Consequently, they require on-demand gener-
ation of behavior tables. This model exercises parts
of the DCSPPM implementation that earlier models
did not.

3. Mobile Ad hoc Networks (MANET) Models: The
last model shown in Table 3 is a spatially explicit
model of a Mobile Ad Hoc Network (MANET)
used for an asset tracking system [1]. The model
involves 80 mobile assets tracked by 8 fixed-base
stations using ad hoc networking techniques. Dy-
namic Source Routing (DSR) protocol has been em-
ployed for ad hoc packet routing. All communica-
tion messages are routed to other assets via a hierar-
chical area composed of sub-area components. The
spatially-explicit hierarchical area is aggregated or

550 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

divided using DCS into larger or smaller units, de-
pending on the overlap of the communication range
of the wireless assets. The objective is to minimize
simulation overhead of routing packets by dynam-
ically adapting the logical partition of overlapping
wireless assets [1]. This model is a stress test for the
accuracy of DCSPPM because the MANET models
do not have a fixed communication pattern. How-
ever, since the number of mobile entities are fixed
and the area in which they move is fixed, there
are bounds on the model’s characteristics which are
captured using larger variances.

6.2 Experiments

The experimental evaluation of DCSPPM was conducted
using the models described in Section 6.1. The experi-
mental platform consisted of a set of networked worksta-
tions. Each workstation consisted of two Athlon proces-
sors (1 GHz) with 1 Gb of main memory running Linux
(kernel 2.4.2). The workstations were networked using Gi-
gabit Ethernet. The empirical evaluation of DCSPPM was
performed in the following manner.

A set of transformations were chosen for each model.
DCSPPM was used to estimate the change in simulation
time due to the selected set of transformations. The model
was then simulated with and without the abstractions for
sufficient duration (or with sufficient number of input vec-
tors) and the time for simulation was compared. The ob-
served change in simulation time was then statistically
compared with the estimate generated by DCSPPM.

The statistics collated from the experiments are shown
in Table 4. The columns headed #DCS, #CPUs, Estimate,
Observed and Error indicate the number of abstractions,
number of CPUs (or WESE factories) used for simulation,
DCSPPM estimate of change in performance, observed
change in performance, and the percentage error between
the estimate and observation, respectively.

As illustrated by the final column in Table 4, DCSPPM
generates good estimates of the change in performance
due to abstraction of parts of a model using DCS. Pos-
itive estimates indicate improvement in performance or
decrease in simulation time when abstractions are applied.
Conversely, negative estimates indicate decrease in perfor-
mance. For example, in the case of the Multiplier model,
a set of four modules were abstracted at different spots
in the model in the two different cases shown in Table 4.
Performance improves in one case while performance de-
grades in another, highlighting the dilemma involved in
using multi-resolution models.

The time durations for which the models were simu-
lated was set by trial-and-error to the shortest duration af-
ter which valid performance comparisons could be made.
The graph in Figure 11 shows the percentage change in
simulation time due to a given abstraction in the various
models. As indicated in the graph, different models re-

Table 4. Statistics from experiments

Model (#DCS) #CPU Estimate (%) Observed Error
(%) (%)

