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The gradual acceptance of high-performance networks as a fundamental component of today’s
computing environment has allowed applications to evolve from static entities located on
specific hosts to dynamic, distributed entities that are resident on one or more hosts. In
addition, vital components of software and data used by an application may be distributed
across the local/wide area network. Given such a fluid and dynamic environment, the design
and analysis of high-performance communication networks (using off-the-shelf components
offered by third party manufacturers) has been further complicated by the diversity of the
available components. To alleviate these problems and to address the verification and
validation issues involved in engineering such complex networks, a web-based framework for
the design and analysis of computer networks was developed. Using the framework, a designer
can explore design alternatives by constructing and analyzing configurations of the design
using components offered by different researchers and manufacturers. The framework pro-
vides a flexible and robust environment for selecting and verifying the optimal solution from a
large and complex solution space. This paper presents issues involved in the design and
development of the framework.
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1. INTRODUCTION

Traditionally, network engineering has involved the design, production,
and maintenance of complex networks that satisfy a set of cost and time
constraints [Sage 1992]. Although the entire process of network engineer-
ing is a modeling activity [Pressman 1997], a large percentage of the
modeling activity occurs predominantly during the design phase. A number
of vital and useful characteristics about the proposed network result as
by-products of the design phase of a system. These include network
requirements, network specifications, network model(s), and cost-perfor-
mance estimates. To determine this useful information, comprehensive
models of the proposed network are developed during the design phase. The
models are then used to ensure that the proposed network has the desired
properties and to ensure that it meets the various requirements. In
addition, to ensure that the models used to study and design networks are
accurate and correct, verification and validation of these models must be
carried out. However, the growing complexity of today’s network designs
mandates the use of simulations (parallel simulations in particular) for
analysis and verification.

Figure 1 illustrates the phases involved in engineering computer commu-
nication networks. The phases involved in the engineering effort closely
mirror those in the design of any conventional system. The design phase
plays a critical role in the life cycle of a system [Pressman 1997]. Many of
today’s networking systems are composed using off-the-shelf components
[Batory and O’Malley 1992] offered by third party manufacturers. Modeling

Fig. 1. System life cycle.
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the system usually involves composing the system from different sub-
systems and components. The model of the system is then verified and
analyzed. During the cyclic modeling phase (Figure 1), various features and
attributes of the proposed system are documented. Some of the important
documents include system requirements, cost estimates, and system speci-
fication. Due to recent advances in technology, network designers now have
a larger number of alternatives to consider and choose from. This multitude
of options makes the process of choosing the right networking solution a
complicated task. Exploring the different probable solutions is seldom done
due to a number of hurdles faced, such as collection of appropriate informa-
tion and data, model validation, modeling of message traffic, design and
analysis of simulation runs, and time constraints [Law and McComas
1994]. Several of these tasks may require the expertise of experienced
designers/developers who may or may not be available. In addition, there is
the added pressure of short “design-to-implementation” time frames in the
industry. Revisions in the design necessitate corresponding revisions in
design-related documents (such as system specification, system require-
ments, and cost-time estimates [Pressman 1997]). This increases the time
and cost of the design to implementation lifecycle.

The growing complexity of software systems has also required the reuse
of software components as reinvention of extant technology is not afford-
able [Batory and O’Malley 1992]. Although considerable research has been
carried out in the areas of composeable systems and reusable components
[Penix et al. 1998], the software models developed for simulation based
verification and analysis are seldom reused. There are several reasons for
this [Page et al. 1998]. Some of the dominant hurdles faced are: (i) models
developed for simulation by manufacturers and network designers are
confidential (giving rise to intellectual property issues); (ii) the models may
not be portable or interoperable [Vinoski 1997] (lack of a standard model-
ing language); and (iii) the models may not be readily available or accessi-
ble [Page and Nance 1994]. Researchers have identified that the World
Wide Web (WWW) provides an excellent backbone to enable sharing of
information and data [Fishwick 1996]. However, the complex interaction
between components for modeling and simulation [Rao et al. 1999] render
the raw WWW services insufficient. To address these issues a distributed,
rapid prototyping environment for designing, analyzing, and deploying
networked systems is required.

2. FWNS: FRAMEWORK FOR WEB-BASED NETWORK SIMULATION

In an effort to build a tool that eases the design, analysis, and verification
of computer networks, a web-based framework for networks engineering
called FWNS was developed. To simplify the use and maintenance of the
framework, a component-based strategy was employed in the development
of FWNS. Figure 2 illustrates the overall architecture of FWNS. Although flow
of control and data in the system involves the interaction of a number of
distributed components, the FWNS system can be easily described by functionality
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of its major components. Specifically, there are six major components
(delineated by their functions) that together define the architecture of
FWNS. Since the functions of these components can, at times overlap, the
components are not explicitly highlighted in Figure 2. The six components
are as follows: (a) the I-O Component, (b) the Topological Specification
Language (TSL) Component, (c) the Assembly Component, (d) the Simula-
tion Management Component, (e) the Communication Component, and (f)
the Formal Framework Component.

As the name suggests, the I-O component is responsible for handling the
input and output to/from the framework. The user interacts with the
framework via the interfaces provided by the I-O component. The primary
input to the framework is a detailed description of the communication
network. A special input format called the Topology Specification Language
(TSL) was designed and implemented to ease the specification of large and
complex networks. The I-O component and the TSL component are together
responsible for handling, parsing, and processing the network model de-
scriptions written in TSL. Since the rest of the framework is dependent on
the output of the I-O component, Section 3 describes the issues involved in
the construction of the I-O and the TSL components.

The remainder of this paper is organized as follows. Section 4 describes
the assembly component which uses the processed input information to
build simulations. The primary function of the assembly component is to
assemble the software components needed to generate the various deriv-
ables of FWNS. The derivables include data and statistics from the simula-
tion, formal specifications of the network, and various documents and
reports. The primary responsibility of the simulation management compo-
nent (described in Section 5) is to control and coordinate the distributed
simulation. Section 6 details the communication component which is re-
sponsible for providing the necessary communications infrastructure for
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the different distributed components of FWNS. The formal specifications
that are generated by the assembly component are directed to a separate
formal framework that uses the specifications for verification purposes.
Section 7 describes the formal framework component of FWNS. The experi-
ments conducted with the FWNS framework are detailed in Section 8.
Concluding remarks along with future work are presented in Section 9.

3. THE I-O INTERFACE

Modeling complex networks involves specification of the topology of the
network, description of the nodes in the network, source of simulation
modules, and a number of parameters. The data for large networks can be
voluminous. Flow of information to and from the framework need to be
regulated to meet the designers requirements. The user may choose to
employ a CGI (Common Gateway Interface) based HTML interface or a
simple textual front end to interact with FWNS. The components used to
handle the various interactions with the user along with the input parser
(the TSL parser is shared between the I-O component and the TSL
component) constitute the I-O component.

The I-O component is a distributed subsystem of FWNS. As illustrated in
Figure 2, the I-O interface to the system is at the user’s end. The user may
choose a simple command-line style or a HTML-CGI based interface to the
system. Depending on the choice, the corresponding FWNS modules is
installed. The input system also needs to interact with the TSL parser. The
TSL parser (housed in the FWNS server as illustrated in Figure 2) parses the
input model description into an intermediate form (TSF-IF). The I-O
component also supports simple error reporting mechanisms. This mecha-
nism is used by the parser to report errors that may arise while processing
the input configuration. To optimize the interaction between a number of
users, a new TSL parser thread is invoked for every configuration submit-
ted to the framework. This enables a number of users to concurrently work
with the FWNS server.

3.1 The Topological Specification Language

The Topological Specification Language (TSL) Component is responsible for
the parsing and processing of network descriptions written in TSL. This
component encapsulates all TSL-related functionality. When TSL input
descriptions are submitted to the TSL parser (housed in the FWNS server), it
parses the network descriptions into the TSL intermediate form (TSL-IF).
The TSL-IF is then used to construct a simulation. Since the TSL descrip-
tion is the source template for the simulation, the design and implementa-
tion of TSL is of considerable importance to the framework. In this section,
we review design and implementation issues in the development of a
network topological specification language such as TSL.

The two main constituents of a TSL description are: (i) information about
the topology of the network model; and (ii) definition and location of
corresponding software components of the network model. In TSL, the
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various software components used to define a network topology are speci-
fied in the object definition section. The actual nodes that constitute the
network along with the other components of the system being modeled are
defined in the object instantiation section. The connectivity information
between the various components is described in the net-list section. Table I
illustrates the TSL grammar.