Adder (4) 1 10.95 � 0.01 10.966 0

2 19.77 � 0.8 23.06 2.49

6 17.47 � 1 17.35 0

Adder (1) 1 –4.52 � 0.01 –4.87 0.35

2 –5.62 � 0.72 –5.02 0.6

6 –7.85 � 1.68 –6.75 1.1

Mul32 (4) 1 –3.08 –3.06 0.02

2 –6.72 � 0.03 –8.64 1.92

6 –4.27 � 0.5 –4.256 0

Mul32 (8) 1 3.9 4.87 0.97

2 2.81 � 0.04 4.64 1.83

6 6.9 � 1.2 5.13 0.57

pASIC (8) 1 –1.27 –1.09 0.175

6 –4.53 –4.10 0.43

pASIC (12) 1 4.38 3.41 0.97

6 3.21 � 0.08 3.64 0.35

ATM-Net (1) 1 15.27 � 0.01 14.54 0.73

4 10.23 � 0.97 10.26 0

ATM-Net (3) 1 41.58 � 0.01 40.8 0.78

4 30.35 � 1.22 30.16 0

6 30.35 � 1.22 30.16 0

MANET (4) 1 59.95 59.89 0.05

2 17.47 � 1.45 17.0 0.47

4 5.4 � 2.07 5.47 0

6 3.35 � 2.57 3.5 0

quire a different number of input vectors in order to ob-
tain stable, average observations. The experimental ob-
servations in Table 4 were made at the knee point in the
curves indicated by gray circles in Figure 11. The graph
also highlights the issues involved in using trial-and-error
experiments (see Section 1) to determine the impact of a
DCS transformation.

6.3 DCSPPM Timings

The time taken for performing various phases in DC-
SPPM is tabulated in Table 5. The time for the fastest run-
ning test simulation is also shown for comparison. Note
that the granularity estimation and communication latency
measurement is a one-time task. On the other hand, DC-
SPPM analysis may be repeated several times for different
combinations. As illustrated in Table 5, DCSPPM analy-
sis phase runs orders of magnitude faster than the fastest
test simulation. As illustrated by the experiments, DC-
SPPM provides a rapid approach for estimating the per-
formance impacts of DCS transformations, thereby pro-
viding a more scientific approach to enabling effective use
of multi-resolution parallel simulations.

Volume 84, Number 10/11 SIMULATION 551



Rao and Wilsey

Figure 11. Observation points for performance comparisons

Table 5. Time for DCSPPM versus simulation

Model Time (s)

Granularity estimate Communications latency DCSPPM analysis Fastest test

Adder 6.23 15.48 0.457 36.86

Mul32 6.23 15.48 4.73 242.8

pASIC 6.23 15.48 3.72 45.83

ATM-Net 11.23 15.75 0.031 27.5

MANET 2.23 15.42 0.0025 11.93

6.4 Sources of errors

The estimates generated by DCSPPM have some errors
in them, as indicated in Table 4. The source of errors in-
clude minor skew in model behavior, nonlinearities in the
simulation kernel, changes in characteristics of the com-
munication network, operating system activities and de-
viations in model behavior. Conspicuous nonlinear per-
formance characteristics were observed when the simula-
tions exceeded main memory (RAM) limits on the work-
stations. The nonlinearities are attributed to virtual mem-
ory overheads, in particular due to swapping data back-
and-forth from the hard disk drive. Where virtual memory
sizes were exceeded, there were significant nonlinearities
and estimates generated by DCSPPM demonstrated no-
table errors�DCSPPM cannot be used in such cases. Other
dominant sources of errors in our experiments include the
following.

� Nonlinearities in the simulation kernel: The dom-
inant source of nonlinearity in the kernel arises

from Global Virtual Time (GVT) computations and
garbage collection overheads that are necessary in a
Time Warp simulation. The graph in Figure 12(a) il-
lustrates the impact of GVT on simulation time. The
data shown in the figure is the simulation time of
the Adder model using 1000 input vectors approx-
imated using the Bezier curve-fitting algorithm. It
was noted that if the GVT period is not set in the lin-
ear region, then the observations from simulations
were skewed.

� Nonlinearities in the network: The other domi-
nant source of error arises from the underlying
Gigabit network. The nonlinearities are conspic-
uous due to bursty communication behavior of a
Time Warp simulations, particularly during roll-
backs. The graph in Figure 12(b) illustrates the av-
erage message latency with different burst sizes. As
illustrated by the graph, the average latency sig-
nificantly skews depending on the total number of
messages exchanged. This behavior skews the sim-

552 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

Figure 12. Sources of errors: (a) GVT period impact and (b) network latency

ulations and the DCSPPM estimates, introducing
errors. Such nonlinearities cannot be fully accom-
modated in a static technique such as DCSPPM. At-
tempting to incorporate the extreme cases in the es-
timation technique significantly increases the vari-
ance in the reported data, reducing the practical use-
fulness of DCSPPM’s estimates. The inherent non-
linearity of the communication sub-system impacts
the overall accuracy of the estimates generated by
DCSPPM.