The object definition section is used to define a set of logical objects that
will be used in the design. A set of object definitions constitute this section.
Each object definition consists of a object_name , a Universal Resource

Table I. TSL Grammar

topology_label : IDENTIFIER;
tsl_topology :

{topology_label }object_definition_section
object_instantiation_section net_list_section;

-— OBJECT DEFINITION RULES --------------------

object_name : IDENTIFIER;
object_definition :

object_name COLON url {parameter }SEMI_COLON;
object_definition_section :

OPEN_FLOWER ( object_definition )*CLOSE_FLOWER;

--- OBJECT INSTANTIATION RULES ------------------

object_label : IDENTIFIER;
object_instantiation :

object _label COLON object_name
{NUMBER }{parameter }SEMI_COLON;

object_instantiation_section :
OPEN_FLOWER ( object_instantiation )*CLOSE_FLOWER;

--- NET LIST RULES------------------------------

net-list_label : IDENTIFIER;
net_list :

net-list_label COLON ( object_label )1 SEMI_COLON;
net_list_section :

OPEN_FLOWER ( net_list )* CLOSE_FLOWER;

--- OTHER RULES------------–-------------------

factory : IDENTIFIER ( DOT IDENTIFIER )*;
file_name : IDENTIFIER ( DOT IDENTIFIER )*;
url : IDENTIFIER ( DOT IDENTIFIER )*

{COLON NUMBER DOT factory };
parameter :

QUOTE ( NUMBER |IDENTIFIER |STRING )* QUOTE;
include_clause :

INCLUDE QUOTE file_name QUOTE SEMI_COLON;
design_file :

( include_clause )* ( tsl_topology )1 ENDFILE;
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Locator (URL), and an optional list of parameters. The object_name
associated with each object definition should be unique in a topology
description. The URL associated with each object definition provides de-
tailed information on the location of the simulation module (or factory11) to
be associated with each component of the design instantiated using the
object name . The information contained in the URL consists of: (i) the IP
address of the machine hosting the desired factory with an optional port
number, (ii) the hierarchy of the factory and subfactory names housing the
actual simulation module, and (iii) the name associated with the actual
simulation module. An optional list of parameters may be specified with
each object definition. These parameters may be used by the simulation
module to tailor itself to the needs of the user. To specify an object’s
definition, the user must know the location of the different factories and
possess information about the layout of the factory such as the name
associated to the object and the hierarchy of subfactories (if any) that are
responsible for the object. In addition, the user must also be aware of the
syntax and semantics of the parameters expected by the different objects in
the various factories. For this reason, it is the responsibility of the factory
designers and developers to provide information about the location of the
factory (such as the IP address of the server(s) that host the factory along
with any necessary port numbers for communication) and the layout of the
factory. The syntax and semantics of the parameters expected by each
object must also be specified. This will enable the user to choose the
appropriate object to be used in the design. The optional set of parameters
can be selected by the user to tailor the object (within the scope of the
object) to meet his requirements. A good place to put these details would be
along with the advertisements for the various components on the WWW.
Interested users can use these details for modeling and analysis. Option-
ally, factories can register themselves with “well known” FWNS servers
increasing their visibility.

The object instantiation section consists of a list of object instantiations
that is used to specify the actual set of components involved in the topology
specification. Each object instantiation consists of an object_label , a
object_name , and an optional set of parameters. Each object_label
defines an entity in the model and should be unique in a topology specifi-
cation. The object_name defines the actual software module that must be
instantiated for simulation. Every object_name used must be defined in
the object definition section. In other words, the object_name associates
an object definition with every object instantiation. The object definition
provides all the necessary information to instantiate an object. The optional
set of parameters in each object instantiation can be used to further adapt
each object instance to meet the specifications of the components.

The net-list section consists of a number of net-lists that are used to
describe the connectivity information between the various components in

1A “factory” provides an uniform interface for creating families of related or dependent objects
without specifying their concrete classes [Gamma et al. 1994].
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the system. Each net-list entry consists of an net-list_label and a list of
object_label s. The net-list_label s can be used in subsequent net-list
entries to incrementally build connectivity information. The topology_label
associated with each topology may also be used (to connect hierarchies of
net-lists).

The configuration information provided to FWNS consists of a set of
topologies where each topology has an unique topology_label . These
labels can be used in the net-list section of subsequent topologies to
construct hierarchical networks. An include clause is also supported by
TSL to permit inclusion of topologies specified in other files. The user can
specify small and simple subnetworks and combine them to build and
specify larger and more complex networks. A short example of a sample
topology in TSL format is shown in Table II. The network specifications in
TSL format are parsed by a TSL parser into an intermediate form (IF).

TSL-IF forms the primary input to the other modules in the FWNS server.
As shown in Figure 2, the simulation manager and the information
manager use the TSL-IF for extracting information about the input topol-
ogy. TSL-IF is designed to provide efficient access to related data from the
various nodes. It closely reflects the structure of the TSL grammar. As the
current implementation of TSL-IF is in C11, object-oriented techniques
have been exploited to optimize TSL-IF’s design and implementation.
TSL-IF is also useful for performing other transformations and analyses
[Willis et al. 1996] of the network topology. Generation of configuration
information in TSL format can be automated to generate several different
regular and irregular internetwork topologies [Zegura et al. 1996].

Table II. Example of a TSL Configuration

NetworkConfiguration {
trGen: bc.ececs.uc.edu:2048.NetworkFactory.TrafficGenerator “Normal 1 5 1000”;
Node1 : bc.ececs.uc.edu:2048.NetworkFactory.Node “normal 1 0”;
Node2 : bc.ececs.uc.edu:2048.NetworkFactory.Node “normal 0 5”;
Router: bc.ececs.uc.edu:2048.NetworkFactory.SimpleRouter;
}

* {
viking : Node1;
grog, wiley : Node2;
trGen1, trGen2, trGen3 : trGen;
zeus, thor : Router;
}

* {
trGen1 : viking; trGen2 : grog; trGen3 : wiley;
viking : thor; grog : thor; wiley: zeus;
zeus : thor; thor : zeus;
}
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4. THE ASSEMBLY COMPONENT

The functionality needed for the assembly section is jointly provided by the
simulation manager, the information manager, the factory manager, and
the distributed factories. As illustrated in Figure 2, these components are
not centralized but distributed over the WWW and hence this section is by
itself a distributed subsystem. The components constituting the assembly
section can be broadly classified into two categories; namely:

—Simulation-oriented components: The simulation manager, the fac-
tory manager, and the distributed factories constitute the simulation-
oriented components. These components are responsible for collabora-
tively building a distributed simulation. As illustrated in Figure 2, the
former two are part of the FWNS server while the factories are distributed
across the Internet.

—Information-oriented components: The information manager, the
factory manager, and the distributed factories constitute the informa-
tion-oriented components. These components are responsible for collating
information about and from the distributed objects to generate specifica-
tions and documents.

While the various components of the assembly section possess differing
functionalities, the primary input to these components is derived from the
elaborated TSL-IF generated by the input section of the framework. The
TSL-IF not only provides a simple structured input to the components but
also standardizes the interfaces and eases interoperability between the
components. The following subsections attempt to illustrate the issues
involved in the design and implementation of the various components of the
assembly section.

4.1 Simulation Manager

The simulation manager provides the support needed for composing a
simulatable model from the distributed factories. To optimize the execution
of the FWNS server, a unique simulation manager is spawned by the
framework for each unique TSL configuration submitted. The simulation
manager uses the elaborated TSL-IF generated by the TSL parser to
construct the simulatable model. The simulation manager uses the factory
manager to collaborate with the distributed factories to build the objects
needed for simulation. Thus, the factory manager provides a convenient
interface to interact with the distributed factories.

The simulation objects built by various factories may be local or remote
objects. Remote objects must be migrated from the factory to a suitable
simulation subsystem. The simulation manager is also responsible for
assigning remote objects to suitable simulation subsystems. The simulat-
able model may be built by the simulation manager in one or two passes of
the elaborated IF. If a two pass methodology is adopted, then in the first
pass the existence and compatibility of the different objects in the various
factories is verified. During the second pass, the actual objects are instantiated
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from the factories. In a single pass methodology, the objects are verified
and instantiated and on errors the simulation manager undoes its work.
Although the two pass technique involves more time and effort than the
single pass method, a lesser amount of work needs to be undone when
errors are detected. Hence, during the initial phases of the design process,
the two phase approach is preferred as errors in the choice and availability
of components can be quickly detected and rectified. The simulation man-
ager plays a vital role in building the simulation. Once the simulatable
model is successfully composed, the simulation manager transfers control
over to the simulation subsystem modules that control and coordinate the
distributed simulation.

4.2 Information Manager

The information manager provides a variety of outputs depending on the
control information provided by the FWNS server. The basic functionality of
the information manager is to collate information about the input configu-
ration from the distributed object factories. The control information that
determines the data collected is provided by the framework, which in turn
derives the information from the user. The elaborated TSL-IF generated by
the TSL parser forms the primary input to the information manager
modules. Communication with the distributed factories is done via the
factory manager. Similar to the factory manager, the framework spawns off
an unique information manager thread for each session. Based on their
functionality, the modules constituting the information manager can be
grouped into two categories:

—Report generation modules: These modules are responsible for collat-
ing and organizing data from the distributed factories for documentation
and report generation purposes. The framework provides simple tem-
plates for the various outputs. These templates are in turn obtained from
the user.