6.5 Sensitivity Analysis

The time taken to simulate a model is strongly influenced
by the simulation platform characteristics, which impact
the estimates generated by DCSPPM. In this section, we
explore the sensitivity of the DCSPPM to changes in the
configuration of the simulator and simulation platform.
These experiments cross-validate the assumptions under-
lying DCSPPM. Note that sensitivity to virtual memory
usage was not analyzed because DCSPPM estimates were
found to be extremely sensitive to this parameter. The es-
timates were impacted because of nonlinearities in virtual
memory overheads, such as disk swapping.

The sensitivity of DCSPPM to GVT period, extrane-
ous CPU load and extraneous network load are shown
by the graphs in Figure 13. The sensitivity experiments
were conduced using parallel simulations conducted on
two workstations. These experiments were conducted us-
ing the Multiplier model because it is a large and com-
plex model and change in characteristics were readily ob-
servable. As illustrated by Figure 13(a), the estimates are
not sensitive to the GVT period in the linear region of op-
eration. Recall that GVT period introduces some nonlin-
earities in the simulation kernel (see Section 6.4 for de-
tails) because the GVT period affects simulations with and

without DCS in an identical manner. Consequently, the
change in the simulation time is almost constant.

The graph in Figure 13(b) illustrates the deviations
due to extraneous network load. The extraneous network
load on each workstation was generated using an external
client-server program that exchanges data at a fixed rate.
As shown by the graph, the estimates are sensitive to net-
work load. However, the deviations are also influenced by
the nonlinear characteristics of the network. The impact
of extraneous CPU load on the estimates are shown by
Figure 13(c). The CPU load was generated by running an
additional process on each workstation that performed a
finite amount of mathematical computations, thereby con-
suming CPU time. The volume of processing was varied
to generate different loads on the CPU. As illustrated by
Figure 13(c), the estimates are very sensitive to CPU load.
In other words, DCSPPM estimates are least sensitive to
GVT period changes but are more sensitive to changes in
network and CPU load.

7. Conclusions

Selective, dynamic abstraction and refinement of multi-
resolution models via Dynamic Component Substitution
(DCS) is a powerful technique to accelerate various simu-
lations. However, care must be taken to ensure that model
transformations do not have negative impacts. Conse-
quently, the impact of transformations must be know prior
to simulation. In an attempt to address the issue of se-
lecting suitable DCS transformations, a DCS Performance
Prediction Methodology (DCSPPM) was proposed. The
issues involved in the design and implementation of
DCSPPM were presented in this article. Empirical eval-
uation of DCSPPM using diverse models was discussed.

The experiments indicate that the DCSPPM generates
good estimates with errors less than �3% in our experi-

Volume 84, Number 10/11 SIMULATION 553



Rao and Wilsey

Figure 13. Sensitivity analysis of DCSPPM to extraneous loads: (a) GVT period� (b) network load� and (c) CPU load

ments. Sources of errors in the estimates were presented
and their influences were empirically explored. DCSPPM
estimates were shown to be valid as long as the char-
acteristics of the model and simulation platform do not
significantly skew during simulation. The sensitivity of
DCSPPM to external factors was also empirically ex-
plored. The article pitched the timing for DCSPPM analy-
sis against the shortest possible parallel simulation time
for different models to highlight the speed of DCSPPM.
Since DCSPPM runs very fast, it can be used to explore
numerous model configurations to identify the most opti-
mal candidate for a given analysis. It must be noted that
DCSPPM aims to identify the best combination of trans-
formations given a set of choices, and not the absolute op-
timal configuration for a given model.