—Specification modules: Collation and organization of data from the
distributed factories for constructing formal specifications is accom-
plished by these modules. The elaborated TSL-IF provides all necessary
information needed by these modules. The style of specification depends
on the different formal mechanisms supported by the framework. Sepa-
rate submodules are used to handle the intricacies of each unique
mechanism. The current implementation supports construction of speci-
fications for the Prototype Verification System (PVS) [Owre et al. 1992].

The outputs generated by the information manager play a critical role in
assisting the designers of the system. Documents pertinent to the topology
being modeled can be easily generated by the user. It eases the process of
revising the documents due to changes in design. Depending on the
information generated, the outputs may be routed to the user or to the
formal framework module using the I-O section modules. Thus, the infor-
mation manager plays a critical role in the design cycle of engineering a
networking system.
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4.3 Factory Manager

The factory manager provides the communication support for the various
modules of the FWNS server. It also helps to insulate the various modules
from the intricacies involved in communicating with the distributed facto-
ries. The communication subsystem provides the channels between the
factory manager and the distributed factories. A well defined protocol is
used for communications between the manager and the factories.

Figure 3 illustrates some of the important phases in the communication
process. The factory manager initiates communication with the factories.
Once the channel is successfully established via the communication sub-
system, it then forwards the object information along with the parameters
to the factory. Based on the service requested, the factory processes the
parameters and replies to the query. The asynchronous communication
between the manager and the factories is complex and slow. To improve the
efficiency, the FWNS server associates a unique factory manager thread with
each session of the simulation manager and information manager.

One of the important extensions planned for the factory manager is to
enable simple object queries. The user may specify attributes about the
objects and the factory manager queries the “known” factories to locate
components matching the users requirements. The query process can also
be extended to perform sophisticated knowledge-based component retriev-
als [Penix et al. 1998].

4.3.1 Factories. The factories play a pivotal role in providing an uniform
interface to different simulation entities and simplifies their maintenance and

Factory
Manager Factory

Session request

Granted

Factory+Object Info.

Parameters

Query/Creation Status

Register object

Registration status

End Session

Fig. 3. Handshaking between a factory and the factory manager.
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generation. Figure 4 illustrates the layout of a typical FWNS factory. The
initial handle to a factory is provided by the gateway module. The gateway
module hooks on to a specified address via the communication backbone
and processes the initial requests from different simulation managers. This
address is used to locate and communicate with the factory. The communi-
cation backbone provides an uniform interface to the actual communication
infrastructure and the web.

The session manager module is responsible for interacting with a factory
manager to handle queries, create objects, and to set up the simulation. A
number of distinct distributed simulation managers may communicate with
the same factory, via the gateway module, to setup various objects for
simulation. For each such session, the gateway module spawns a new
session manager thread. The different session manager threads interact
and may share the same main-factory and sub-factories. Sharing the
main-factory and sub-factories considerably reduces the memory require-
ments of a factory. The gateway model also assigns a dedicated channel to
each session manager thread for communication with the backbone. This
style of implementation isolates the communication channels of each ses-
sion (and simulation) from others reducing the traffic on each channel. The
design also permits each session to use its own dedicated channels for
communication. The session manager also handles some of the specific
semantics of the simulation engine.

The configuration manager module provides the interface between the
session manager and the simulation subsystem. The simulation subsystem
constitutes the actual simulation engine of the factory. The simulation
subsystem also provides a uniform interface for the different simulation
engines. The factory may have simulation engines that cannot handle
remote (distributed over the web) objects and hence the users may be forced
to instantiate all the objects from the same local factory. The factory
specifications should provide the user with such details. The simulation
subsystem is optional in a factory. The factory could merely build objects

Gateway Manager
Session

Configuration
Manager

Main Factory

Object
Stub

Simulation
(Sub-System)

Factory
Interface

Sub Factory

Communication Sub-System / Backbone

Fig. 4. Layout of a factory.
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for simulation (for example, in Java based byte code) and the objects may
be migrated to a remote simulation server associated with the FWNS server
for actual simulation.

A factory can be built from sub-factories, sub-sub-factories or from object
stubs. This design style provides a convenient hierarchical organization for
large factories. The object stubs are the atomic components of an object
factory. Object stubs provide information about the component and create
the actual simulation objects. The information provided by the stubs are
related to security issues, properties of the physical component (such as
cost and speed) and properties of the simulation object (such as memory
requirements or simulation engine requirements). These details can be
used to automate the process of selecting simulation objects based on user
defined criteria. This information is also used by the information manager
for generating specifications and documents. The information about the
locality of the actual simulation object is also contained in the stub. Objects
could be local or remote. The factory is expected to be capable of simulating
local objects using its simulation subsystem. The remote objects have to be
migrated to a suitable simulation subsystem for performing the actual
simulation. The stubs provide a conceptual link between the simulation
object and the physical component. The factory provides a convenient and
extensible mechanism for managing the different models. Object-oriented
techniques have been successfully employed to develop basic reusable
factories that can be easily extended to build new sub-factories. Since the
factories are fully distributed, large simulations can be set up completely
asynchronously in parallel, thereby reducing the setup time and costs.
Local objects can be used to retain proprietary implementations. The
factory also provides interfaces to query and search for specific components
that meet certain user defined criteria.

5. THE SIMULATION MANAGEMENT COMPONENT

The different simulation subsystems in the factories along with the simu-
lation objects and the simulation server associated with the FWNS server
constitute this section. The primary responsibility of the simulation man-
agement component (SMC) is to control and coordinate the distributed
simulation. The simulations are discrete-event simulations and may be
parallel. Conservative [Bryant 1979; Chandy and Misra 1979] or optimistic
[Jefferson 1985] synchronization mechanisms may be used for the parallel
simulations.

The simulation manager module present in the assembly section triggers
the working of the SMC. Apart from any control information passed from
the simulation manager this section has no primary inputs. The outputs
generated from this section are routed back to the user using the various
I-O section modules. The simulation server is an optional but an integral
part of the framework. It is used for simulating remote objects created by
the factories. The remote objects are migrated from the various factories to
the simulation server by the simulation manager before the simulation is
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set up. The simulation server is responsible for providing the necessary
infrastructure required to simulate the remote object. A set of simulation
servers are used to handle remote objects of different kinds. If the simula-
tion servers associated with the framework do not support a particular kind
of simulation object, then the simulation manager aborts the construction
process. For each simulation session started by the simulation manager,
separate threads of the necessary simulation servers are created.

The current implementation of the simulation server is based on an
optimistic synchronization mechanism. The WARPED [Radhakrishnan et al.
1998] parallel discrete-event simulator is currently used to provide the
necessary distributed simulation infrastructure. WARPED is a Time Warp
[Jefferson 1985] based parallel discrete event simulator. The simulation
server supports simulation objects built using the WARPED API. Details on
developing simulation objects using the WARPED API is available in the
literature [Radhakrishnan et al. 1998]. Interoperation of different synchro-
nization domains and modules based on different simulators are currently
under study. Standardization of the basic event structures required in
discrete event simulators [Dahmann et al. 199] has been proposed as an
ideal solution to enable collaboration between different simulators. The last
two pieces of information [Dahmann et al. 1997] are the destination
[Radhakrishnan et al. 1998] and time stamps [Lamport 1978] of the
various events. The intricacies involved in hardware formats (such as little
endian vs. big endian) are currently handled by the corresponding commu-
nication subsystem modules.

Interoperation of synchronization mechanism and modules based on
different time domains is also under study. Simple protocols to exchange
time and synchronization mechanisms between the various distributed
entities are being designed. The time management infrastructure present
in the High Level Architecture [Fujimoto and Weatherly 1996] is also being
considered. The simulation management section also includes the various
supporting algorithms, such as Global Virtual Time (GVT) algorithms
[Bellenot 1990] that may be required. The current implementation is based
on the WARPED simulator. The modules in the simulation management
section can be easily extended to incorporate other simulation related
optimizations. Domain knowledge can also be effectively employed for
further optimizations. The simulation management sections plays an im-
portant and critical role to enable the distributed simulation feature of
FWNS.

6. THE COMMUNICATION COMPONENT

The modules that provide the fundamental communication backbone for
the framework and simulation subsystem constitute the communication
subsystem. Current implementations of the communication subsystems in
FWNS are built around Berkeley sockets [Stevens 1992]. The subsystem can
be built from any communication protocol, that guarantees error-free and
First-In-First-Out (FIFO) message delivery. The communication subsystem
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modules not only insulate the various modules from the intricacies involved
but also provide an uniform interface for communication between the
various distributed components.

The basic unit of information transfer via the communication backbone is
a message. The structure of the messages used in the framework is shown
in Figure 5. All of the data in messages are represented in standard
network format. Every message starts with 3 fields: (a) size: specifies the
size of the message in bytes; (b) ID: specifies the type of the message; and
(c) a status field. Depending on the ID field, the latter part of a message
could be an event submessage consisting of the components shown in
Figure 5. These messages are used by the simulation objects to exchange
information. All other types of messages have a trailing body which is
essentially a byte stream. These messages are used by the various compo-
nents of the framework to interact with each other. Depending on the type
of the message (as specified in the ID field) the Data field contains the
specific pieces of information. The various communicating modules use a
predefined communication protocol to exchange information.