The experiments presented in this article show that
the estimates generated by DCSPPM closely track the
observed changes, highlighting the effectiveness of DC-

SPPM. The estimates may also be used as indicators for
further model development and refinement. A number of
additional optimizations can be implemented to further
reduce the analysis time and improve the accuracy of
the estimates. We are continuing our pursuit to enhance
DCSPPM and apply it to diverse problem domains and
synchronization methodologies. Our studies strongly in-
dicate that DCS, coupled with DCSPPM, is is an effective
methodology to enable efficient use of multi-resolution
simulations. Furthermore, a modeler can utilize DCSPPM
estimates to intelligently fine-tune the models to achieve
maximum efficiency. We believe DCSPPM paves the way
to replacing the estimations involved in effective use of
parallel multi-resolution simulations with a robust and
easy to use systematic scientific methodology.

554 SIMULATION Volume 84, Number 10/11



PREDICTING PERFORMANCE IMPACTS DUE TO RESOLUTION CHANGES IN PARALLEL SIMULATIONS

8. References

[1] Rao, D. M. 2003. Study of Dynamic Component Substitution. Ph.D.
thesis, University of Cincinnati.

[2] Wilsey, P. A. 2000. Modeling, analysis and simulation of computer
and telecommunication systems. In A. Kent, (Ed.) Encyclopedia
of Library and Information. Marcel Dekker, Inc.

[3] Fishwick, P. A. 1995. Simulation Model Design and Execution:
Building Digital Worlds. Englewood Cliffs, NJ: Prentice Hall.

[4] Paxson, V. and S. Floyd. 1997. Why we don’t know how to simu-
late the internet. In Proceedings of the 1997 Winter Simulation
Conference (WSC’97), pp. 44–50.

[5] Fujimoto, R. 1990. Parallel discrete event simulation. Communica-
tions of the ACM 33(10), 30–53.

[6] Ashenden, P. J. 2001. The Designers Guide to VHDL. Second Edition.
San Mateo, CA: Morgan Kaufmann Publishers Inc.

[7] 2002. IEEE Standard VHDL Language Reference Manual. 3 Park
Avenue, New York, NY 10016-5997, USA.

[8] Rao, D. M. and P. A. Wilsey. 2006. Predicting performance of reso-
lution changes in parallel simulations. In Proceedings of the 20th
Workshop on Parallel and Distributed Simulation (PADS’06), pp.
45–54. Singapore.

[9] Perros, H. G. 2005. Connection-oriented Networks: SONET/SDH,
ATM, MPLS and Optical Networks. NJ, US: John Wiley & Sons
Ltd.

[10] Fujimoto, R. M. 1993. Parallel discrete event simulation: Will the
field survive? ORSA Journal on Computing 5(3).

[11] Ferscha, A. and J. Johnson. 1996. A testbed for parallel simulation
performance predictions. In 1996 Winter Simulation Conference
Proceedings.

[12] Jain, R. 1991. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. New York, NY: Wiley-Interscience.

[13] Dickens, P., M. Haines, P. Mehrotra, and D. Nicol. 1996. Towards a
thread-based parallel direct execution simulator. In Proceedings
of the 29th Hawaii International Conference on System Sciences
(HICSS-29), pp. 424–433.

[14] Balakrishnan, V., P. Frey, N. Abu-Ghazaleh, and P. A. Wilsey. 1997.
A framework for performance analysis of parallel discrete event
simulators. In Proceedings of the 1997 Winter Simulation Con-
ference.

[15] Liu, J., D. M. Nicol, B. J. Premore, and A. L. Poplawski. 1999.
Performance prediction of a parallel simulator. In Workshop on
Parallel and Distributed Simulation, pp. 156–164.

[16] Gupta, A., I. F. Akyildiz, and R. M. Fujimoto. 1991. Performance
analysis of Time Warp with multiple homogeneous processors.
IEEE Transactions on Software Engineering 17(10), 1013–1027.

[17] Tay, S. C., Y. M. Teo, and R. Ayani. 1998. Performance analysis
of time warp simulation with cascading rollbacks. In Proceed-
ings of the 12th Workshop on Parallel and Distributed Simulation
(PADS’98), pp. 30–37.

[18] Perumalla, K. S., R. M. Fujimoto, P. J. Thakare, S. Pande, H.
Karimabadi, Y. Omelchenko, and J. Driscoll. 2006. Performance
prediction of large-scale parallel discrete event models of physi-
cal systems. In Proceedings of the 2006 Winter Simulation Con-
ference (WSC’06), pp. 356–364.