The communication subsystem plays an vital role in the framework. It
provides the different components a simple and transparent mechanism
required for communication. It serves as an insulation from the intricacies
of the underlying network. It provides a convenient filter to handle data
conversions across formats (e.g., conversion from big endian to little endian
and vice versa) while operating on heterogenous platforms. It also provides
a ideal point to implement any of the fault-tolerance that may be necessary
in the system.

7. THE FORMAL FRAMEWORK

The growth in sophistication and complexity of software systems has
necessitated the use of formal mechanisms to verify and validate them
[Penix et al. 1998]. Automated formal methods are now employed to verify
and validate designs. Solutions for verifying systems built by composition
using automatic mechanisms have been studied [Penix et al. 1998]. Using
formal methods, a designer can model the various aspects of a system and
apply mathematical analysis/verification techniques. Formal methods help
to provide higher levels of confidence in the system. The formal framework
module supports the formal verification of the system models developed by

StatusSize
(2 Bytes)

ID
(1 Bytes) (1 Byte)

Data, depending on the type of the message
(represented as a stream of bytes)

Source ID
(4 Bytes)

Send Time
(4 Bytes)

Target ID
(4 Bytes)

Receive Time
(4 Bytes)

Rest of the
Data ...

Message

Fig. 5. Format of a FWNS Message.

32 • D. M. Rao et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 1, January 2000.



using the FWNS environment. The modules involved in providing formal
verification support constitute the formal framework.

The primary input to the the formal framework modules is collated by
the information manager present in the FWNS server. Based on the user’s
specifications, the information manager selects the appropriate set of
formal data from the various components in the topology. The formal data
is routed back to the formal framework via the I-O section modules. The
formal framework reorganizes the data to meet the requirements of the
underlying formal language. The framework provides a default set of
axioms and proven theorems that the specifications constructed from the
user models are built on. The process of verifying the specification is
currently not fully automated. The user is responsible for interacting with
a theorem prover to verify the generated design specifications. The verifi-
cation process also proves useful to highlight the requirements of system
being modeled.

The current implementations of the formal framework in FWNS are based
on the Prototype Verification System (PVS) [Owre et al. 1992]. PVS uses an
axiomatic style for developing specifications. The usage of PVS language
and theorem prover are available in the literature [Owre et al. 1993]. An
existing set of axioms and theorems are provided with the framework that
are used to compose specifications. The system requirements reflect as
Type Check Conditions (TCC)s [Owre et al. 1993] during the verification
process. Discharging the TCCs is analogous to providing the necessary
infrastructure to the model. The process of extracting requirement specifi-
cations from the TCCs can be automated.

The formal framework plays an important role in the design and verifi-
cation of the network models and components. Formal mechanisms are not
only useful to extract inconsistencies in design but also help in building
system requirements and to increase the confidence in the design. A
number of extensions to the framework such as model checking and support
for various formal languages are planned. Although the formal framework
module is still in its infancy, it holds tremendous potential for automating
the verification process, and is a necessary and integral component of FWNS.
Preliminary studies using the PVS automated theorem proving tool have
resulted in the formal specification and verification of the Time Warp
synchronization protocol [Chernyakhovsky et al. 1999; Frey et al. 1999;
Frey 1998].

8. EXPERIMENTS

The factory infrastructure of FWNS was used to develop a networking
factory consisting of basic network components. The essential components
were a traffic generator, a network node, and a router. The rate at which
the packets were generated by the traffic generator was determined by a
set of predefined random distributions. The user could tailor the type of
traffic generated by specifying the appropriate distribution and correspond-
ing parameters such as the mean and variance for the distribution. The
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node represents a passive node on the network. The traffic generator must
be used to drive the node to generate data. The size of the packets and their
destination are based on a user-specified distribution. The nodes must be
connected to a router to send and receive the data packets. The routers
employ broadcasting to forward the data packets from one router to
another. The components also generate statistics, collated during simula-
tion, such as the number of packets generated, average packet size, and
details on router traffic. The parameters to the various components, used to
model a network, are provided by FWNS from their TSL specifications.

The simulation objects generated by the factory were local. Hence, the
necessary support for parallel simulation was also built into the factory.
The infrastructure for parallel simulation was enabled using WARPED

[Radhakrishnan et al. 1998], an optimistic parallel simulation kernel. The
various components in the network factory adhered to WARPED’s application
program interface (API). In WARPED, simulation objects or logical processes
(LPs) are grouped into entities called clusters [Radhakrishnan et al. 1998].
The session manager module was adapted to handle the specifics of the
simulation engine such as instantiating an LP and registering the re-
quested simulation objects with the LP. A customized communication
subsystem interface was developed to integrate WARPED with FWNS.

The various network configurations used in the experiments were gener-
ated using GT-ITM tools [Zegura et al. 1996]. GT-ITM tools provide
techniques for generating various graphs to model real world network
topologies. The network topologies are built on top of the Stanford Graph-
Base (SGB), a platform of data structures and routines for representing
and manipulating graphs. Details on the various networking topologies,
generated using GT-ITM, used in the experiments are shown in Table III.
Each node in the network was associated with a traffic generation object.
Hence the total number of objects in the simulation (as shown in Table III)
is greater than the number of network nodes. A SGB-to-TSL conversion
tool was developed to ease transmogrification of the graphs, generated by
GT-ITM, from SGB format to TSL specifications. The generated TSL
specification were suitably modified to utilize components from the network
factory with appropriate parameters inorder to enable simulation.

The simulation experiments were performed on a network of shared
memory multi-processor (SMP) workstations. Each workstation consisted of
dual Pentium-Pro processors (166 MHz), with 128 MB of RAM, running

Table III. Details of Network Models Used in Experiments

S. no. No. of nodes No. of edges
Average
degree

Total
simulation

objects Lines of TSL

1 10 10 2.0 21 72
2 20 19 1.9 43 149
3 30 32 2.133 64 216
4 40 41 2.05 85 280
5 50 55 2.0 106 347
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Linux version 2.0.34. The workstations were connected by fast Ethernet.
The parallel simulation studies were conducted by deploying two factories
per workstation and employing components from the various factories by
suitably modifying the TSL specifications. The traffic generators, associ-
ated with each node, were parameterized to trigger the nodes at a constant
rate to generate 50 packets of size 64 bytes each. The text interface to FWNS

was used in the experiments.
The timings obtained from the various experiments are illustrated in

Figure 6. The cumulative time for parsing, elaboration, setting up the
simulation, and simulation for the various configurations are shown. The
labels (nF) associated with each timing bar indicate the number of factories
used in the experiment. The configurations that involve more than one
factory indicate the parallel and distributed simulation instances. As
shown in Figure 6, the time required for the parallel simulation instances
are higher due to communication and synchronization overheads. The
timings for the experiments conducted with 2 factories is considerably
lower, when compared to the 3 and 4 factory configurations, since the
factories deployed on the same workstation were used. The time required is
lower because communication between factories on the same workstation is
much faster than communication between workstation due to network
delays. The 4 factory simulation of the network model with 40 network
nodes was faster than the 3 factory model. A scrutiny of the simulations
indicated the increased performance was due to effective partitioning
(allocation of objects to factories) of the various simulation objects.
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Although, random partitioning was adopted in the experiments, the results
indicate that considerable benefits can be accrued by using ideal partitions.
Such partitions can be achieved by strategically using components from the
various factories rather than on a purely random basis.

Other uses of FWNS include a demonstration of active network simula-
tions across the web during the 1998 DARPA ITO sponsored Active Nets
workshop [ANW’98 1998]. An ultra large scale remote simulation of more
than two million active network nodes using the latest version of FWNS is
planned for this year’s Active Nets workshop. In addition, computer science
graduate students at the Virginia Polytechnic Institute and State Univer-
sity (Virginia Tech) are currently using FWNS for a networking project.

9. CONCLUSIONS AND FUTURE WORK

The growing complexity of the different network components has made the
design and construction of effective networks a complex task. Many of the
networks are built from third party supplied equipments. To facilitate
analysis of the different options using simulations and in order to further
promote their products, the manufacturers need to provide greater access
to their simulation models. The FWNS provides a flexible framework for
integrating these diverse needs. The effectiveness in protection of propri-
etary rights, component retrieval methodology, and effectiveness of simula-
tion make the solution ideal. Although FWNS provides a practical solution to
the problem, more research is needed to handle further diversity of simula-
tion models. Different synchronization strategies are used by different
researchers, and a universal mechanism to enable all the different strate-
gies to coexist in the same simulation is needed. More complex models at
various levels of abstraction needed to be developed to study the effective-
ness of the framework. The framework for web-based network simulation
provides an excellent infrastructure that will prove to be a stepping stone
for an ultra-scale heterogenous simulation machine that is fully distributed
over the whole Internet.
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