[19] Rao, D. M., V. Chernyakhovsky, and P. A. Wilsey. 2000. WESE: A
Web-based Environment for Systems Engineering. In Proceed-
ings of International Conference On Web-Based Modelling &
Simulation (WebSim’2000). Society for Computer Simulation.

[20] Rao, D. M., R. Radhakrishnan, and P. A. Wilsey. 1999. Web-based
network analysis and design. ACM Transactions on Modeling
and Computer Simulation (forthcoming).

[21] Huang, P., D. Estrin, and J. Heidemann. 1998. Enabling large-scale
simulations: Selective abstraction approach to the study of mul-
ticast protocols. In Proceedings of International Symposium on
Modeling, Analysis and Simulation of Computer and Telecom-
munication Networks.

[22] McBrayer, T. and P. A. Wilsey. 1995. Process combination to in-
crease event granularity in parallel logic simulation. In 9th Inter-
national Parallel Processing Symposium, pp. 572–578.

[23] Rao, D. M. and P. A. Wilsey. 2006. Applying parallel, dynamic-
resolution simulations to accelerate vlsi power estimation.
In Proceedings of the 2006 Winter Simulation Conference
(WSC’06). (forthcoming).

[24] Rao, D. M. and P. A. Wilsey. 2006. Accelerating ATM simulations
using dynamic component substitution (DCS). Simulation (forth-
coming).

[25] Rao, D. M. and P. A. Wilsey. 2005. Accelerating spatially explicit
simulations of spread of lyme disease. In Proceedings of the 38th
Annual Simulation Symposium, pp. 251–258. San Diego, Califor-
nia, USA.

[26] Reynolds, P. F., A. Natrajan, and S. Srinivasan. 1997. Consistency
maintenance in multiresolution simulation. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 7(3), 386–
392.

[27] Rao, D. M., P. A. Wilsey, and H. W. Carter. 2001. Optimizing
costs of web-based modeling and simulation. In Proceedings of
the First International Workshop on Internet Computing and E-
Commerce (ICEC’01). IPDPS.

[28] Tremblay, J. P. and R. Manhohar. 1975. Discrete Mathematical
Structures With Applications to Computer Science. US: McGraw-
Hill Computer Science Series.

[29] Rao, D. M. and P. A. Wilsey. 2000. Dynamic component substitu-
tion in web-based simulation. In Proceedings of the 2000 Winter
Simulation Conference (WSC’2000). Society for Computer Sim-
ulation.

[30] Rao, D. M. and P. A. Wilsey. 2002. Performance prediction of dy-
namic component substitutions. In Proceedings of the 2002 Win-
ter Simulation Conference (WSC’02).

[31] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M. Rao, and P. A.
Wilsey. 1998. An Object-Oriented Time Warp Simulation Ker-
nel. In D. Caromel, R. R. Oldehoeft, and M. Tholburn, (Eds.)
Proceedings of the International Symposium on Computing in
Object-Oriented Parallel Environments (ISCOPE’98), volume
LNCS 1505, pp. 13–23. Springer-Verlag.

[32] Jefferson, D. 1985. Virtual time. ACM Transactions on Program-
ming Languages and Systems 7(3), 405–425.

[33] Rao, D. M., N. V. Thondugulam, R. Radhakrishnan, and P. A.
Wilsey. 1998. Unsynchronized parallel discrete event simulation.
In Proceedings of the 1998 Winter Simulation Conference, pp.
1563–1570.

[34] Hogg, R. V. and A. T. Craig. 1995. Introduction to Mathematical
Statistics. Englewood Cliffs, New Jersey: Prentice Hall.

[35] 2006. An Introduction to R, A Programming Environment for Data
Analysis and Graphics. (online at http://www.r-project.org/).

[36] Patterson, D. A. and J. L. Hennessy. 2005. Computer Organiza-
tion And Design: The Hardware/Software Interface. Third Edi-
tion. San Francisco: Elsevier Inc.

Volume 84, Number 10/11 SIMULATION 555


